A Transnormal Partial Tube Around A Non-Transnormal Manifold

${ }^{1}$ Ali A. Al-Saraireh and ${ }^{2}$ Kamal A. Al-Banawi
${ }^{1}$ Mutah, Al-Karak, Jordan
${ }^{2}$ Department of Mathematics, Faculty of Science, Mutah University, P.O. Box: 7, Al-Karak, Jordan

Abstract

In this paper we study transnormal partial tubes. The main aim is to introduce an example of a transnormal partial tube whose base is not transnormal. Our example will be of a special type of embeddings in \mathbb{R}^{6}.

Key words: Transnormal manifold • Partial tube - Generating frame

INTRODUCTION

The idea of transnormality is a generalization of the concept of an m-hypersurface of constant width in \mathbb{R}^{m+1} it is due to S . Robertson $[1,2,3]$ and contributions have been made by B.Wegner [4-7], S.Carter and K. AlBanawi [8-12]. The notion of constant width can be formulated as follows. Let M be a smooth compact connected m-manifold without boundary that is smoothly embedded in \mathbb{R}^{m+1}. A chord of M is normal if it is normal to M at one of its endpoints and binormal if it is normal to M at both end points.The manifold M is of constant width if and only if every normal chord of M is binormal to M. Each point of the endpoints is called the opposite of the other.

Let M be a smooth connected m-manifold without boundary and let $f: M \rightarrow \mathbb{R}^{n}$ be a smooth embedding of M into \mathbb{R}^{n}. Let $V=f(M)$. For each point $p \in V$ there exists a unique tangent plane $\mathrm{T}_{p} V$ tangent to V at p with dimension m and a unique normal plane $N_{p} V$ normal to V at p with dimension $n-m$. Thus, there are maps T and N with $T(p)=\mathrm{T}_{p} V$ and $N(p)=N_{p} V$.

Definition 1: [3] The m-manifold V is transnormal in \mathbb{R}^{n} iff
$\forall p, q \in V$ if $q \in N(p)$ then $N(q)=N(p)$.
Let W be the space of normal planes of V, say $W=N(V)$. S. Robertson showed that for any transnormal embedding V in \mathbb{R}^{n} the order of N as a covering map is always finite [1]. If V is transnormal in \mathbb{R}^{n} and the order of N is r, then V is called an r-transnormal manifold.

Definition 2: [3] Let V be a transnormal manifold in \mathbb{R}^{n}. Then the generating frame of V at p is;
$\phi(p)=V \cap N(p)$
If V is r-transnormal, then $|\phi(p)|=r$ where $|\ldots|$ is the cardinality.

It is true that any two generating frames are isometric. That is, if $\phi\left(p_{1}\right)$ and $\phi\left(p_{2}\right)$ are generating frames, then there exists a map $F: \phi\left(p_{1}\right) \rightarrow \phi\left(p_{2}\right)$ which preserves distance. Also if V is a compact r-transnormal manifold, then r is even [2].

Transnormal Spherical Partial Tubes: The general definition of a partial tube was introduced in [13] as follows. Let M be a smooth connected m-manifold without boundary. Let $f: M \rightarrow \mathbb{R}^{n}$ be a smooth embedding of M into the Euclidean space $\mathbb{R}^{n}, n=m+k$. For $p \in M$, let $T_{p} M$ be the tangent plane of M at p. Consider the normal bundle of $M \boldsymbol{\aleph}=\left\{(p, v): p \in M, v \perp T_{p} M\right\}$ and the smooth endpoint map $\eta: \mathcal{X} \rightarrow \square^{n}$ defined by $\eta(p, v)=p+v$.

Let Σ be the set of singular points of η. Let $P \subset \mathcal{N}$ be a smooth subbundle with type fibre S such that S is a smooth submanifold of \mathbb{R}^{k}. If $P \cap \Sigma$ is empty, then P is a smooth manifold and η / P is a smooth embedding called a partial tube around f. The manifold $V=f(M)$ is usually called the base of the partial tube h. A partial tube is spherical if S is a sphere. The word partial is used if S is embedded in a proper subplane of the normal plane at p. Otherwise; the spherical tube is called a full tube. Embeddings similar to h with S being an image of an embedding were studied in [13].

