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Abstract: The rapidly depleting energy resources is the greatest challenge that the world is currently facing
and mankind is forced towards exploring the various alternatives that are available to meet the rising energy
demands. Biofuel is one of the alternative sources of energy and is basically the energy stored in materials that
is made with the help of living things. Various ways of enhancement of biodiesel and biogas production are
continuously being explored and nanotechnology is one growing field that can contribute effectively to the
biofuel production industry. The various nanomaterials production techniques and the methods through which
they are made functional and stable are analyzed in this study. Further to that, several literature studies have
been reviewed in order to provide a panoramic view of the use of nanomaterials to improve the production
processes of biodiesel and biogas. On one hand, nanocatalysts and nanomaterial bound microbial enzymes are
used to improve the biodiesel production rate and on the other hand, several types and kinds of nanomaterial
additives are used to increase the biogas production yield. Based on the various studies reviewed, it was found
that the lipase enzyme from Pseudomonas cepacia bound to Fe O  nanoparticle and nano zero valence iron3 4

additive were relatively more effective in the production of biodiesel and biogas respectively. 
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INTRODUCTION Sustainable sources of alternative energy can range

Increasing price of crude oil and its refined products generated from biomass, termed as biofuels. Currently
is a clear indication of the continuing depletion of global about 90% of the world’s energy demands are met by
non-renewable fossil fuels, namely, coal, crude oil and fossil fuels, which is expected to reduce to around 50% by
natural gas. One study has indicated that the world’s 2040 with the advent of the above-mentioned renewable
fossil fuel reserves would be diminished by 2050 at this energy sources [3]. Biofuels utilize domestically available
rate of consumption, which is roughly about 10 times renewable resources [4] and are biodegradable and non-5

faster than that the nature can actually create [1]. Apart toxic [5]. They can be produced from various feedstocks
from the rising prices, fossil fuels are also said to such as vegetable oils and biomass [6]. Anaerobic
contribute considerably to environmental pollution and digestion of agricultural residues [7], animal manures [8],
ecological devastation, causing depletion of ozone layer, organic food wastes [9], sewage sludge [10] and various
global warming and destroying both the biosphere as well other energy crops [11] yield yet another renewable
as the geosphere. The environmental concentration of the source of energy known as biogas.
main greenhouse gas, carbon dioxide, has been steadily In 1959, Feynman introduced the term
rising to reach a level of about 390 ppm and is expected to “nanotechnology”, which refers to the manufacture and
reach 750 ppm by the end of this century [2]. This carbon use of nanometer-scale materials (materials with at least
dioxide is capable of trapping the sun’s infra-red radiation one dimension less than 100 nm) [12]. Since then, many
and thereby causing a rise in the global temperature. researchers and scientists around the world have explored
These two factors have led the fuel industry to move the effects of nanomaterials in a wide variety of fields,
towards sustainable sources of alternative energy or in ranging from integrated circuits, food products and
other terms, renewable energy sources. energy conversion devices [13], [14]. Compared to their

from solar, wind, tidal and geothermal energies to energies
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large-scaled materials, the nanomaterials are said to have collected with a magnet as precipitate and are washed
unique optical, electronic, magnetic, mechanical and repeatedly with water to remove non-magnetic by-
chemical properties [15]. Nanomaterials are said to play an products [23]. 
important role in energy fields due to their unique Good  quality  carbon  nanotubes  can  be produced
structure, high energy electrical storage capacity, by arc discharge which requires a carbon source and
relatively high specific area and comparatively good electricity [24] or  by laser  ablation  which  requires a
efficiency of lighting and heating [16], [17]. Dimension- carbon source and high intensity light or by chemical
wise, they can be compared to biological macromolecules vapour deposition technique that requires a carbon
like enzymes or nucleic acids [18], [19]. source  and  heat [25].  The electrospinning technique

