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A New Integral Transform: Kharrat-Toma Transform and Its Properties
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Abstract: In this paper, we propose a new integral transform, called the Kharrat-Toma Transform which can be
considered as a base for a number of potential new integral transforms. Many fundamental properties about
this new integral transform which were created in this work, include (for example) the existence theorem,
transportation theorem, convolution theorem and inversion equation. The main advantage of this new
technique is that it solves ordinary differential equations with variable and constant coefficients. To show the
efficiency and use of the presented transform for solving differential equations, some examples are given.
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INTRODUCTION

The differential equation plays an important role in
Physics Science, applied mathematics, Chemistry,
Physiology applications and Engineering; therefore,
the researchers suggest to develop new methods for
obtaining solution which approximate the exact solution.

In the literature, there are many integral transforms
that have widely used to solve the differential equations
and thus there are several works on the integral transform
such as the Laplace transform was introduced by P. S.
Laplace in 1780s [1], Laplace transform is the oldest
integral transform and the most used. The Stieltjes
Transform was firstly introduced by T.S. Stieltjes in [2],
R.H. Mellin was the first to give a systematic formulation
of the Mellin transformation in [3], the Hankel transform
was first developed by Hermann Hankel. It is also known
as the Fourier—Bessel transform [4], D. Hilbert suggested
the Hilbert transform in [5], J. Radon founded the Radon
transform in [6], Laguerre transform by Edmond Laguerre
in [7].

Furthermore, of recent, G. K. Watugula introduced
the Sumudu transform in [8].

The Natural transform was initiated by Khan and
Khan in [9]. The Elzaki transform was presented by Tarig
M. Elzaki in [10], The Aboodh transform was introduced
by Khalid S. Aboodh in [11]. The new integral transform
" M-transform" was suggested by Srivastava in [12].
The ZZ transform was devised by Zafar in [13]. A. Kamal
and H. Sedeeg proposed the Kamal Transform in [14], the
Yang Transform was by Xiao-Jun Yang in [15] The

Mohand Transform was introduced by Mohand M.
Mahgoub in [16], S. Ahmadi et al. proposed a new
integral transform to solve higher order linear Laguerre
and Hermite differential equations in [17]. and finally
R. Saadeh et al introduced ARA Transform in [18].
Kharrat et al. also interested in integral transform
methods, where they applied the Differential Transform to
solve boundary value problems represented by
differential equations from higher orders and also to solve
a system of differential equations [19-21]. In addition, they
suggested hybridization the homotopy perturbation
method with Sumudu Transform to solve initial value
problems for nonlinear partial differential equations [22].
They also introduced the hybridization of the Natural
Transform method with the homotopy perturbation
method to solve Van Der Pol Oscillator problem [23].
The purpose of this paper is to show the efficiency
and applicability of this new integral transform and
applied it to solve ordinary differential equations with
variable and constant coefficients. The rest of the paper
is as follows: We present the basic idea of Kharrat-Toma
transform in section 2. In section 3, Kharrat-Toma
transform of some functions is introduced and we proof
some properties, in section 4, the application for solving
ordinary differential is shown and conclusion in 5.

Kharrat-Toma Transform: Definition 1. The function f{x)
is said to have exponential order on every finite interval in
[0, + =) If there exist a positive number M that satisfying:

| f)|<M ™, M >0, >0, Vx20

Corresponding Author: Dr. Bachir Nour Kharrat, Department of Mathematics, Faculty of Science,

Aleppo University, Aleppo-Syria.



World Appl. Sci. J., 38 (5): 436-443, 2020

Definition 2: The Kharrat-Toma integral transform and inversion is defined by.

Bl f()]= G(S):S3If(x) esdx , x>0
0
f@=B"[G(s)]=87"5’ j f(x) e du
0
The B integral transform states that, if f{x) is piecewise continuous on [0,+=) and has exponential order. The B~" will

be the inverse of the B integral transform.