Assume that $f: M \rightarrow \mathbb{R}^{\mathrm{n}}$ is a smooth r-transnormal embedding of the compact connected m-manifold M without boundary in the Euclidean space \mathbb{R}^{n}. Then the next theorem ensures the existence of $\xi \succ 0$ such that the above full tube is the image of an embedding. Also if $p \in V$ $=f(M)$, then the normal plane of V at $p, N(p)$, intersects the full tube at points based at the points of the generating frame $\phi(p)$. By a similar argument this result holds if the normal bundle is replaced by a subbundle P of \boldsymbol{K}.

Theorem 1: [11] Let $f: M \rightarrow \mathbb{R}^{n}$ be a smooth r-transnormal embedding of the compact connected m-manifold M without boundary into the Euclidean space \mathbb{R}^{n}. Then for some $\xi \succ 0$ sufficiently small.

- The map $\eta \mid \boldsymbol{\aleph}^{\xi} V$ is an embedding and
- For all $p \in V$, for all $(q, v) \in \eta \mid \boldsymbol{N}^{\xi} V$,
$\eta(q, v) \in N(p)$ iff $q \in N(p) \cap V$.
In the next theorem the dimension of the normal plane is the sum of the dimension of the parallel normal plane (d) and the dimension of its compliment (k).

Theorem 2: [9] Let $f: M \rightarrow \mathbb{R}^{m+d+k}$ be a smooth r-transnormal embedding of the compact connected m-manifold M without boundary into the Euclidean space \mathbb{R}^{m+d+k}. Then there exists a $2 r$-transnormal embedding of a ($k-1$) -sphere bundle over $V=f(M)$ in \mathbb{R}^{m+d+k} with image a partial tube and V as its base.

ATransnormal Partial Tube around a Non-Transnormal
Manifold: This section is an example of a transnormal partial tube with a base that is not transnormal.

Let M be the set of 3×3 real symmetric matrices. For $A, B \in M$, define the metric,
$<\mathrm{A}, \mathrm{B}>=\operatorname{trace} \mathrm{A} \mathrm{B}$
So if $A=\left(\begin{array}{lll}a_{1} & a_{4} & a_{5} \\ a_{4} & a_{2} & a_{6} \\ a_{5} & a_{6} & a_{3}\end{array}\right), B=\left(\begin{array}{lll}b_{1} & b_{4} & b_{5} \\ b_{4} & b_{2} & b_{6} \\ b_{5} & b_{6} & b_{3}\end{array}\right)$
then $\langle A, B\rangle=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}+2\left(a_{4} b_{4}+a_{5} b_{5}+a_{6} b_{6}\right)$.
Now assume that \mathbb{R}^{6} is identified with M such that $x=\left\{x_{1}, \ldots \ldots, x_{6}\right\} \in \mathbb{R}^{6}$ is represented in M by the matrix.

$$
\left(\begin{array}{ccc}
x_{1} & \frac{1}{\sqrt{2}} x_{4} & \frac{1}{\sqrt{2}} x_{5} \\
\frac{1}{\sqrt{2}} x_{4} & x_{2} & \frac{1}{\sqrt{2}} x_{6} \\
\frac{1}{\sqrt{2}} x_{5} & \frac{1}{\sqrt{2}} x_{6} & x_{3}
\end{array}\right)
$$

Consider the set
$S=\left\{A \in M:\right.$ trace $A=0$, trace $\left.A^{2}=1\right\}$
$=\left\{x \in \mathbb{R}^{6}: x_{1}+x_{2}+x_{3}=0,\|x\|=1\right) .$.
The set S is the unit 4- sphere in the 5- plane $\left\{x \in \mathbb{R}^{6}: x_{1}\right.$ $+x_{2}+x_{3}=0$.