Production   and    Characteristics    of   Nanomaterials: polymer solutions using a high voltage power supply, a
At the outset, it is first essential to understand the spinneret and a grounded collecting plate [26]. Sill
production mechanisms and basic characteristics of &Recum explain that the high voltage injects a charge of
nanomaterials before using them to enhance biofuel certain required polarity into the polymer solution which
production. Nanomaterials basically include a variety of is then moved towards the collector that is of opposite
substances ranging from nanoparticles, nanotubes, polarity [27]. 
nanosheets, nanocomposites, nanocrystalline materials, Thermal exfoliation method is used to produce
metal based nanomaterials to carbon based nanomaterials. nanosheets. A classic example is the production of
There are various ways of nanomaterial production. nanographene sheet where graphite powder is allowed to
However, one of the two major ways is the top down react with concentrated sulfuric acid, nitric acid and
method, where in, the bulk materials such as gold, silicate, potassium chlorate at room temperature and
etc. are broken down into nanoscale sized materials. This nanographene sheet is exfoliated by the process of rapid
is the method that is commonly used to produce heating at 1050ºC in the presence of argon gas [28]. Soon
consumer sunscreen products and solar cells. The other after preparation of the nanomaterials, they undergo a
major type of method is the bottom up approach, where, crucial step known as surface functionalization which is
nanoparticles are assembled atom by atom or molecule by essential to increase their efficiency [29]. This process is
molecule [15]. The latter approach is said to be more basically to provide stability and biocompatibility to the
difficult and expensive, but has also found to contribute nanomaterials and is also said to affect the dispersability
effectively to the sectors of energy development, and interaction capacity of nanomaterials with enzymes
transportation and electronics [20]. [30].

The other methods by which nanomaterials can be The  process   of   surface  functionalization  is to
produced include the dealloying and thermal annealing add required functional groups to the nanomaterial’s
method, co-precipitation method, arc discharge, laser surface [31] and the materials that are commonly used
ablation, chemical vapour deposition technique, include natural polymers such as starch, chitosan, gelatin,
electrospinning, self-assembly and phase separation or synthetic polymers such as polyacrylic acid,
technique and thermal exfoliation method. Each of these biopolymers, dendrimers  [12]. The  functional  groups
methods produce different kinds of nanomaterials and are that are added may serve different purposes such as to
discussed below. Generally, the nanomaterials, be it change the surface charge of the support material or to
nanoparticles or nanofibers or nanotubes, are first chemically link with other functional groups in the target,
produced as dry powders by either physical or chemical or even to decrease the pore entrance size in order to trap
methods and then dispersed into a suitable fluid using the enzymes [32]. 
intense magnetic force agitation or high-shearing mixing Compared to their larger size counterparts, the
or ultrasonic agitation or homogenizing and ball milling nanomaterials tend to have different properties in terms of
[21]. their electrical or heat conducting capacity, reflecting

Ag Au  alloy foils are chemically dealloyed in light, rates of reactivity, strength, etc. [33]. For example,78 22

concentrated nitric acid at room temperature to produce aluminum, in its usual state is stable; however, becomes
nanoporous  gold  particles  [22]. This method is known combustible in the nanoscale. Likewise, inert materials
as the dealloying and thermal annealing method. Co- such as gold, silver and platinum serve as catalysts in
precipitation method is yet another  method  to  prepare their nanoscale and nano silver is also said to possess
nanoparticles. In this method, the nanoparticles are anti-microbial properties [34]. 

uses electrostatic forces to produce nanofibers from
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Biodiesel: Enhanced Production Using Nanotechnology: nanostructured catalysts [47] and sodium titanate
Vegetable oils are said to possess properties such as nanotube catalysts [48].
density, air/fuel ratio and heat of vaporization similar to Carbon  nanotube-enzyme  bioreactors  was
mineral diesel and are also know to reduce carbon produced by incorporating iron oxide nanoparticles into
monoxide, sulphur oxide and smoke emissions. In the single-walled carbon nanotubes which resulted in
usual method of biofuel preparation from vegetable oils, magnetic single-walled carbon nanotubes.  This
the oils are transesterified with methanol in the presence bioreactor enabled to recycle the immobilized enzyme
of a suitable alkaline catalyst, mostly NaOH. The major thereby improving the efficiency of the bioreactor and
problems associated with this process include reducing capital costs [49]. Compared to their bulky
saponification, deactivation of the catalyst and low conventional  materials, nanomaterials have been found
reaction rate. In order to overcome the above mentioned to be good enzyme immobilization supports due to their
hiccups, Ti-incorporated SBA-15 (Santa Barbara large surface area to volume ratios, thereby leading to
Amorphous) mesoporous silica was found to be a highly higher enzyme loading and good biocatalytic potential
efficient and recyclable solid acid catalyst to produce [19].
biofuels from vegetable oils [35]. Microbial enzymes have been bound to

