
World Applied Sciences Journal 4 (5): 626-633, 2008
ISSN 1818-4952
© IDOSI Publications, 2008

Corresponding Author: Dr. Ibrahiem M.M. El Emary, Faculty of Engineering, Al Ahliyya Amman University
626

A New Approach for Solving String Matching Problem
through Splitting the Unchangeable Text

1Ibrahiem M.M. El Emary and 2Mohammed S.M. Jaber

1Faculty of Engineering, Al Ahliyya Amman University
2Faculty of Computer Science, Al Balqa Applied University, Al Salt Jordan

Abstract: This paper describes a new approach for solving string pattern matching problem with splitting
unchangeable text in order to speed up the string pattern matching task The string matching problem
consists of finding one or more generally all the exact or partial occurrences of a pattern P in a text T. So,
this paper presents a new algorithm to solve the string matching problem. Application of the proposed
algorithm assists in improving the search process of a specific pattern in a certain unchangeable text
through decreasing the number of character comparisons. Operation concept of such an algorithm depends
on reading the text and do two things: first split the text to n parts depending on the text size and in the
same time construct n tables consisting of two columns; the first one is the words lengths exists in the text
and the second one is the start positions of each word classified by the same length. After that, reading the
pattern to obtain the pattern length and the pattern first character then the algorithm searches just in the
words that consists of the same length of each table.

Key words: String matching T • Pattern matching P • n is the length of the word in the text • m is the length
of the pattern

INTRODUCTION

The purpose of this paper is to present a new
algorithm used in solving the string matching problem
to improve the search process depending on decreasing
the number of character comparisons. The algorithm
has two phases that works according to the following:
first of all the text we are dealing with non-changeable
text which means that the text is offline text. The first
phase which is the preprocessing phase starts with
reading and splitting the text to n equal parts depending
on the size of the text and constructing n tables with
two columns for each part of the text, the first one is the
length of words and the second one is the start position
for each word in the text. The start positions of the
words will be classified by the same length. Once we
have constructed the tables, we must sort them in
ascending order using the length of the words as a key
for sorting. This phase is done just only one time.

The second phase is searching for a specific
pattern, so the algorithm calculates the number of the
pattern characters and search for the same length in the
tables starting from the first one, if the length is not
exists in the first table then the algorithm search in the
next one and so on. If the current table is the last table,
then a message will appear denoting that the pattern is
not exists. On the other hand if the length exists, then

the algorithm will retrieve the words in the text using
the stored start position in the table and begin to
compare. If a match occurred and character
comparisons equal the pattern length, then a full match
is occurred since we are looking for an exact match, but
if a mismatch happen at some character, then the
algorithm will skip to the next start position and
compare again. In this paper, we run some experiments
using the Boyer-Moore algorithm because this
algorithm and Boyer Moore Galil algorithm are
considered the more fast algorithms theoretically
and practically [1]. As a result of comparing our
algorithm with others to full character comparisons
at the same test paragraph, Boyer-Moore Algorithm
has made 110 character comparisons to finish the text
constructed from 91 words whereas the proposed
algorithm have made 13 character comparisons on the
same text.

To achieve the target of solving the matching
problem using our new approach, we have presented
this paper which is organized from various sections.
Section two describes the problem formulation as well
as the methodology of solution. Section three was
devoted to the implementation phase of the proposed
algorithm. Simulated results are shown in section four.
In section five, we enclose the paper with conclusion
and future works.

World Appl. Sci. J., 4 (5): 626-633, 2008

627

RELATED WORKS

A similar approach to our proposed one depending
on making a table and a tree where the algorithm
depending on visiting the nodes in the tree and the sub-
trees is presented in this section. As known, using this
kind of algorithms need recursion and more memory
because the stack technique is used. Table 1 shows such
a similar one algorithm that is described in [2]. The
complexity of this algorithm is too expensive since the
complexity of recursion is n(n-1)! [2].

Another algorithm dealing with non-changeable
text is to make a table having the following
information:

• Pattern
• Book number
• Page number
• Line number
• Word number

Illustration for this algorithm can be shown in Table 2.
This method save each word mentioned in a text or

book as illustrated in the above table, when looking for
a specific pattern, the algorithm returns the pattern
positions based on the records stored. This method need
O(n) to read the text and O(n) to search in the Table 12.