Consider the embedding f of the projective plane P^{2} in \mathbb{R}^{6} given by;

$$
f(x, y, z)=\left(\sqrt{\frac{3}{2}}\left(x^{2}-\frac{1}{3}\right), \sqrt{\frac{3}{2}}\left(y^{2}-\frac{1}{3}\right), \sqrt{\frac{3}{2}}\left(z^{2}-\frac{1}{3}\right), \sqrt{3} x y, \sqrt{3} x z, \sqrt{3} y z\right)
$$

where $x^{2}+y^{2}+z^{2}=1$. A point on $f\left(\mathrm{P}^{2}\right)$ is represented by $A_{(x, y, z)}$ where

$$
A_{(x, y, z)}=\sqrt{\frac{3}{2}}\left(\begin{array}{ccc}
x^{2}-\frac{1}{3} & x y & x z \\
x y & y^{2}-\frac{1}{3} & y z \\
x z & y z & z^{2}-\frac{1}{3}
\end{array}\right) .
$$

The point $A(x, y, z)$ lies on S since,
$\operatorname{trace}_{(x, y, z)}=\sqrt{\frac{3}{2}}\left(x^{2}+y^{2}+z^{2}-1\right)=0$
and traceA $_{(x, y, z)}^{2}=\|f(x, y, z)\|^{2}$
$=\frac{3}{2}\left(x^{4}+y^{4}+z^{4}-\frac{2}{3}\left(x^{2}+y^{2}+z^{2}\right)+\frac{1}{3}\right)+3\left(x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2}\right)$
$=\frac{3}{2}\left(x^{2}+y^{2}+z^{2}\right)^{2}-\left(x^{2}+y^{2}+z^{2}\right)+\frac{1}{2}$
$=\frac{3}{2}-1+\frac{1}{2}=1$.

The eigenvalues of $A(x, y, z)$ are the solutions of the system.
$\operatorname{traceA}_{(x, y, z)}=0, \operatorname{trace} A_{(x, y, z)}^{2}=1, \operatorname{trace} A_{(x, y, z)}^{3}=\frac{1}{\sqrt{6}}$

That is, if the eigenvalues of $A(x, y, z)$ are $\lambda_{1} \lambda_{2}, \lambda_{3}$, then

$$
\begin{aligned}
& \lambda_{1}+\lambda_{2}+\lambda_{3}=0 \\
& \lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}=1 \\
& \lambda_{1}^{3}+\lambda_{2}^{3}+\lambda_{3}^{3}=\frac{1}{\sqrt{6}} .
\end{aligned}
$$

Since the embedding f is 2 - dimensional, the matrix $A(x, y, z)$ only has two distinct eigenvalues, say $\lambda_{2}=\lambda_{3}$. Using such a fact simplifies the problem of finding the eigenvalues which are $\lambda_{1}=\frac{2}{\sqrt{6}}, \lambda_{2}=-\frac{1}{\sqrt{6}}, \lambda_{3}=-\frac{1}{\sqrt{6}}$.

Conversely, let,

$$
D=\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & 0 & 0 \\
0 & -\frac{1}{\sqrt{6}} & 0 \\
0 & 0 & -\frac{1}{\sqrt{6}}
\end{array}\right)=A_{(1,0,0)}
$$

Also let,

$$
P=\left(\begin{array}{lll}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right) \in O(3)
$$

So P is orthogonal, i.e. $P P^{T}=I_{3}$. Then

$$
P D P^{T}=\sqrt{\frac{3}{2}}\left(\begin{array}{ccc}
u_{1}^{2}-\frac{1}{3} & u_{1} v_{1} & u_{1} w_{1} \\
u_{1} v_{1} & v_{1}^{2}-\frac{1}{3} & v_{1} w_{1} \\
u_{1} w_{1} & v_{1} w_{1} & w_{1}^{2}-\frac{1}{3}
\end{array}\right)=A_{\left(u_{1}, v_{1}, w_{1}\right)}
$$

So $f\left(\mathrm{P}^{2}\right)$ can be identified by the set

$$
\ell=\left\{P D P^{T}: P \in O(3)\right\} .
$$

Also if $R \in O$ (3) such that $R D R^{T}=D$ then

$$
R=\left(\begin{array}{ccc}
\pm 1 & 0 & 0 \\
0 & v_{2} & v_{3} \\
0 & w_{2} & w_{3}
\end{array}\right) \text {, where }\left(\begin{array}{cc}
v_{2} & v_{3} \\
w_{2} & w_{3}
\end{array}\right) \in O(2)
$$

That is, P^{2} is identified with $O(3) / O(2) \times O(1)$

Claim 1: The matrix $Q R \Delta R^{T} Q^{T}$ is normal to ℓ at $Q D Q^{T}$ where Δ is diagonal and $R D R^{T}=D$ For, let $s \mapsto P(s) D P^{T}$ (s) be a path in ℓ through D such that $P(0)=\mathrm{Q}$.

