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Feasible Partial Minimax Estimation of Linear Regression Model
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Abstract: Estimation of the coefficient vector in a linear regression model, when part of it is constrained by
ellipsoidal restrictions has been considered. The theory of partial quasi minimax estimator and of partial mock
minimax estimator is extended to provide feasible estimators. The large sample approximations of their statistical
properties namely the bias, the mean squared error, the quadratic risk and the minimax risk have been derived.
A comparative study of the behavior of these proposed estimators based on the bias, the mean squared error
and the minimax risk criterion has been done and the superiority conditions have been derived.
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INTRODUCTION there  are situations   where  only  a  part  of  the

The classical least square estimator for the coefficient where extended to these situations by  Herring,  Trenkler
vector in linear regression model is well known in the &  Stahlecker   [8]   and   Pant  [10]  providing  Partial
literature. Howsoever in many applications the coefficient Quasi Minimax Estimation theory and Partial Mock
vector of the conceptualized model is constrained by a set Minimax  Estimation  theory.  In  both  these extensions
of restrictions on the coefficients. It is imperative to the  unconstrained  part  of   the  coefficient vector and
incorporate the information on the coefficients in the the variance component of disturbance term is assumed
estimation process so as to get intrinsically more precise to be known. In this paper we relax both these
estimates. The subject matter of the paper is the prior assumptions and derived Feasible Partial Quasi Minimax
information on part of the parameter vector  of the Estimatior, Feasible Partial Mock Minimax Estimatior and
regression model constrained to lie in the convex set their large sample approximations of some statistical

where H  a given positive definite properties.1

matrix. This prior information may be combined with the
data set to obtain a partial minimax estimator of the
parameter vector.

The theory was initiated by Kuks and Olman [1] who
developed an iterative minimization procedure to indicate
a point of maximum of the risk function. Lauter [2] gave an
explicit presentation of Minimax Linear estimator in the
case of regular loss matrix. Later Bunke [3-5], Hoffman [6],
Toutenberg [7], Trenkler & Stahlecker [8], Srivastava &
Shukla [9], Herring, Trenkler & Stahlecker [9 ]and Pant [10]
developed this theory. Out of all this two distinct
approaches emerge. One developed by Trenkler &
Stahlacker [8] the Quasi Minimax Estimation theory and
Mock Minimax Estimation theory proposed by Srivastava
And Shukla [9]. In both the approaches the basic
assumption is that the information about the complete
parameter vector  is available, how-so-ever quite often

parameter  vector   is  constrained.  The  approaches

The plan of the paper is as follows. In section 2 of the
paper, we describe the model and estimators, while in
section 3 we present the large sample approximation of
various statistical properties of both the Feasible Partial
Estimators. In section 4, we investigate the relative
dominance of these estimators over each other and derive
the dominance condition. Finally in section 5 we have
derived the result.

The Model and the Estimators: Consider the linear
regression model

y = x  + u (2.1)

where y is a T × 1 vector of observations on the variable
to be explained, x is a T × p full column rank matrix of
observations on explanatory variables,  is a p × 1 vector
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of unknown regression coefficients being estimated and  (.) is the largest characteristic root of the matrix
u is a T × 1 vector of disturbances which are assumed to function inside the brackets. The problem with these
be distributed normally with estimators is that they become in operational when either

E(u) = 0, E(uu') = I (2.2) replace these unknown terms by their least square2
T

where  is the scaling factor of disturbances which is Stahlecker [8].2

usually not known An unbiased estimator of  and  based on the
Let us consider portioning of the coefficient  vector least squares theory is given by

as =( ' , ' )' such that   is a  p × 1  sub  vector  of1 2 1 1

 and  is the remaining (p – p ) × 1 sub  vector  of . (2.8)2 1

The apriori information about the sub vector  is1

available in the form that the sub vector  is contained in1

the ellipsoid which is expressible as (2.9)