PROBLEM FORMULATION &
METHODOLOGY OF SOLUTION

The search process used in this area by the various
algorithms start to search for the pattern despite of the
existence of the pattern or not in the text. Also, the
search process does not exclude any word from the text
when start searching for the pattern. If we would like to
search for another different pattern in the text, all
algorithms except the presented one will start search
again from the beginning for the new pattern. Also,
most of other algorithms need to make a preprocessing
on the text or on the pattern or on both each time for a
new pattern.

The motivation to present this paper is to propose a
new different algorithm in solving string matching
problem to improve the search process through
decreasing the number of character comparisons, which
takes advantages from building an equal size tables for
only one time consists of two columns for each, the first
one is the words lengths exists in the text and the
second one is the start positions of each word classified
by the same length. The advantage from building more
than one table is that if we find the needed pattern in the
first table and the case was to find just the first
occurrence, then we will not looking for the pattern in
the other tables.

In view point of the tested data, there are a lot of
cases that we may deal with in string matching process
and pattern matching areas. These cases are
summarized as following:

• The length of the text and the length of the pattern;
each of them may be long or short.

• The text itself may be for educational purposes or
normal text.

• The searching algorithms may search for a copy of
the pattern or for a partial matching.

• Searching for a specific word may be needed just
for the first occurrence or for accurate number of
occurrences or for all occurrences.

• The texts could be changeable or non changeable.
• The text has capital letters and small letters

The case that we want to work with for the text is:
normal English, non changeable text and normal
pattern. A normal text likes one presented in this paper
or a text from the internet for example. This algorithm
is searching for a copy of the pattern not for a partial
match in small letter. The pattern is a normal word in
small letter also.

In view point of test environment the experiments
was run on Pentium 3 of 450 Mhz clock with 128 Mb
RAM and a 20 GB local hard disk. The operating
system is Windows XP during all exp eriments; the data
structures used in the testing were all in physical
memory during the experiments. Finally, the algorithm
has been implemented in Visual Basic programming
language.

For the comparison of the string matching
algorithms with the proposed algorithm, we have used
the number of character comparisons. The counting of
the number of character comparisons is the same as that
used by Smith, which is based on computing the
number of actually compared characters to the number
of passed characters in the text. Since all algorithms are
designed to find all occurrences of a pattern in the text
in the experiments, the number of passed characters is
always n-m+1. The operation steps of the proposed
algorithm to search for a specific pattern in a certain
text are shown in Fig. 1.

IMPLEMENTATION PHASE OF THE
PROPOSED ALGORITHM

The idea of searching about a certain pattern in
details is given below which starts when the user writes
a pattern to be searched in the text. Implementation of
the algorithm requires various phases given by:-

Preprocessing phase: In this phase, the algorithm
splits the text to n equal parts, let's says four parts and

World Appl. Sci. J., 4 (5): 626-633, 2008

628

Table 1: Other Similar approach of the proposed algorithm
Antecedent POS Label Count Description
NP NP * 18,334 NP trace (e.g., Sam was seen*)

NP * 9,812 NP PRO (e.g., *to sleep is nice)
WHNP NP *T* 8,620 WH trace (e.g., the woman who you saw *T*)

U 7,478 Empty units (e.g., $ 25 *U*)
0 5,635 Empty complementizers (e.g., Sam said 0 Sasha snores)

S S *T* 4,063 Moved clauses (e.g., Sam had to go, Sasha explained *T*)
WHADVP ADVP *T* 2,492 WH-trace (e.g., Sam explained how to leave *T*)

SBAR 2,033 Empty clauses (e.g., Sam had to go, Sasha explained (SBAR))
WHNP 0 1,759 Empty relative pronouns (e.g., the woman 0 we saw)
WHADVP 0 575 Empty relative pronouns (e.g., no reason 0 to leave)

Table 2: Similar approach of the proposed algorithm
Book Page Line Word

Pattern number number number number
Recursion 1 101 4 7

2 220 7 3
2 5 2 2
4 114 5 5

Recursive
Recurred
Recur

constructs four tables each one has two columns, the
first one is the length of words starting from one
character and ending with the most long word length of
characters in the text. The second column is the start
position of each word in the text classified by the same
length. Then the algorithm stores the lengths and the
start positions for each word in the text in each table for
each part of the text. These tables are constructed only
one time since the text is non changeable.