A tangent to ℓ at $Q D Q^{T}$ is
$\left.\left(\dot{P} D P^{T}+P D \dot{P}^{T}\right)\right|_{s=0}=\dot{P} D Q^{T}+Q D \dot{P}^{T}$.
Now $P P^{T}=I_{3}$ and so
$\dot{P} P^{T}+P \dot{P}^{T}=0$

Hence at $s=0, \dot{P}^{T}=-Q^{T} \dot{P} Q^{T}$. Thus, a tangent to ℓ at $Q D Q^{T}$ is

$$
\dot{P} D Q^{T}-Q D Q^{T} \dot{P} Q^{T}
$$

Now

$$
\begin{aligned}
& <\dot{P} D Q^{T}-Q D Q^{T} \dot{P} Q^{T}, Q R \Delta R^{T} Q^{T}> \\
& =\operatorname{trace} \dot{P} D Q^{T} Q R \Delta R^{T} Q^{T}-\operatorname{trace} Q D Q^{T} \dot{P} Q^{T} Q R \Delta R^{T} Q^{T} \\
& =\operatorname{trace} \dot{P} D R \Delta R^{T} Q^{T}-\operatorname{trace} Q D Q^{T} \dot{P} R \Delta R^{T} Q^{T} \\
& =\operatorname{trace} \dot{P} D R \Delta R^{T} Q^{T}-\operatorname{trace} \dot{P} R \Delta R^{T} Q^{T} Q D Q^{T} \\
& =\operatorname{trace} \dot{P} D R \Delta R^{T} Q^{T}-\operatorname{trace} \dot{P} R \Delta D R^{T} Q^{T} \\
& =\operatorname{trace} \dot{P} D R \Delta R^{T} Q^{T}-\operatorname{trace} \dot{P} R D \Delta R^{T} Q^{T} \\
& =\operatorname{trace} \dot{P} D R \Delta R^{T} Q^{T}-\operatorname{trace} \dot{P} D R \Delta R^{T} Q^{T}=0
\end{aligned}
$$

In particular, $R \Delta R^{T}$ is normal to ℓ at D . Thus, the equation $R \Delta R^{T}=P D P^{T}$ has a solution corresponding to Δ $=D$ and $P=R$ where R as above.There are infinite choices of R, which implies that the intersection between $f\left(\mathrm{P}^{2}\right)$ and the affine normal plane of $f\left(\mathrm{P}^{2}\right)$ at $f(1,0,0)$ is infinite. Since f is an embedding, f is not transnormal (a fact which is already known since $\chi\left(P^{2}\right)=1$).

The aim now is to find four orthonormal vectors normal to f at $f(x, y, z)$. Starting at the point $f(1,0,0)$, one unit normal corresponds to $R D R^{T}=D$ itself, which is $v_{1}(1,0,0)=f(1,0,0)$.

To find the other three in the orthonormal set, assume that Δ_{1} is diagonal and $R \Delta_{1} R^{T} \perp D$. Then trace $\Delta_{1} D$ $=\operatorname{trace} \Delta_{1} R^{T} D R=\operatorname{trace} R \Delta_{1} R^{T} D=0$.

Thus, if $\Delta_{1}=$ diagonal (a, b, c) then $2 a-b-c=0$.

Let
$R=\left[\begin{array}{ccc} \pm 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta\end{array}\right]$.
Then

$$
R \Delta_{1} R^{T}=\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & b \cos ^{2} \theta+c \sin ^{2} \theta & (c-b) \sin \theta \cos \theta \\
0 & (c-b) \sin \theta \cos \theta & b \sin ^{2} \theta+c \cos ^{2} \theta
\end{array}\right)
$$

Let $b=2 s, c=2 t$ then $a=s+t$.

