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Abstract: Life Cycle Impact Assessment, LCIA, is one of the four phases of Life Cycle Assessment (LCA)
described in ISO 14042; its purpose is to assess a product system’s life cycle inventory analysis (LCI) in order
to better understand its environmental significance. However, LCIA typically excludes spatial, temporal,
threshold and dose-response information and combines emissions or activities over space and/or time. This
may reduce the environmental relevance of the indicator result. The methodology of Dynamic LCA -Fire
proposed in this paper is to complete the International Standard ISO 14042 in the fire field by combining the
LCA - Fire method with the Numerical Dispersion Model. It is based on the use of the plume model used to
assess pollutants concentrations and thermal effects from fire accident scenarios and to cope with the presence
of uncertainties in the input data we propose an uncertainty analysis enables to avoid as much as possible bad
decisions that may have a large impact in domain such as safety. In this study, The Dynamic LCA - Fire
methodology is applied for a case study of petrol production process management and we are interested in the
uncertainty propagation related to NO, atmospheric dispersion resulting from a crude oil tank fire. Uncertainties
were defined a priori in each of the following input parameters: wind speed, NO, initial concentration and its
diffusivity coefficient. For that purpose, a Monte Carlo approach has been used.
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INTRODUCTION

The “Dynamic LCA -Fire” is a proposed approach
that combines two tools: LCA-Fire and Numerical
Dispersion Model (NDM) within the inclusion of spatial
and temporal aspects in LCIA in order to give information
post-process
concentration of the pollutant resultant from the fire; One
important purpose of such tools is to provide relevant and
structured information in decision-making processes.
Due to the complex nature of fire, mathematical prediction

such as the residence time or the

models used in fire safety engineering are often simplified
and based on a number of assumptions. The first problem
that has been partly overlooked is accuracy of results
from mathematical models is often complicated by the
presence of uncertainties in their inputs data. Uncertainty
analysis investigates the effects of lack of knowledge and

other potential sources of error in the model [1].
When carried out, uncertainty analysis allows model
users to be more informed about the confidence that can
be placed in model results and hence becomes a quality
insurance factor. That is what; we study the uncertainty
propagation of input parameters of NO, atmospheric
output
(NO, concentration). The uncertainty propagation has
been conducted using the Monte Carlo sampling. All the
results are presented in terms of mean values and
confidence interval (lower and upper) bounds.

dispersion model on the wvariation of its

Statistical Fire Model: Statistical models provide a useful
resource that can help us to understand the causes and
consequences of fires. They are used to identify and
quantify the effects of the most significant fire-related
factors and environmental factors.
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Fire statistical model is presented in this work by two
components: Fire statistics and the uncertainty analysis
in the Numerical Dispersion Model (NDM) that is used to
correct the uncertainty propagation of input parameters of
NO, atmospheric dispersion model on the variation of its
output (NO, concentration). This goal has been achieve
by the use of the statistic fire which constitute a
parameters for the adjustment of the model and the
analysis of uncertainty in the Numerical Dispersion Model
using the Monte Carlo method.

LCA Method with Fire Considerations: The Life Cycle
Assessment methodology also needs continuous
improvements to incorporate new aspects and processes.
An LCA typically describes a process during normal
operation and abnormal conditions such as accidents are
left out of the analysis, usually due to lack of a consistent
methodology or relevant data [2, 3]. For example, LCA
data for power production usually assume normal
conditions without any accidents.

Provisions for certain accidents in the analysis
of the lifecycle could be included provided these could
be specified in sufficient detail and occurred with
sufficient regularity to make their inclusion relevant.
The Fire-LCA model is essentially equivalent to a
traditional LCA approach with the inclusion of emissions

[4].

Fire Statistics: The fire statistics that are used to develop
the fire model must be detailed. It must be able to
determine the number of primary and secondary fires each
year. In addition it must be able to estimate the size of
these fires, i.e. the number of fires that grow to involve the
rest of the room and/or the rest of the building. Fire
statistics tend only to include fires that are large enough
for the fire brigade to be summoned. In many cases small
fires are extinguished by people nearby and the fire
brigade is not called. These fires are, however, often
reported to insurance companies as part of an insurance
claim. Therefore statistics from insurance companies
should also be included in construction of the fire model.
Also, The quantitative output of the statistical analysis of
a scenario constitute parameters for the adjustment model,
resulting in an equation that can be used to make
conservative adjustments of model predictions, by the
modelling of the uncertain parameters of the model by
means of random variables and then construct explicitly
the probabilistic model of these random variables using
the available information [5].