B = ( : '  H  1) (2.3) where x  is a T × (p – p ) sub matrix of x matrix of T1 1 1

where  H  is a p  × p  positive definite and symmetric corresponding to sub vector   of  regression1 1 1

matrix. The ellipsoidal restrictions can alternatively be coefficients and  is the
written as

(2.4)

where  and 

The best linear unbiased estimator of  which ignores
the restrictions is the least square estimator b given by

(2.5)

Which is normally distributed with mean vector  and
dispersion matrix (x'x) . Assuming  and  to be2 1 2

known the restrictions can be incorporated in the
estimation procedure provides the two partial minimax
estimators (Pant [10]). The partial quasi minimax estimator
derived by Herring, Trenkler and Stahlecker [8] given by

(2.6)

And the partial mock minimax estimator  derived
by Pant (2017) given by

(2.7)

where A is the loss matrix associated with the estimation
procedure which is positive definite and symmetric and

max

 or  is unknown. In order to make them operational we2
2

estimators as suggested by Herring, Trenkler and

2
2

2 1

observations on the (p – p ) explanatory variables1

2

projection matrix of p  explanatory variables contained in1

x  in sub matrix of x. Thus the least squares estimator of1

 is given by 

(2.10)

This can be utilized to replace  in the two minimax
estimators. Employing the least square estimators of
and  we get the feasible partial quasi minimax estimator2

as

(2.11)

And the feasible partial mock minimax estimator as

(2.12)

Large Sample Properties of Feasible Estimators: The
large sample approximation for the bias vectors, the
dispersion and the mean square matrix and the quadratic
and the minimax risks of feasible estimators are derived
and presented in following theorem.

Theorem 3.1: The large sample approximations for the
bias vector, the dispersion and mean squared matrices
and the quadratic and minimax risks of the feasible partial
quasi minimax estimators  upto the order O (T ) arep

1

respectively given by 



ˆ2b
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(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

where the matrix L involved in mean squared error matrix and quadratic and minimax risks expressions is given by

Theorem 3.2: The large sample approximations for the bias vector, the dispersion and mean squared error matrix and the
weighted quadratic and minimax risks of the feasible mock minimax estimator  upto order O (T ) are respectively givenp

1

by

(3.6)

(3.7)

(3.8)

(3.9)
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(3.10)

The results of the theorem 3.1 and theorem 3.2 are derived in appendix.

Performance of Feasible Estimators: In order to study the performance of these feasible partial minimax estimators, we
analyze their large sample properties and compare their performance with respect to three criterion of the quadratic loss
setup of the decision theory, viz. the bias, the weighted quadratic risk and the minimax risk. There from the optimality
of various estimators is considered and dominance conditions are derived.

The Bias Criterion: The classical least squares estimator b is exactly unbiased. The partial quasi minimax estimator 
and partial mock minimax estimator  both are biased. To compare the two estimators the difference in Euclidean norms
of bias vectors of  and , to order O (T ), is given byp

1

(4.1)

Now this is positive as long as we have

(4.2)

Thus the feasible partial mock minimax estimator  will have lesser magnitude of bias than that of the feasible partial
quasi minimax estimator  to the order of our approximations at least as long as the above condition is satisfied in
practice. The reverse will hold true, that is the feasible partial quasi minimax estimator  will have lesser magnitude of
bias than that of the feasible partial mock minimax estimator  to order O (T ), at least as long as the followingp

1

condition is satisfied in a given application.

(4.3)

The Quadratic Risk Criterion: The quadratic risk associated with the classical least squares estimator b is

R(b) = trA(x'x) (4.4)2 1

Let us compare the least square estimator b with the feasible partial quasi minimax estimator . The difference in
the risk approximations of the two estimators upto order O (T ) is given byp

1

(4.5)

Which will be positive if and only if

(4.6)

A sufficient condition to hold this true is

(4.7)

This is the sufficient condition for the superiority of the feasible partial quasi minimax estimator  over the classical
least square estimator up to the order O (T ).p

2
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Similarly, comparing the classical least squares estimator  with the feasible partial mock minimax estimator b, the
difference in their risk approximations up to the order O (T ) is given byp

2

(4.8)

Which is positive if and only if

(4.9)

A sufficient condition to hold this true is

(4.10)

This is the sufficient condition for the quadratic risk superiority of the feasible partial mock minimax estimator b over
the classical least square estimator  to the order of our approximations.