As an illustration for the reading process we may
take a case study to explain this idea as follows:-

"the author name is mohammed sulieman mohammed
jaber i am one of the alblaqa
1 5 12 17 20 29 38 47 53 54 57 61 64 68
applied university faculty i have born in kuwait and i
have finished the bachelor's
76 84 95 103 104 109 114 117 123 127 128 133 142
146
degree from princess sumaiya university for technology
i have the master degree from
157 164 169 178 186 197 201 212 214 219 223 230 237
albalqa applied university i have finished the master
degree last year"
242 250 258 269 271 276 285 289 296 303 308

Assuming that each line of this paragraph forming
one part of the text, so we have four parts and each part
will have one table, the tables will be as following:

Table 3: P art 1 of the text
Length Start position
1 53,103
2 17,54,61
3 1,57,64
4 12
5 47
6 5
7 68
8 20,29,38

Table 4: Part 2 of the text
Length Start position
1 103,127
2 114
3 123,142
4 104,109,128
6 117
7 76,95
8 133
10 84,146

Table 5: Part 3 of the text
Length Start position
1 212
3 197,219
4 164,214,237
6 157,223,230
7 178
8 169
10 186,201

Table 6: Part 4 of the text
Length Start position
1 269
3 285
4 271,303,308
6 289,296
7 242,250
8 276
10 258

World Appl. Sci. J., 4 (5): 626-633, 2008

629

Fig. 1: A flo wchart of the proposed algorithm

Once the algorithm constructs the above tables,
then we have finished the preprocessing phase and
ready to search for any word in the text. These tables
are constructed just only one time since the text is
unchangeable. We will deal with two cases here, the
first one is if the pattern length is not exists in the text
and the second one if exists.

Case number one: If the user of the text try to look for
a word that have nine characters, then the algorithm
will start with the first table using the length of the
pattern as a key in the length column, but the algorithm
will skip to the second table because there is no length
equal nine, also the algorithm will skip to the third and
the fourth table for the same reason, then the algorithm

Preprocessing
Phase

Construct more than one table with two
columns for each (Length, Start Position)

Read the text and fill each of the word length
and start position classified by the same length

for each part

Sort the Tables

Enter a Pattern

Search for the same length
starting from the first table

Is the
Length
Exists?

Start

No

Jump to Next Table

Yes

Compare words using start position(s)

Found? Return Start PositionYes

Return Number of
character comparisonsEnd

Searching
Phase

Is it the
last

table?

Pattern Not Found

No

No

Yes

World Appl. Sci. J., 4 (5): 626-633, 2008

630

will return a message denoting that the pattern is not
exists in the text without searching the text at all.

Case number two: First of all, if the pattern length
exists in any table then the algorithm will ignore the
rest rows of other lengths in the table and focus just on
the row of the same pattern length that we look for. The
algorithm starts comparing the first character of the
pattern with the first character of the first word by using
the start position which stored in the table, since we
store the first character and the length of the pattern
from the beginning. If the first character is not matched,
then the algorithm ignores the current word and starts
with the second one. If the first character is matched,
then the algorithm continues to compare the rest of
word characters. In case a mismatch occurred with
some character after that, then the algorithm ignore the
current word and skip to the next start position with the
next word.

But in case of full matching occurred, the
algorithm will return the start position of the word
matched and continue to search for other occurrences
until the end of the row for the same length in all the
tables if the case was to find all occurrences in the text.
For example, if the user look for the word "shift" which
consists of five characters, as we can see in the above
example, only table number one has the length five so
the algorithm will start comparing with the start
position number 47 and the result will be just 1
comparison between the character "j" and the character
"s" then the algorithm will skip to the next table and
search for the length equal five but it is not exists and
the third and the fourth table are the same then the
algorithm will return a message denoting that no match
exists. If we want to look for the word "jaber", so the
whole comparisons done is just five characters which is
the best case.

Complexity and analysis: In the preprocessing phase,
reading the text from beginning to the end will take a
complexity of O(n). To sort the records in the tables, we
may use the merge sort which have complexity of
O(nlogn). So the overall complexity in the
preprocessing phase is O(n*nlogn) which will be
executed just only one time in the non changeable text,
so complexity of the first part is not so important,
because it is executed only once [3].

