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Abstract: In this paper, it is shown that if the sequence of Ishikawa iterations associated with G  and H
converges, then its limit point is the common fixed point of G and H in probabilistic metric spaces.
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INTRODUCTION

K. Menger introduced the notion of a
probabilistic metric space in 1942 and since then the 
theory of probabilistic metric spaces has developed in 
many directions [1]. The idea of K. Menger was to 
use distribution functions instead of nonnegative real 
numbers as values of the metric. The notion of a 
probabilistic metric space  corresponds to situations 
when we do not know exactly the distance between 
two points, but we know probabilities of possible 
values of this distance.

A probabilistic generalization of metric spaces 
appears to be interest in the investigation of physical 
quantities and physiological thresholds. It is also of 
fundamental importance in probabilistic functional
analysis. In the recent years several authors [2-6]
have  studied  the  convergence  of  the sequence of 
the  Mann  iterates  [7] of a mapping H to a fixed 
point  of H , under various contractive conditions. 
The Ishikawa iteration scheme [4] was first used to 
establish the strong convergence for a pseudo
contractive self-mapping of a convex compact subset 
of a Hilbert space.

Very soon both iterative processes were used to 
establish the strong convergence of the respective 
iterates for some contractive type mappings in Hilbert 
spaces and then in more general normed linear
spaces. In this paper, we used Ishikawa iterations
scheme for finding a common fixed point for two 
mappings in probabilistic  metric spaces. In the
sequel, we shall adopt the usual terminology, notation 
and conventions of probabilistic metric spaces
introduced by Schweizer and Sklar [1].

Throughout this paper, the space of all
probability distribution functions (briefly, d.f.’s) is 
denoted by

{ : { , } [0,1]:F R F+∆ = −∞ + ∞ → is  left-continuous

and non-decreasing on R, (0) 0F =  and ( ) 1}F +∞ =

and the subset D+ +⊆ ∆  is the set
{ : ( ) 1}D F l F+ + −= ∈∆ +∞ = .

Here, ( ) lim ( )t xl f x f t−
−

→
= .

Definition 1.1: ([1]) A mapping :[0,1] [0,1] [0,1]T × →

is a continuous t-norm if T satisfies the following
conditions :

• T is commutative and associative;

• T is continuous;

• ( ,1)T a a=  for all [0,1]a ∈ ;

• ( , ) ( , )T a b T c d≤  whenever a c≤ and b d≤  for

, , , [0,1]a b c d∈ .

Two typical examples of continuous t–norm are 
( , )T a b ab=  and ( , ) min( , )T a b a b= .

Now t–norms are recursively defined by 1T T=
and

1
1 1 1 1( ,..., ) ( ( ,..., ), )n n

n n nT x x T T x x x−
+ +=

for 2n ≥  and [ ]0,1ix ∈ , for all { }1,2,..., 1i n∈ + .  A t-
norm is Hadzic type if ( , ) min( , )T a b a b≥  for every 

, [0,1]a b∈  (see [8]).

Definition 1.2: A Menger Probabilistic Metric space 
(briefly, Menger PM -space) is a triple ( ), ,X F T ,
where X is a nonempty set, T is a continuous t-norm
and F is a mapping from X X×  into D+  such that, if 

yxF ,  denotes the value of  F at the pair ( )yx, , the 

following conditions hold: for all x,y,z in X,
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(PM1) ( ) 1, =tF yx  for all 0>t  if and only if  x = y;

(PM2) ( ) ( )tFtF xyyx ,, = ;

(PM3) ( ) ( ) ( )( ), , ,,x y x y y zF t s T F t F s+ ≥  for all

, ,x y z X∈  and , 0t s ≥ .

If, in the above definition, the triangular
inequality (PM3) is replaced by

(NA) { }( ) ( ) ( )( ), , ,max , ,x y x y y zF t s T F t F s≥

for all , ,x y z X∈  and , 0t s ≥ .