Finally, comparing the quadratic risk performance of the two feasible partial minimax estimators, the difference in
their risk approximations up to the order O (T ) is given byp

2

(4.11)

where

Now this difference of risk approximations of the two estimators will be positive if and only if, we have

(4.12)

Which will hold true at least as long as we have

Thus the feasible partial mock minimax estimator  will have quadratic risk superiority over the feasible partial quasi
minimax estimator  at least up to order O (T ) as long as above condition is satisfied in practice.p

2

The Minimax Risk Criterion : The minimax risk associated with the least square estimator b is the same as its quadratic
risk and is given by
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(4.13)

The difference in minimax risk approximations of the least squares estimator b and the feasible partial quasi minimax
estimator  up to order O (T ) is given byp

2

(4.14)

Which is positive if and only if we have

(4.15)

Which can easily be checked in any given application. Thus the feasible partial quasi minimax estimator  will have
the minimax risk superiority over the classical least square estimator b up to the order O (T ), if and only if abovep

2

condition is satisfied in practice.
Similarly the difference in minimax risk approximations of the estimator  and b turns out to be 

(4.16)

Which is positive if and only if we have

(4.17)

Thus the feasible partial mock minimax estimator  will dominate the classical least square estimator b with respect
to their minimax risk approximations up to order O (T ), if and only if above condition is satisfied.p

2

Finally, the difference in minimax risk approximations of the two feasible partial minimax estimators  and  up to
the order O (T ), is given byp

2

(4.18)

Where  is defined previously and  is given by1

(4.19)

This difference of minimax risk approximations is positive if and only if we have

 > (4.20)1

Which is necessary and sufficient condition for the minimax risk dominance of the feasible partial mock minimax
estimator  over the feasible partial quasi minimax estimator , up to the order of our approximations.
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Derivation of Results : The feasible partial quasi minimax estimator  can be written as 

(5.1)

where

(5.2)

Now observing that

(5.3)

with

and

(5.4)

where b  is the least square estimate of 0 2

(5.5)

where x  is a sub matrix of x  (x , x ) consisting of explanatory variables corresponding to coefficients of  sub vector2 1 2 2

and .

Therefore, the estimate of  is given by

(5.6)

where . Thus we can write

(5.7)

where



( ) ( )Bias E= − 

World Appl. Sci. J., 35 (3): 500-508, 2017

507

Thus the estimation error associated with this estimator can be written as

(5.8)

where

These results can be employed to obtain the expression no. (3.1),(3.2),(3.3),(3.4) and (3.5) for the Feasible Partial
Quasi Minimax estimator.
The partial mock minimax estimator can be written as

(5.9)

Whose estimation error upto the order O (T ) can be expressed asp
2

(5.10)

where

Defining the statistical properties for the estimator as follows
1. Bias vector : 



( ) ( ) ( )V E E E ′   = − −      
    

( )M E ′   = − −   
  

( ),R A E A′   = − −   
  

( ), A Min Sup E A
H

′′ ′= − −      
′ ≤


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2. Dispersion matrix : 

3. Mean squared error matrix : 

4. Weighted quadratic risk : 

5. Minimax risk : 

where A is the weighing matrix of losses which is assumed 5. Bunke, O., 1975c. Least Squares estimators as robust
to be positive definite and symmetric. On  substituting the and minimax estimators, Mathematische
values of  for estimator  we can evaluate the Operationsforchung und Statistik, 6: 687-688.

expression no. (3.1),(3.2),(3.3),(3.4)and (3.5) for the
Feasible Partial Quasi Minimax estimator. Similarly for
Feasible Mock Minimax Estimator  substituting the
values of  we can find the expression no.

(3.6),(3.7),(3.8),(3.9)and (3.10).
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