In the search phase, as a technique to search for the
pattern in table I, suggest to use the Binary Search
algorithm since the complexity for the binary search
algorithm takes O(Logn). The number of comparisons
done in each row is not fixed, we may compare with
zero or one word or comparing with thirty words.
Then the whole complexity for the searching phase is

O (logn+Σ) wher Σ is the number of character
comparison that is done in each row, the worst case.

SIMULATED RESULTS

Now, we will make a comparison between the
proposed algorithm one of the most famous and fastest
algorithm in such area which is the BM algorithm to
find out the improvement in the number of character
comparisons that is done in each algorithm. As an
example, we’ll take the next paragraph to apply the
algorithm with the patterns; "comparisons",
"subproblem" and "algorithm". The pattern
“comparisons” is not exists in the text but the others are
exists.

A recursive algorithm for solving a problem is an
algorithm that works by dividing
1 3 13 23 27 35 37 45 48 51 61 66 72 75

the problem into several problems of a smaller size and
by applying the same
84 88 96 101 109 118 121 123 131 136 140 143 152
156

algorithm to at least one of the smaller problems.
Applying the same algorithm
161 171 174 177 183 187 190 194 202 212 221 225 230

to a subproblem of a problem is called a recursive step.
Size of a
240 242 244 255 257 259 267 270 277 279 289 295 300
303

problem may mean different things for different
problems, for instance the number
305 313 317 322 332 339 343 353 363 367 376 380

of elements to sort for a sorting problem, or the number
whose factorial
387 389 398 401 406 410 412 420 429 432 436 443 449

we need to compute for a problem of computing a
factorial".
459 462 467 470 478 482 484 492 495 505 507

Preprocessing phase: First of all, the algorithm reads
the whole text and then splitting it equally to many
parts, if we assume that each two lines of the previous
paragraph are one part, so the tables will be as
following:

Implementation phase: For the first pattern
"comparisons", we can see that this pattern constructed

World Appl. Sci. J., 4 (5): 626-633, 2008

631

Table 7: Part 1 of the text
Length Start position

1 1,35,121
2 45,48,72,118,140
3 23,84,136,152
4 61,96,131,156
5 66
6 -
7 27,37,88,101,123
8 75,109,143
9 3,13,51
10 -

Table 8: Part2 of the text
Length Start position

1 242,257,277,303
2 171,174,187,240,255,267,300
3 183,190,221
4 225,289,295
5 177
6 270
7 194,259
8 202,212
9 161,230,279
10 244

Table 9: Part3 of the text
Length Start position

1 410
2 387,398,429
3 313,339,363,376,406,432
4 317,401
5 443
6 332,380,436
7 305,412,420
8 353,367,389
9 322,343,449
10 -

Table 10: Part4 of the text
Length Start position
1 482,505
2 459,467,492
3 478
4 462
5 -
6 -
7 470,484
8 -
9 495,507
10 -

from eleven characters, when the algorithm consult the
first table in the length column, the algorithm will find
that there is no such length, then the algorithm will skip
to the next tables for the same reason and finally the
algorithm will return a message denoting that no such
pattern exists in the text. Here, the number of character
comparisons is done equals zero. For the pattern
"subproblem", this pattern mentioned just only one time
in the text, the algorithm will skip from Table 7 and 8
since there is no such length exists. In Table 8, there is
one start position denoting that there is one word exists
with the same length which is the same word. The total
comparisons done equal to ten comparisons since there
is no such length in Table 9 and 10.

For the last pattern "recursive", when the algorithm
consults the first table, the algorithm will focuses on the
row with length equal nine since the word (recursive) is
constructed from nine characters. Then, the algorithm
will start comparing with the word at the start position
3. The first character is matched, then the algorithm
will continue to compare until a full matching which is
the best case. The algorithm continues to search for
other occurrences starting from position 13, but the first
characters is not matched and then skip to the start
position 51 and so on in the other tables.

The total number of comparisons done equal to
twenty seven comparisons, eighteen comparisons for
the word (recursive) where this pattern exists twice in
the text and nine comparisons between the letter (r) in
recursive and the first character of the words for the
same length in all tables. If the case is to find the first
occurrence only, then the total comparisons equal to
nine comparisons. If the case is to find all occurrences
then the total comparisons equal to 27.

If we apply the Boyer-Moore algorithm on the
same paragraph, then the results will be as following:
For the first pattern "comparisons", which is not exists
in the text at all, the algorithm will go on to compare
until the end of the text, the total number of
comparisons that is done equals 55. For the pattern
"subproblem", the total number of comparisons done
equals 110. For the last pattern "recursive", the total
number of comparisons done equal 81.