Or, equivalently,

( ) ( ) ( )( ), , ,,x y x y y zF t T F t F t≥

for all , ,x y z X∈  and 0t ≥ , then the triple ( ), ,X F T

is called a non-Archimedean Menger PM space
[9,10].

Definition 1.3: Let ( ), ,X F T  be a Menger  PM-

space.

(1) A sequence }{ nx  in X is said to be convergent

to x in X if, for every 0>  and 0> , there 
exists positive integer N such that

)(, 1
nx xF > −  whenever Nn ≥ .

(2) A sequence }{ nx  in X is called Cauchy

sequence if, for 0>  and 0> , there exists 
positive integer N such that

( ) −> 1, mn xxF whenever Nmn ≥, .

(3) A Menger PM-space ( )TFX ,,  is said to be 
complete  if and only if every Cauchy sequence in 
X is convergent to a point in X.

Definition 1.4:   Let ( ), ,X F T  be a Menger PM 
space. For each p in X and 0>  the strong 
neighborhood of  p is the set

( ) { ( ) },: 1p p qN q X F= ∈ > −

and the strong neighborhood system for X is the 
union p v PN∈   where

( ){ }; 0p pN N= >

The strong neighborhood system for X
determines a Hausdorff topology for X.

Theorem 1.5:  [1,11] If ( ), ,X F T  is a PM -space and 

}{ n
p  and }{ n

q  are sequences such that
n

p p→ and

n
q q→ then ( ) ( ), ,lim

n np q p qn F t F t→∞ =

Lemma 1.6: [12] Let ( ), ,X F T  be a Menger PM-

space and define { }2
, : 0FE X R+→    by

( ) ( ){ }, ,, inf 0 : 1F x yE x y t F t= > > −

for each ] [0,1∈   and ,x y X∈ . Then we have 

• For any ] [0,1∈ there  exists ] [0,1∈  such 

that

( ) ( ) ( ), 1 , 1 2 , 1, , ,F n F F n nE x x E x x E x x−≤ + +

for any 1, , nx x X∈ ;

• The  sequence }{ nx   is  convergent with respect 

to Menger PM F  if and only
if ( ) 0,, →xxE nF . Also the sequence }{ nx
is a Cauchy sequence with respect to Menger PM 
F  if and only if it is a Cauchy sequence with 

.,FE

RESULTS AND DISCUSSION

Definition 2.1: Let ( ), ,X F T be a Menger PM-space

and [ ]0,1I =  the closed unit interval. A cont inuous

mapping 2:W X I X× →  is said to be a convex
structure on X if for all ,x y X∈  and k I∈

(2.1)

( )[ ] ( ) ( ) ( )yuEkxukEkyxWuE FFF ,1,,,, ,,, −+≤

for all u in X. A Menger PM -space ( ), ,X F T  together 

with a convex structure is called a convex Menger 
PM-space [4, 13].
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Theorem 2.2. Let C be a nonempty closed convex subset of a convex non-Archimedean Menger PM-space
( ), ,X F T  in which T is Hadzic type. Let , :G H X X→  be a self-mappings satisfying

(2.2) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2
,, , ,/ , / , /x yG x H y x H y G x yF t T F t h F t h F t h≥

for all ,x y C∈  and t > 0 in which ] [0,1∈ . Suppose that }{ nx  is Ishikawa type iterative scheme with G and H, 
defined by

(1) ;cxn ∈

(2) ( ), , ,n n n ny W Gx x n o= ≥

(3) ( )1 , , ,n n n nx W Hy x n o+ = ≥

where }{ n  and }{ n  satisfy 0 , 1n n≤ ≤  and }{ n  is away from zero. If }{ nx  converges to some p C∈ ,

then p is common fixed point of G and H.