Thus,

$$
R \Delta_{1} R^{T}=(s+t)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+(t-s)\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -2 \cos 2 \theta & \sin 2 \theta \\
0 & \sin 2 \theta & \cos 2 \theta
\end{array}\right)
$$

or
$R \Delta_{1} R^{T}=(s+t) I_{3}+(t-s) A \cos 2 \theta+(t-s) B \sin 2 \theta$.
where,
$A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$.
Thus, the normal plane of f at $f(1,0,0)$ is spanned by the normals corresponding to the matrices D, I_{3}, A, B. To generalize the situation at any point on f, assume that

$$
Q=\left(\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right) \in O(3)
$$

Then the corresponding matrices for the required normals are $Q D Q^{T}, I_{3}, Q A Q^{T}, Q B Q^{T}$

The first matrix $Q D Q^{T}$ - is the point itself and so the first unit normal is $v_{1}=f$

The second unit normal corresponds to I_{3} and so,
$v_{2}=\frac{1}{\sqrt{3}}(1,1,1,0,0,0)$
The third and fourth normals correspond to the matrices.
$Q A Q^{T}=\left(\begin{array}{ccc}u_{3}^{2}-u_{2}^{2} & u_{3} v_{3}-u_{2} v_{2} & u_{3} w_{3}-u_{2} w_{2} \\ u_{3} v_{3}-u_{2} v_{2} & v_{3}^{2}-v_{2}^{2} & v_{3} w_{3}-v_{2} w_{2} \\ u_{3} w_{3}-u_{2} w_{2} & v_{3} w_{3}-v_{2} w_{2} & w_{3}^{2}-w_{2}^{2}\end{array}\right)$
and
$Q B Q^{T}=\left(\begin{array}{ccc}2 u_{2} u_{3} & u_{2} v_{3}+u_{3} v_{2} & u_{2} w_{3}+u_{3} w_{2} \\ u_{2} v_{3}+u_{3} v_{2} & 2 v_{2} v_{3} & v_{2} w_{3}+v_{3} w_{2} \\ u_{2} w_{3}+u_{3} w_{2} & v_{2} w_{3}+v_{3} w_{2} & 2 w_{2} w_{3}\end{array}\right)$.
One well known orthogonal 3×3 matrix is;
$\left(\begin{array}{ccc}\cos \theta & 0 & -\sin \theta \\ \sin \theta \cos \psi & -\sin \psi & \cos \theta \cos \psi \\ \sin \theta \sin \psi & \cos \psi & \cos \theta \sin \psi\end{array}\right)$
In terms of x, y, z the above orthogonal matrix can be rewritten as;

$$
\left(\begin{array}{ccc}
x & 0 & -\sqrt{y^{2}+z^{2}} \\
y & -\frac{z}{\sqrt{y^{2}+z^{2}}} & \frac{x y}{\sqrt{y^{2}+z^{2}}} \\
z & \frac{y}{\sqrt{y^{2}+z^{2}}} & \frac{x z}{\sqrt{y^{2}+z^{2}}}
\end{array}\right)
$$

Thus,
$Q A Q^{T}=\left(\begin{array}{ccc}y^{2}+z^{2} & -x y & -x z \\ -x y & \frac{x^{2} y^{2}-z^{2}}{y^{2}+z^{2}} & \frac{x^{2} y z+y z}{y^{2}+z^{2}} \\ -x z & \frac{x^{2} y z+y z}{y^{2}+z^{2}} & \frac{x^{2} z^{2}-y^{2}}{y^{2}+z^{2}}\end{array}\right)$ and

$$
Q B Q^{T}=\left(\begin{array}{ccc}
0 & z & -y \\
z & \frac{-2 x y z}{y^{2}+z^{2}} & \frac{x y^{2}-x z^{2}}{y^{2}+z^{2}} \\
-y & \frac{x y^{2}-x z^{2}}{y^{2}+z^{2}} & \frac{2 x y z}{y^{2}+z^{2}}
\end{array}\right)
$$

Hence the other two unit normals are;
$v_{3}=\frac{1}{\sqrt{2}}\left(y^{2}+z^{2}, \frac{x^{2} y^{2}-z^{2}}{y^{2}+z^{2}}, \frac{x^{2} z^{2}-y^{2}}{y^{2}+z^{2}},-\sqrt{2} x y,-\sqrt{2} x z, \frac{\sqrt{2}\left(x^{2} y z+y z\right)}{y^{2}+z^{2}}\right)$
and
$v_{4}=\frac{1}{\sqrt{2}}\left(0, \frac{-2 x y z}{y^{2}+z^{2}}, \frac{2 x y z}{y^{2}+z^{2}}, \sqrt{2} z,-\sqrt{2} y, \frac{\sqrt{2}\left(x y^{2}-x z^{2}\right)}{y^{2}+z^{2}}\right)$

Now consider the partial tube in \mathbb{R}^{6} identified by;
$\rho=\left\{P D P^{T}+\xi \cos \psi P A P^{T}+\xi \sin \psi P B P^{T}: P \in O(3)\right\}$,
where $\xi>0$ and $\psi \in[0,2 \pi]$. Thus, the partial tube is based at f and is built by circles of radii ξ in the normal plane spanned by v_{3} and v_{4} at every point on f.