Comparative results: As a comparative illustration
between the proposed algorithm and other algorithms
relative to the character comparisons, we show the
output results as shown in the next Fig. 2 and 3 for the
last word of the last example, the word “subproblem”
which indicates that the algorithm is better than others
in view point of number of comparisons done on each
pattern need to be searched within a certain text.

As a comparative result for the word “subproblem”
witch consists of 10 characters, the result shows that

World Appl. Sci. J., 4 (5): 626-633, 2008

632

Table 11:Number of character comparisons using BM and the proposed Algorithms for each of the patterns “Comparisons”, “subproblem” and
"recursive"

Boyer-moore algorithm Proposed algorithm
--- ---

Word First occurrence Full occurrences First occurrence Full occurrences
Comparisons 55 - 0 0
Subproblem 53 110 10 13
Recursive 10 81 9 27

Fig. 2: Character comparison between the proposed algorithm and BM algorithm in view point of number of
character comparisons(Y axis) against Number of words in the text (X-axis) for the word “subproblem”

Fig. 3: Character comparison between the proposed algorithm and BM algorithm in view point of number of
character comparisons (Y axis) against Number of words in the text (X-axis) for the word “recursive”

after 40 words, the number of character comparisons
done for the proposed algorithm is 10 comparisons and
53 comparisons for Boyer Moore and 13 comparisons
for the proposed algorithm and 110 comparisons for
Boyer Moore after 91 words in the text.

For the pattern recursive which consists of 9
characters, the result shows that after 40 words, the
number of character comparisons done for the proposed
algorithm is 9 comparisons and 10 comparisons for

Boyer Moore and 27 comparisons for the proposed
algorithm and 81 comparisons for Boyer Moore after 91
words in the text.

CONCLUSION

Decreasing the searching time to locate a specific
word could give us a good improvement in pattern
matching problem. The main advantages that we may

World Appl. Sci. J., 4 (5): 626-633, 2008

633

gain from this algorithm are: excluding the search for
not needed text, Make no search at all if the pattern
length does not exist and searching for different pattern
without need to read the text again. We may look for
the average case of the words length and then dealing
with this case in different way to increase the efficiency
of the search technique. This algorithm is done for the
non-changeable text, because the time needed and space
used to save the length and the start position. As seen,
this algorithm construct tables having the lengths and
start position for each word classified by the same
length, if we have a huge text, then we will have a huge
table which need more time to construct. As a future
work, we may compress these tables to reduce the space
used. Also, we may use this algorithm at the text
editors. Constructing the tables as soon as finishing
writing the text will reduce the time for constructing the
tables and then the algorithm will be ready to search for
any word in the text at any time.

REFERENCES

1. Michailidis, P.D. and K.G. Margaritis, 2001. On-
line String Matching Algorithms: Survey and
Experimental Results. International Journal of
Computer Mathematics, 76 (4): 411-434.

2. Mark Johnson, 2002. A simple pattern-matching
algorithm for recovering empty nodes and their
antecedents. Philadelphia.

3. Tomas Pet, 2005. Aho-Corasick string matching
in C#.

00. Sara Baase and Allen Van Gelder, 2003. Computer
Algorithms, Introduction to Design and Analysis.
Third Edition.

00. Speeding Up String Pattern Matching by Text
Compression, 2001. Masayuki Takeda, Yusuke
Shibata, Tetsuya Matsumoto, Takuya Kida, Ayumi
Shinohara, IPSJ Journal, Vol: 42 (3).

00. Ute Abel Proseminar, 2001. String matching
Algorithms.

00. Robert Muth and Udi Manber1, Approximate
Multiple String Search, Department of Computer
Science. University of Arizona, Tucson, AZ 85721.

00. Tomas Pet, 2005. Aho-Corasick string matching
in C#.

00. Fast Partial Evaluation of Pattern Matching in
Strings, 2003. Mads Sig Ager Olivier Danvy,
Henning Korsholm Rohde.

00. Improved Approximate Pattern Matching on
Hypertext, Gonzalo Navarro, Dept. of Computer
Science. Univ. of Chile Blanco Encalada 2120,
Santiago, Chile.

00. Robert Muth and Udi Manber, 2003. Approximate
multiple string search. Department of Computer
Science. University of Arizona.