Theorem 1: [Sufficient Condition for Existence of a Kharrat-Toma Transform]: The Kharrat-Toma transform B[f(x)]

exists if it has exponential order and exists for any b > 0.
[l reo] ax
0
Proof:
0 X n X 0 —-X
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The first integral exists, and the second term is finite for i>a’ so the integral = -x converges
absolutely and the Kharrat-Toma B[f{x)] exists. 52 s I f(x)es dx
0
7
Kharrat-Toma Transform of Some Functions: In this £ (x) = sin(kx) —i—) G(s) = % 3)
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functions; s
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Then we get
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Proof in the same way as in (3)
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Then we get Theorem 4: [First Shifting Property]

s7 Let B [f(x)] = G(s) and & € R, then

B[ sinh(kx) |= ?

(6) Proof in the same way as in (5)

B ] = (1- s G{ ; 2]

Theorem 2: l-as

Let B[ f(x)]=Gi(5),... B[ f,(x)]=G,(s) and the  Proof: From definition of a new integral transform we

constants c;...,c,, then have:
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Theorem 3: [Translation Property]
Let B[f (x)] = G (s) and the constants « > 0. Theorem 5: [Convolution Theorem]

then G[ \/EsJ Let B[f (x)] = M (s), B[g(x)] = N(s), then
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cWhenx—-T=uthenx=T+u
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So we have proof the theorem.

Theorem 6: Kharrat-Toma Transform of xf(x); n > 1
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Then we have,

B[ f(x)]=2

Theorem 7: Kharrat-Toma Transform of Derivatives
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Applications: In this section, we introduce the

methodology of application of Kharrat-Toma transform
for solving initial value problem. This new integral
transform can be used as an effective tool for solving
ordinary differential equations with initial conditions.
The following examples show the use and efficiency of
this integral transform.

Example 1:

Consider the initial value problem

{

Applying the kharrat-Toma transform on (1), we get

u'(x)+u(x)=3
u(0)=1

(M

%G(s)—s3u(0)+ G(s)=3s>
S

=N G(s){%ﬂ} =35 +5°
S

5

+
2 1+s?

5

5
2+3s

3s°

1+s

3s’

1+s

= G(s)=

)
I+s 2
]
= G(s)= 252
I+s

+3s°

Appling the inverse Kharrat-Toma transform on (2),
then the exact solution for IVP (1) is;

u(x)=-2e " +3

Example 2

Consider the initial value problem

{

Applying the kharrat-Toma transform on (3), we get

u"(x)=2u'(x)-3u(x)=0
u(0)=1 u'(0)=2

3)

b}
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—G(s) su(0)— s3u'(0) 2{ G(s)—s u(O)} 3G(s)=0

2
— = _3|=s
i 2 }
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1 5
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|

Appling the inverse Kharrat-Toma transform on (4),
then the exact solution for IVP (3) is;

I &
ux)=—e
()=

305

+_
4 1-352

= G(s)=

— €

“4)

+ie3x
4

Example 3:

Consider the initial value problem

u"(x) +2u'(x) +u(x)=3xe * (5)
u(0)=4 , u'(0)=2
Applying the kharrat-Toma transform on (5), we get,
—G(s) su(0)— s3u'(0)+2{ G(s)—s u(O)}-G(s)
3 3s7+5s7 9 s
- 2 2
2 (1+32) 21+s
9 7 7
= G(S){%+i2+l}=10s3+4s+ 33s +5s2 s 5
st s 2 (1+32) 21+s
10s” +4s° 335845511 9
G(s) = 3 +2 T 3
(1+s2) (1+s2) (1+s2)

4 . 65 Ll 65!
- 2 2 4
l+s (1+sz) 2(1+s2)

= B[4e_x}+B[6xe_x} +B|:%x3 e_x}

Appling the inverse Kharrat-Toma transform on (6),
then the exact solution for IVP (5) is;

(6)

3

1 _
+—x’e ¥

u(x)=4e * +6xe "

CONCLUSION
The main aim of this work is to present some

fundamental properties of newly defined integral
transform “Kharrat-Toma Transform”. Convolution
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theorem is also proved for Kharrat-Toma transform.
It provides a new mathematical tool to solve ordinary
differential equations of variable and constant coefficients
with initial condition.
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