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Abstract: In this paper, the advection diffusion equation is solved using two methods to evaluate crosswind
integrated of pollutant concentration per emission rate in three dimensions with constant wind speed and eddy
diffusivity under steady state. The used data set was observed from the atmospheric diffusion experiments
conducted at the northern part of Copenhagen, Denmark. The tracer sulfur hexafluoride (SF ) was released from6

a tower at a height of 115m without buoyancy. Comparison between the observed and predicated there are some
predicated data which are agreement with observed data (one to one) and others lie inside the factor of two and
factor of four.

Key words: Advection diffusion equation  Observed and predicated concentration  Sulfur hexafluoride

INTRODUCTION reactions. Analytical solution, numerical simulations and

Advection diffusion equations are used to stimulate groundwater flowed contaminant transport problems in
a variety of a different phenomenon and industrial aquifers. Contaminant (solute) transport through a
applications. advection diffusion equation describes the medium is described by a partial differential equation of
transport occurring in fluid through the combination of parabolic type and it is usually know as advection –
advection and diffusion. Its analytical / numerical solution dispersion equation. Advection – dispersion equation is
along with an initial condition and two boundary applicable in many disciplines like groundwatehydrology,
conditions help to understand the contaminant or chemical engineering bio sciences, environmental
pollutant concentration distribution behavior through an sciences and petroleum engineering to describe the
open medium like air, rivers, lakes and porous medium like behavior of solute concentration. In earlier, this equation
aquifer, on the basis of which remedial processes to along with a set of initial and boundary conditions has
reduce or eliminate the damages may be enforced. In initial been solved for uniform dispersion and velocity.
works while obtaining the analytical solution of Analytical solutions are obtained for a one –dimensional
dispersion problems in the ideal condition, the basic advection dispersion equation with variable coefficient in
approach was to reduce the advection –diffusion a longitudinal domain. (Dilip Kumar Jaiswal and Atul
equation into a diffusion equation by eliminating the Kumar [2]). One-dimensional advection–diffusion
advection term. Advection diffusion equation with equation with variable coefficients is solved for three
constant and variable has a wide range of practical and dispersion problems: (i) solute dispersion along steady
industrial application (Amruta Daga and Pradhan V.H. [1]). flow through an inhomogeneous medium, (ii) temporally
The contaminants in aquifer systems migrate with ground dependent solute dispersion along uniform flow through
water flow, may factors that may affect groundwater flow homogeneous medium and (iii) solute dispersion along
are also likely to influence the migration of contaminants temporally dependent flow through inhomogeneous
in equifers.because contaminants are chemicals or medium. Continuous point sources of uniform and
bacteria or virus which are mostly physically, chemically increasing nature are considered in an initially solute free
and biologically active, the transport of  contaminants  are semi-infinite medium. Analytical solutions are obtained
subject to physical, chemical and biological activities, using Laplace transformation technique. The in
such as contaminant density, adsorption and desorption, homogeneity of the medium is expressed by spatially
retardation, degradation and chemical- biological dependent flow. Its velocity is defined by a function

experiment and filed observation are used to address
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interpolated linearly in a finite domain in which evaluating the ground level concentration of pollutants
concentration values are to be evaluated. The dispersion and especially the maximum concentration and its position
is considered proportional to square of the spatially [4].
dependent velocity. The solutions of the third problem In this paper, the advection diffusion equation is
may help understand the concentration dispersion pattern solved using Laplace transform and separation of
along a sinusoidal varying unsteady flow through an variables methods to evaluate crosswind integrated of
inhomogeneous medium. New independent variables are pollutant concentration per emission rate in three
introduced through separate transformations, in terms of dimensions with constant wind speed and eddy
which  the  advection–diffusion  equation  in each diffusivity under steady state. The used data set was
problem is reduced into the one with the constant observed from the atmospheric diffusion experiments
coefficients. The effects of spatial and temporal conducted at the northern part of Copenhagen, Denmark.
dependence  on  the  concentration  dispersion are The tracer sulfur hexafluoride (SF ) was released from a
studied  with  the   help   of   respective  parameters and tower at a height of 115m without buoyancy. That there
are  shown   graphically   (Atul   Kumar   and   et  al. [3]). are some predicated data which are agreement with
In order to evaluate such scenarios one need efficient observed data (one to one) and others lie inside the factor
procedures, which yield  immediate   results,   for  instance of two and factor of four.

6

Mathematical Solution: The basic gradient transport model can be written [5]:

(1)

where:
C is the average concentration of diffusing point (x, y and z) (kg/m ).3

U is mean wind velocity along the x-axis (m/s).
K , k  and k  are the eddy diffusivities coefficients along x, y and z axes respectively (m /s).x y z

2

x is along –winds coordinate measured in wind direction from the source (m). 
y is cross-wind coordinate direction (m).
z is vertical coordinate measured from the ground (m).
S is source/ sinks term (kg/m -s).3

 is time rate of change and advection of the cloud by the mean wind.

 and  represent turbulent diffusion of material relative to the center of the pollutant cloud. (The cloud will

expand over time due to these terms).
S source term which represents net production (or destruction) of pollutant due to sources (or removal).
The mean wind components (u, v and w) and mean concentration (C) represent average over a time scale (T ) anda

apace scale (x ).a

Equation (1) is impossible to solve analytically for completely general functional forms for the diffusivity K and wind
speeds u, v and w.