Uncertainty Analysis in the NDM: The Numerical
Dispersion Model allows to follow-up of the plume by
determining the quantities of the NO, at each position and
at every moment along the life cycle of the plume, which
will make it to determine the residence time of the
pollutant. That shows the importance of modelling as tool
for decision making aid, especially to the experience
feedback.

The plume is described in terms of unsteady state
convective transport by a uniform ambient wind of heated
gas and particulates matter introduced into a stably
stratified atmosphere by a continuously burning fire. The
mathematical model of a smoke plume consists of the
conservation equations of mass, momentum and energy
which govern the temperature 7, pressure P, density and
velocity (u,v) in the direction (x,y), in connection with the
k-& turbulence model [6]. The induced flow, mass fraction
and temperature field can be described by a set of
equations derived from the conservation laws for mean
flow quantities. A more detailed description can be found
in Chettout ez al. (2013).

Mathematical models are necessarily simplified
representations of the phenomena being studied and a
key aspect of the modeling process is the judicious choice
of model assumptions [7]. That is why; fire management
is subject to manifold sources of uncertainty.

Uncertainty analysis is the most appropriate and
most effective way to take into account the uncertainties
in the model parameters when the probability theory can

be used.
Uncertainty analysis may be achieved by means of
different approaches depending on the level of

uncertainty associated to the considered parameters.
Monte Carlo sampling, fuzzy sets based-approach,
intervals analysis are among these approaches [8].

Monte Carlo sampling method is being used in
various disciplines [9], it has become the industry
standard for propagating uncertainties [10].

The general scheme of that method is depicted in
Figure 1. We give hereafter, in connection with the
Numerical Dispersion Model, the main steps of Monte
Carlo approach.

The Place of Statistical Model in the Dynamic LCA-fire:
The Dynamic LCA - Fire model is essentially equivalent to
a traditional LCA approach with the inclusion of
emissions from fires and the dispersion of the emitted
pollutants in the atmosphere. During the lifetime of the
products to be analysed, some products will be involved
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Fig. 1: Uncertainty propagation framework

in different types of fires. The Dynamic Fire-LCA model is
composed of the following modules: LCA method with fire
considerations, Statistical fire model and Dispersion
numerical model, Figure 1. LCA model will therefore
include modules to describe the fire behaviour for the
different types of fires. Fire statistics are used to quantify
the amount of material involved in the different types of
fire [11]. In addition, the model also includes modules for
evaluating the pollution produced from the fire that are
needed due to the shortening of lifetime that the fires
have caused [12].

Model Application:

Fire - LCA Results: The obtaining is the environmental
impact measure of the choice of a given fire safety level.
Implicitly, this model is the fact that, to obtain a high level
of fire safety measures to improve fire performance should
be taken; these could be for example the addition of Flame
Retardants (FR) or a fire extinguishing system or to
change the design of the product. The case chosen for
this application represent an industrial fire illustrated by
the refinery products (petrol and gasoil) [11]. For the
determination of the pollutant quantity emitted from the
fire and also we could take into account the heat flux
generated from the
temperature elevation. The data of this part could be
acquired from the database of fires occurred in the
refineries. For this, we could reference to a fire which took

fire and represented by the

place in the refinery of Skikda (city in Algeria). The fire
started on the crude oil storage tank terminal S106, later
on the fire extended to the tank S105. The "Boilover"
happened would reject the entire contents of the tank.
The S106 tank was being filled at 70 % since 21 h 40 the
night before. The specification of a maximum RVP
(Reid vapor pressure) is of 0.75 kg/cm? for a floating roof
tank. The RVP corresponding to the atmospheric
conditions of 11-th October and the 13-th October

Table 1: The incorporation of fire statistics in the LCA model of Petrol and

Gasoil.
Fire % of 448 fires
Only tank fireInvolved several tank 143 31.9
139 30

(7 and 9 days after discontinuation) were respectively 0.91
and 0.94 kg/cm’ and the estimated content of LPG
(Liquefied petroleum gas) was 3 % (mole) to 0.75 kg/cm?
and 5 mole % to 0.95 kg/cm’. For a tank, this equates to a
mass of 75 t evaporated, the volume occupied by the gas
at a concentration of 100 % is then 60 000 m’ [13]. This
investigation is carried out by a team of experts, showed
also that smoke contains gaseous pollutants in particular
NO, (Oxides of Nitrogen) and VOCs (Volatile Organic
Compounds).