Now let,
$\bar{D}=D+\xi \cos \psi A+\xi \sin \psi B$.
Then,
$\bar{D}=\left(\begin{array}{ccc}\frac{2}{\sqrt{6}} & 0 & 0 \\ 0 & -\frac{1}{\sqrt{6}}-\xi \cos \psi & \xi \sin \psi \\ 0 & \xi \sin \psi & -\frac{1}{\sqrt{6}}+\xi \cos \psi\end{array}\right)$
The eigenvalues of \bar{D} are,

$$
\frac{2}{\sqrt{6}}, \frac{-1}{\sqrt{6}}-\xi, \frac{-1}{\sqrt{6}}+\xi
$$

Since the partial tube is a 3-dimensional manifold, the eigenvalues should be distinct, hence $\xi \neq \frac{3}{\sqrt{6}}$. Such a condition can be easily satisfied since ξ needs to be small to ensure that the partial tube is embedded. Also $\bar{D}=E J E^{T}$
where
$J=\left(\begin{array}{ccc}\frac{2}{\sqrt{6}} & 0 & 0 \\ 0 & \frac{-1}{\sqrt{6}}-\xi & 0 \\ 0 & 0 & \frac{-1}{\sqrt{6}}+\xi\end{array}\right)$ and $E=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \frac{\psi}{2} & \sin \frac{\psi}{2} \\ 0 & -\sin \frac{\psi}{2} & \cos \frac{\psi}{2}\end{array}\right)$
Let $H=P E$, so H is orthogonal. Then the partial tube is identified with,

$$
P \bar{D} P^{T}=P E J E^{T} P^{T}=H J H^{T}
$$

Also if $R \in O$ (3) such that $R D R^{T}=D$ and $R J R^{T}=\mathrm{J}$, then
$R(D+\xi A) R^{T}=D+\xi A$
or
$R D R^{T}+\xi R A R^{T}=D+\xi A$.

Thus, $R A R^{T}=A$ and so
$R=\left(\begin{array}{ccc} \pm 1 & 0 & 0 \\ 0 & \pm 1 & 0 \\ 0 & 0 & \pm 1\end{array}\right)$
That is, the domain of ρ is identified with $O(3) / O(1) \times O(1)$ $\times O(1)$.

Claim 2: The matrix $Q \Delta Q^{T}$ is normal to ρ at $Q J Q^{T}$ where Δ is diagonal.

For, let $s \mapsto H(s) J H^{T}(s)$ be a path in ρ through J such that $H(0)=\mathrm{Q}$.

A tangent to ρ at $Q J Q^{T}$ is,
$\left.\left(\dot{H} J H^{T}+H J \dot{H}^{T}\right)\right|_{s=0}=\dot{H} J Q^{T}+Q J \dot{H}^{T}$
Now $H H^{T}=I_{3}$ and so $\dot{H} H^{T}+H \dot{H}^{T}=0$.
Hence at $s=0, \dot{H}^{T}=-Q^{T} \dot{H} Q^{T}$ Thus, a tangent to ℓ at $Q J Q^{T}$ is,

$$
\dot{H} J Q^{T}-Q J Q^{T} \dot{H} Q^{T} .
$$

Now,

$$
\begin{aligned}
& <\dot{H} J Q^{T}-Q J Q^{T} \dot{H} Q^{T}, Q \Delta Q^{T}> \\
& =\operatorname{trace} \dot{H} J Q^{T} Q \Delta Q^{T}-\operatorname{trace} Q J Q^{T} \dot{H} Q^{T} Q \Delta Q^{T} \\
& =\operatorname{trace} \dot{H} J \Delta Q^{T}-\operatorname{trace} Q J Q^{T} \dot{H} \Delta Q^{T} \\
& =\operatorname{trace} \dot{H} J \Delta Q^{T}-\operatorname{trace} \dot{H} \Delta Q^{T} Q J Q^{T} \\
& =\operatorname{trace} \dot{H} J \Delta Q^{T}-\operatorname{trace} \dot{H} \Delta J Q^{T} \\
& =\operatorname{trace} \dot{H} J \Delta Q^{T}-\operatorname{trace} \dot{H} J \Delta Q^{T}=0
\end{aligned}
$$