One Dimensional Equation(x), under Steady State, Constant K and Wind Speed:

where K =0.04*u*x (2)
The equation (2) subject to the boundary condition:

C(x) =0 at x (i)
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C(x) = (x) at x=0 (ii)

Taking Laplace transform on the equation (2) we get that:

(3)

(4)

Taking Laplace on the boundary condition, we get that

Substitute the equation (ii) on equation (4), we obtain that:

(5)

Taking Laplace inverse on equation (5) we get that :

(I)

where

Two-Dimensional Equation(x, Y), under Steady State, Constant K and Wind Speed U. Instantaneous Area Source:

(6)

The equation (6) subject to boundary condition:

C(x, y) =0 at x  and y ± (c)

C(x, y) = (y) at x=0 

Taking Laplace transform respect to x we get that:
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(7)

Substitute from (d) on equation (7) we get that:

(8)

Taking Laplace transform respect to y we get that:

Substituting from boundary conditions we get that:

Taking Laplace inverse transform on equation (9) respect to y, we get that:

(10)

where  Substitute from (iii) on equation (8), we get that

(11)
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Using (i) in equation (11) we get that: Substituting from equation (13) in (12), we get that

(a)

Substitute from (a) on equation (11), we get that Divided on F(x), G (z) we get that:

Taking Lablace inverse on this equation

(II)

where
Substituting from equation (ii) in (14), we get that

Two Dimensional Equation(x,z), under Steady State,
Constant K and Wind Speed, Instantaneous Area Source:

(12)

The equation (2) subject to the boundary condition:

C(x, z) =0 at x , z (i) (15)

C(x, z) =  (z-h) at x =0 (ii)

(iii)

Using separation of variable, assuming that:

C(x, z) = F(x) G (z)

Differnation respect to x, z

(13)

where ë*2 is called the separation constant and is
arbitrary.

(14)

Substituting from equation (iii) at z=0 in (15), we get that

(16)

Substituting from equation (16) in (15), we get that 

(17)

Substituting from equation (iii) at z=h in (17), we get that

(18)
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(19)

Substituting from equation (ii) at z=h in (19), we get that

n=0, 1, 2, 3,4, ….

(III)

Multiplayer (I), (II), (III) in Q/u, we obtained of the pollutant concentration per emission rate:

(20)

To obtained crosswind integrated of pollutant concentration per emission rate with constant wind speed and eddy
diffusivity under steady state. We integrate the equation (20) respect to y from zero to y. we get that:

(21)

where

RESULTS AND DISCUSSION different   parameters    such   as   stability,   wind  speed

The used data set was observed from the downwind  distance  during the experiment are
atmospheric diffusion experiments conducted at the represented in (Table 1). Comparison between the
northern  part   of   Copenhagen,   Denmark, under predicated and observed crosswind- integrated
unstable  conditions  [6,  7].  The  tracer sulfur concentration normalized with the emission source rate at
hexafluoride  (SF )  was  released  from   a  tower at a different downwind distance, wind speed and distance for6

height  of  115m  without buoyancy. The values of the different runs.

at  10m (U ),  wind  speed   at   115m  (U ) and10 115
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Table 1: Comparison between the predicated and observed crosswind- integrated concentration normalized with the emission source rate at different downwind
distance, wind speed and distance for the different runs

C/Q (10 s/m )-4 2

----------------------------------------------------------------------------
Run no. h (m) U (m/s) X(m) K= 0.04*u*x observed Predicated Ref.predicated (5)
1 1980 3.34 1900 0.25 6.48 1.76 5.50
1 1980 3.34 3700 0.49 2.31 8.57 3.10
2 1920 3.82 2100 0.32 5.38 6.21 3.60
2 1920 3.82 4200 0.64 2.95 2.24 1.20
3 1120 3.82 1900 0.29 8.2 5.34 6.20
3 1120 4.93 3700 0.73 6..22 4.95 5.40
3 1120 4.93 5400 1.06 4..3 5.82 3.30
5 820 4.93 2100 0.41 6.72 4.81 5.80
5 820 6.52 4200 1.10 5..84 4.42 3.60
5 820 6.52 6100 1.59 4.97 5.20 2.30
6 1300 6.52 2000 0.52 3.96 3.38 2.80
6 1300 6.68 4200 1.12 2.22 1.12 1.20
6 1300 6.68 5900 1.58 1.83 6.46 1.40
7 1850 6.68 2000 0.53 6.7 3.30 6.40
7 1850 7.79 4100 1.28 3.25 8.98 5.20
7 1850 7.79 5300 1.65 2..23 4.41 2.10
8 810 8.11 1900 0.62 4.16 2.52 3.20
8 810 8.11 3600 1.17 2..02 2.18 2.01
8 810 8.11 5300 1.72 1.52 2.67 1.40
9 2090 11.45 2100 0.96 4..58 2.07 2.20
9 2090 11.45 4200 1.92 3.11 7.66  3.00
9 2090 11.45 6000 2.75 2..59 5.22 1.62

Fig. 1: Comparison between the predicated and observed
crosswind- integrated concentration normalized
with the emission source rate

Fig. 2: Comparison between downwind distance and
crosswind-integrated concentration normalized
with the emission source rate

CONCLUSION

The advection diffusion equation is solved using
Laplace transform and separation of variables methods to
evaluate crosswind integrated of pollutant concentration
per emission rate in three dimensions with constant wind
speed and eddy diffusivity under steady state. The used
data set was observed from the atmospheric diffusion
experiments conducted at the Northern part of
Copenhagen, Denmark. The tracer sulfur hexafluoride
(SF ) was released from a tower at a height of 115m6

without buoyancy. Comparison between the observed
and predicated shows that there are some predicated data
which are agreement with observed data (one to one) and
others lie inside the factor of two and others factor of
four.
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