Proof:    From (3) it follows that

( ) [ ( ) ] ( )( ), 1 , ,, , ( ), , , .F n n F n n n n n F n nE x x E x W H y x E x H x+ = =

Since ( )
1,, 1

n nn x xx p F t
+

→ → and by Lemma 1.6 (ii) ( ), 1, 0F n nE x x + →

Since }{ n  is away from zero, it follows that

(2.3) ( )( ),lim , 0n F n nE x H y→∞ =

Using (2.2) we get:

(2.4) ( ) ( ) ( ) ( ) ( )
2

,, , ,, , .
n nn n n n n nx yG x H y x H y G x y

t t t
E t T F F F

h h h
      ≥             

By a property of E we have that

( ) ( )( ), ,F n nE G x H y

= inf { ( ) ( ) ( ) },0 : 1
n nG x H yt F t> > −

≤  inf { ( ) ( ) }2
, , ,0 : , , 1

n n n n n nx y x H y G x y
t t t

t T F F F
h h h

      > > −            

h≤ inf { ( ) ( ) ( ) ( ) ( )( ) }2
, , ,0 : , , 1

n n n n n nx y x H y G x yt T F t F t F t> > −

h≤  inf { ( ) ( ) ( ) ( ) ( )( ) }, , ,0 : min , , 1
n n n n n nx y x H y G x yt F t F t F t> > −

[ ( ) ( )( ) ( )( ) ], , ,, , , .F n n F n n F n nh E x y E x H y E G x y≤ + +
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From (2) and (3) we have that

( ) ( )( ) ( )( ), , ,, , , , , ,F n n F n n n n n F n nE x y E x W G x x E x G x = = 

( )( ) ( ) ( )( ) ( ) ( )( ), , ,, , , , 1 , .F n n F n n n n n F n nE G x y E G x W G x x E x G x = = − 

Thus we have

(2.5) ( ) ( )( ) [ ( )( ) ( )( ) ], ,,
, , , .F n n n n F n nF

E G x H y h E x G x E x H y≤ +

By triangular inequality (NA), we have

 (2.6) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ), , ,, .
n n n n n nH y G x x H y x G xT F t F t F t≤

By a property of E  and since the t–norm is Hadzic type, we have that

( )( ) ( ) ( ){ }, ,, inf 0 : 1
n nF n n x G xE x G x t F t= > > −

( ) ( ) ( ) ( ) ( )( ){ }, ,inf 0 : , 1
n n n nH y G x x H yt T F t F t≤ > > −

( ) ( ) ( ) ( ) ( )( ){ }, ,inf 0:min , 1
n n n nH y G x x H yt F t F t≤ > > −

( ) ( )( ) ( )( ), ,, , .F n n F n nE H y G x E H y x≤ +

Hence, from (2.5) and last inequality we have 

( ) ( )( ) ( )( ), ,
2, , .

1F n n F n n
hE H y G x E H y x
h

≤
−

Taking the limit as ∞→n , by (2.3), we obtain

( ) ( )( ),lim , 0.n F n nE H y G x→∞ =

Since ( )nH y p→ , it follows that ( )nG x p→ . Since ( ) ( )( )
,, , , ,
FF n n nE n nE x y x G x=  it follows that pyn → .

From (2.2) and by a property of E  we have

( ) ( )( ) [ ( ) ( )( ) ( )( ) ], , , ,, , , , .F n F n F n F nE G x H p h E x p E x H p E p G x≤ + +

Taking the limit as 1→n , we obtain

( )( ) ( )( ), ,, , .F FE p H p hE p H p≤

Since ( )0,1h ∈  then ( )( ), , 0FE p H p = . Hence H(p) = p. Similarly, From (2.2) and by a property of E  we have 

( ) ( )( ) [ ( ) ( )( ) ( )( ) ], , , ,, , , , .F F F FE G p H xn h E xn p E p H xn E xn G p≤ + +

Taking the limit as 1→n , we obtain

( )( ) ( )( ), ,, , .F FE p G p hE p G p≤
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Hence ( )G P P= . Therefore, ( ) ( )G P H P P= =  and the proof is complete.

CONCLUSIONS

In this paper, it is shown that if the sequence of 
Ishikawa iterations associated with G and H
converges, then its lim it point is the common fixed 
point of G and H in Menger  probabilistic metric 
spaces.
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