Assume that Δ_{1} is diagonal such that $\Delta_{1} \perp D$ and $\Delta_{1} \perp J$ Thus,

$$
\operatorname{trace} \Delta_{1} J=\frac{2 a-b-c}{\sqrt{6}}+(c-b) \xi=0
$$

But $2 a-b-c=0$. Hence $b=$ and so $\Delta_{1}-b I_{3}$.

Consider the equation
$H J H^{T}=Q \Delta Q^{T}$

If $\Delta=\Delta_{1}$, then
$H J H^{T}=Q \Delta_{1} Q^{T}=b I_{3}$
and so $J=b I_{3}$, which is false. Now consider the six matrices obtained from J by the different permutations of the eigenvalues of J, say $J_{1}, \ldots \ldots J_{6}$. Let R_{i} by the matrix obtained by changing the rows of R such that $R_{t} J R_{i}^{T}, i=1$,, 6.

Now $\Delta=J_{i}, i=1, \ldots . ., 6$. Thus,
$H J H^{T}=Q J_{i} Q^{T}$
or
$Q^{T} H J\left(Q^{T} H\right)^{T}=J_{i}$.
Hence
$H=Q R_{i}$

Thus, we have six solutions, say $H_{k}, k=1, \ldots \ldots . . ., 6$ with the same normal plane at each, namely $Q J Q^{T}$. Thus, the above partial tube in \mathbb{R}^{6} is a 6-transnormal embedding. Also the points in the generating frame lie on a circle.

Upon the process of generalization of this example, \mathbb{R}^{6} can be replaced by \mathbb{R}^{m} where,
$m=\frac{n(n+1)}{2}, n \geq 4$. The next suggested example will be the embedding of P^{2} in \mathbb{R}^{10}. There the treasure will be about: a tale of 8 normals.

REFERENCES

1. Robertson, A., 1984. Smooth Curves of Constant Width and Transnormality, Bull. London Math. Soc., 16: 264-274.
2. Robertson, A., 1967. On Transnormal Manifolds. Topology, 6: 117-123.
3. Robertson, A., 1964. Generalized Constant width for Manifolds. Michigan Math. J., 11: 97-105.
4. Wegner, B., 1970. Krummungseigenschaften Transnormaler Mannigfaltigk-eiten. Manuscripta Math, 3: 375-390.
5. Wenger, B., 1971. Decktransformationen Transnormaler Mannigfaltigk-eiten. Manuscripta Math, 4: 179-199.
6. Wegner, B., 1971. Transnormale Isotopien and Transnormal Kurven. Manuscripta Math, 4: 361-372.
7. Wegner, B., 1981. Einige Bemerkungen Zur Geometrie Transnormaler Mannigfaltigk-eiten. J. Differential Geom, 16: 93-100.
8. Al-Banawi, K., 2009. Focal Point of 4- Transnormal Tori in R^{4}. Georgian Mathematical Journal, 16(2): 211-218.
9. Al-Banawi, K. and S. Carter, 2005. Transnormal Partial Tubes. Contributions to Algebra and Geometry, 46(2): 575-580.
10. Al-Banawi, K. and S. Carter, 2004. Generating Frames of Transnormal Curves. Soochow Journal of Mathematics, 30(3): 261-268.
11. Al-Banawi, K., 2004. Generating Frames and Normal Holonomy of Transnormal Submanifolds in Euclidean Spaces. PhD Thesis, University of Leeds, UK.
12. Carter, S., 1969. A Class of Compressible Embeddings. Proc. Camb. Phil.Soc., 65: 23-26.
13. Carter, S. and A. West, 1995. Partial Tubes about Immersed Manifolds. Geometriae Dedicata, 54: 145-169.