Fire Statistics: Using the complete database of the 448
fire incidents from 1960 to 2005 where it is possible to
obtain almost full information about the fire size, the
number of fires that are confined to the original tank fire
(only tank fire) and those that fire spread beyond the
original tank to other tanks in area (involved several
tanks: domino effects). The statistics concerning
distribution of the size of fire, describe the number of
tanks which are destroyed only and those involved in the
original tank fire [14]. It is assumed that the same
percentage (30%) of 448 tank fires is in the “only tank fire”
and “domino effects”, Table 1.

o Tox oy

2 2
0P JUP 8V<D: a<3:+a<}> +S (1)
ox® o9y’

The fire occurred in the refinery of Skikda
(2005), represent serious accident that involved two
tanks and have a considerable human and material
damage [15]. These values are used as input in the model,
Table 2.
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Table 2: Number of identified tank fire incidents in Skikda from 2003 to

2013
Fire % of 35 fires
Only tank fireInvolved several tank 7 20%
2 6%

Uncertainty in the Numerical Dispersion Model:
Uncertainty analysis investigates the effects of lack of
knowledge or potential errors on the model (in our case,
the uncertainty associated with parameter values).

The main stages
summarised as follows:

of uncertainty analysis are

*«  Construct a probability density function (pdf) for
each input parameter (pdf reflects state of knowledge
about the value of the parameter). In our case, the
pdfs related to the previously mentioned uncertain
parameters are defined in Table 3.

* Generate one set of input parameters by using
random numbers (uniformly distributed between 0
and 1) according to pdfs assigned to those
parameters.

*  Quantify the output function (NO, concentration)
using the above set of random values and according
to the developed NDM. The obtained values are a
realization of a random variable (X).

*  Repeat steps 2 to 3 N times (until a sufficient number,
e.g. 1000) producing N independent output values.
These N output values represent a random sample
from the probability distribution (empirical
distribution) of the output function.

*  Generate statistics from the obtained sample for the
output result: Mean, standard deviation, confidence
interval (percentiles), etc [16].

The precision in the generated statistics is improved
by increasing the number of iterations. It is therefore
important to run enough iteration so that the statistics are
stable. We note that sensitivity analysis, i.e. the study of
how a model’s response can be apportioned to changes
in model inputs [17], is out the scope of this paper.

The induced flow, mass fraction and temperature
field can be described by a set of equations derived from
the conservation laws for mean flow quantities, the model
used in this paper is simplified and described in [12].

The solution of the partial differential equation
described by the general Eq(1), using the finite volumes
method which has been implemented on a FORTRAN
environment, led to the establishment of curves depicted
on Figure 2. This figure presents the NO, atmospheric

dispersion (plume) at time t = 1200 s from the beginning of
the tank fire, NO, concentration profile for cloud height
y =100 m and y = 200 m against the Downwind distance
(x) and NO, concentration profile for a fixed Downwind
distances x = 500 m and x = 1.5 Km against the cloud
height (y). For each figure, the Lower bound, Mean and
Upper bound are reported. The achieved iterations
number is 1000. The output of each iteration is stored in
a matrix which gives the NO, concentration for all
coordinates (X, y): c,,. On the basis of the resulted
matrixes (1000 in total), one can compute the mean matrix
(cg"’a”), the lower bound matrix (c5™*) and the upper

bound matrix (¢{*") as follows:
I
CMean _ N .