High pressure liquefaction of air dried wood results nanomaterials to enhance the process of biodiesel
in a complex mixture of volatile and non-volatile organic production. Transesterification of soybean oil is effected
components, known as bio-oil [36]. One study illustrates using the  enzyme  lipase  from  Pseudomonas cepacia
that used cooking oil can be effectively converted to and several studies have explored the effectiveness of
biodiesel by four different ways, namely, directly blending this enzyme when bound to different types of
with mineral diesel, microemulsion method, thermal nanomaterials such as nanoporous gold [50], Fe O
cracking and transesterification [37]. As highlighted nanoparticle [51], [52] and PAN nanofiber [53].
earlier, even though transesterification is the most Transesterification of rapeseed oil is also effected using
commonly used process for the production of biodiesel, the same enzyme bound to  polyacryonitrile nanofiber
it had its own set of problems that include presence of [54]. Lipase from Thermomyces lanuginosa has been
free fatty acids, water content of oils or fats, reaction covalently bound to Fe O nanoparticle for the production
temperature and time and molar ratio of glycerides to of biodiesel from soybean oil [55] and waste grease [44].
alcohol. Nanotechnology was effectively used in several Lipase from Rhizopus miehei was encapsulated in silica
studies to overcome these shortcomings in the nanoparticle for the production of biodiesel from triolein
production of biodiesel. [56]. Lipase from Burkholderia sp. was adsorbed onto

As it is, biodiesel fuel is said to substantially reduce magnetic nanoparticles [57] and ferric-silica
the emissions of unburned hydrocarbons and carbon nanocomposite [58]  for  the effective transesterification
monoxide. To take this a step further, addition of nano- of olive oil.
cerium oxide particles to the biodiesel fuel was found to
promote complete combustion and enhance hydrocarbon Biogas: Enhanced Production Using Nanotechnology:
oxidation, thereby reducing hydrocarbon and oxides of Biogas is a flammable gas composed of a mixture of gases,
nitrogen emissions [38]. mainly carbon dioxide and methane. It is usually produced

The enhancement  of  transesterification  process by anaerobic digestion of biomass and sewage sludge.
was mainly explored by using several different types of The major sources of biogas production include sewage
nanocatalysts at different preparation conditions. A good treatment plants, landfills, cleaning of organic industrial
yield of about 95% or more of biodiesel was obtained with waste streams and mesophilic and thermophilic digestion
nano-magnetic solid base catalyst of KF/CaO-Fe O  [39], of organic wastes [59]. The process of anaerobic3 4

with KF/CaO nanocatalyst from Chinese tallow seed oil digestion includes four main steps, namely, hydrolysis,
[40], with heterogeneous solid base nanocatalyst from acidogenesis, acetogenesis and methanogenesis [60],
soybean oil [41], with lithium impregnated calcium oxide [61]. In this process, several nanomaterials are added as
solid catalyst from karanja and jatropha oils [42], with additives to improve the biogas yield. 
tandem lipases [43] and magnetic nanobiocatalyst Nano TiO  in the size range of 7.5nm and at a
aggregates [44] from waste grease and with sulfated concentration of 1120 mg/l was found to increase the
zirconia nanoparticle catalysts [45]. Several studies have biogas production from waste water treatment sludge by
also demonstrated that biodiesel production is enhanced 10% [62]. Nano CeO in the size range of 192nm and at a
using carbon-based catalysts [46], carbon-based concentration of 10 mg/l was found to increase the biogas
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production from UASB sludge by 11% [63]. A very good same time, nanomaterials have also shown to reduce
increase in the biogas yield was seen with 7nm sized hydrocarbon and oxides of nitrogen emissions to a
Fe O  nanoparticles at a concentration of 100 ppm from considerable extent, thereby safeguarding our3 4

waste water sludge. The increase in biogas production environment. Thus, it is evident that nanotechnology can
was 180% and there was also about 234% increase in be effectively used to reduce both the environmental
methane production [64]. impact and usage of fossil fuels. 
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