Xy N >

Mean 2
\/ Z(CW —Cy) /N
Lower _ _Mean _ N .
Crp = Cxy E N ;
Mean 2
JZ(% —cy) N
N
cUpper — cMean +E-

Xy Xy \/ﬁ

To investigate the NO, impact on the local
population, Figure 2 has been drawn. In fact, NO, is a very
toxic gas which leads through inhalation to pulmonary
oedema because of its low solubility in water. Some NO,
concentration threshold values are given in Table 4
[18].

According to Table and for 1,200 s; (20 min) of
release duration, the reference threshold values are taken
equal to 55 ppm (for irreversible effects) and 90 ppm (for
1 % lethality).

Figure 2 (a and b) shows that the obtained
concentrations (lower (2823 ppm), mean (3751 ppm) and
upper bounds (4677 ppm)) at the fixed downwind distance
(x = 0.5 km) are by far very high compared to threshold
values. For the second position, the Lower bound
concentration (80.4 ppm) is lower than the threshold
values related to 1% lethality (90 ppm), while the Mean
and Upper bound still greater than the fixed threshold
values. Therefore, the obtained values are unacceptable.
This means that in case of a similar accident, all the
population would be exposed to an intolerable NO,
concentration. Hence, the population must be relocated to
a safe area. For this purpose, concentration profiles using
upper bounds to be pessimistic indicate that the threshold
concentrations of 55 and 90 ppm remain exceeded even for
the downwind distance of 2 km.
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Fig. 2: NO, plume dispersion at t = 1200 s for: (a) fixed x (b) for fixed y.

Table 3: Probability distribution functions

Parameters range

Inputs parameters Type of distribution Min Mod Max
Wind speed (m.s-1) Triangular 2 4.5 7
NO, initial concentration (% in the smoke) Continuous uniform 0.1 0.8
NO, diffusivity coefficient characterized via the Prandtl number Continuous uniform 0.7 1

Table 4: NO, concentration for the considered positions

NO, concentration

Positions Lower bound: C*"*"

Mean: CMer Upper bound: CU»<

y=100 m; x= 0.5 Km
y=200 m; x= 1.5 Km

0.2823% (2823 ppm")
0.00804 % (80.4 ppm)

0.3751 % (3751 ppm)
0.01626 % (162.6 ppm)

0.4677 % (4677 ppm)
0.02445 % (244.5 ppm)

*C(ppm)= C(%).10°/100.
CONCLUSION

There is no easy way to collect detailed information
about tank fires, in the Fire — LCA analysis, especially to
complete LCI, very little fire emission data is reported in
the literature and also data at industrial sites is
confidential. One of the objectives of this work is to
propose an easy methodology approach to collect all
information of the site sinister before and after accident,
this help to elaborate a database of statistics and the
different fire effects.

There are two alternatives for combating a tank fire,
either to let it burn out and thereby self-extinguish or,
alternatively to actively extinguish the fire using
firefighting foams. As the burn out procedure will result
in a fire that is likely to persist several days, complete loss
of stored product, environmental problem, large cooling
operation to protect fire spread to adjacent tanks. In
another case, when the amount of fuel in fire is important,
the heat generated can destroy the tank and we have then
to replace it.

While the Fire-LCA tool provides a good starting
point for a holistic interpretation of a realistic life — cycle
of a product including information concerning the
probability that the product may be involved in a fire it
does not provide information concerning, for example, the
effect of the toxicity of chemicals used in the product or
the fate of pollutants emitted during the fire in the
atmosphere. The Numerical Dispersion Model responds
to this limit by determining the residence time of the
pollutant in atmosphere and other parameters like
temperature. The dynamic fire-LCA is an organized
approach to be used as an aid decision-making tool and
experience feedback.

In this study, we also have studied the relative
influence of uncertainty in input parameters of an
Numerical Dispersion Model (wind speed, NO, initial
concentration and NO, diffusivity coefficient) on the
variation of the outputs.

Knowing the uncertainty of a prediction is critical for
the decision making process. While the uncertainties in
various elements of the modeling process are being
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determined, it is also important to investigate how those
uncertainties interact with each other and contribute to
the uncertainty in the final result (e.g. NO, concentration
predictions). Therefore, decision-makers should not base
their judgment solely on the mean values, but they
should, in particular, consider the upper bound plume
concentration. In further work, we will include all
parameters and also consider the parametric sensitivity
analysis of the numerical dispersion model.
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