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Abstract: Nonlinear problems occur in different fields of sciences and engineering. Most of the problems can
be modeled by linear and nonlinear partial differential equations. It is very difficult and tedious to find the exact
solutions of nonlinear models. The most important and challenging task is to find the exact solutions of such
models. Therefore many researchers prefer to investigate the approximate solutions of such problems. In this
study, Cubic Boussinesq equation (CBE) and Modified Cubic Boussinesq equation (MCBE) has been solved
using a well-known iterative technique called the homotopy analysis method (HAM). Results obtained by
HAM are compared with the exact solutions and it is shown that, the results obtained by HAM have a great

agreement with the exact solution. Numerical results are elaborated with the help of absolute error tables.
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INTRODUCTION

In 1992, Liao developed a technique for the solution
of nonlinear problems, namely homotopy analysis
method [1, 2]. He applied this method to solve different
kinds of differential equations [3, 4]. The method is also
effectively applied by various researchers to solve wide
class of partial differential equations [5-9]. All these
applications verified the wvalidity, effectiveness and
flexibility of the HAM. The advantage of HAM over other
methods is that it contains an auxiliary parameter ‘h’,
which can be simply used to adjust and control the
convergence region of series solution.

To illustrate the basic idea of HAM, we consider the
following nonlinear differential equation.

Nu(x, ] =0, (M

where N is supposed to be nonlinear operator, u(x, f) is an
unidentified function. For the sack of ease, all the
boundary and initial conditions have been ignored.
Liao created the following zero order deformation
equation using the conventional homotopy.

(1=P)L[9(x.t5p) o (x,1) | = phH (x.0) N[ (x.1: p) ] o
Lo

where 4 p e [0,1] is the embedding parameter, h + 0

is a non-zero auxiliary parameter,

H(x, t) # 0 is an auxiliary function, L is linear operator,

@(x; t; p) is an unknown function and u(x, ¢) is the initial

guess of u(x, f) When p =0 and p = 1, equation (2) gives,

P(x; £5,0) =, (x, 1), P(x; 15 1) = ulx, 1) (€))

Now expanding @(x; ¢; p) with respect to p by Taylor
series we have,

0 (x15p) = ug (x,0) + Y u, (x.0) p" “®
n=1
where,
SR A G 5)
n! op =0

If we choose the linear operator L, the initial guess
u, (x, f) the parameter h and the auxiliary function H(x, 1)
properly, the series (4) converges at p = 1, then we get,

Corresponding Author:

Safdar Hussain, Department of Mathematics Karakoram International University,

University Road, Gilgit-Baltistan, Pakistan.



World Appl. Sci. J., 32 (4): 650-654, 2014

u(x,t)=¢(x,t;1)zuo(x,t)+2u,,(x,t). (6)
n=1

Define the vector,

;t(x,t) :{uo(x,t),ul(x,t),uz(x,t),...,un (x,t)}. (7

To obtain the n" order deformation equation,
differentiate equation (2) with respect to p and then
setting p = 0 and finally dividing by n!, we get

L[ty = Ayt y] = hH (x,0) R, [ -1 | ®
where,
- 1 8"_1N[¢(x,t;p)] 9
R, |:un—1:|: ) P (€))
and
xn:{o’ n=1 (10)
1, n>1

Now applying L™" on both sides of equation (8), we get
[u, —/lnun_l]zhL_l{H(x,t)Rn [;n_l]}, (11)

u, (x,t)zhL_l{H(x,t)Rn [1;”_1}}+lnun_1. (12)

In this way we can easily obtain the approximate
solution u(x, f)

N
u(x,t)zZun(x,t). (13)
n=0

where u, (x, t) can be obtain from equation (12).

Numerical Examples: In the following section we will
provide numerical solution of cubic Boussinesq equation
and cubic modified Boussinesq equation.

Example 1: Consider the cubic Boussinesq equation.

12kt 252mt*  64h%** | 2kt
Uy (x,t) =h =+ T+ 5 -
X X X X

3 14
Uy = Uy — Uyxxx +2(u )xx =0 ( )

Here the initial condition is,

u(x,0)=1
X

and the exact solution of equation (14) as given in [10] is,

)= (15)
u(x ) X+t
Using equation (14) in equation (12), we get
u, (x,t)zhL_l{H(x,t)Rn [an—lJ}"'ln”n—l- (16)
where,
2 2 4

- u 0“u 07u

R (u )= n=1 _ n—1 _ n—1
n( ! ) or’ ox? ox?

n=1 n=1 2
+122ui%—a””—l—i +6Y 9ty1o; “nli

= (17)

Here we assume H(x, t) = 1. For n = 1, equation (16)
and equation (17) gives;

and
~ u, 0%, o Juy du 0%u
R — 0 _ 0 _ 0 +12 0 0 +6 2 0
: (MO) TRl N o ox ox "0 a2
(19)

Using equation (19) in equation (18), we get the first
approximation,

=2ht

x3

uy(x,t) =

Similarly one can find w,, u;, u,,...

—-36288h%*x® — 420h1x'0 + 44100/ %10 — 21337344n% 454
2nt | =17028481%*x% —101606404° x> +34624804%3x® — 4300804°x*

usz (x,t) =-

35x%1| _8820h —3360n*x12 + 210042254 + 180880421212

+6791400/242x'0 — 4201%x'0 — 882042 x"* —12288004%° + 35x!8

Substituting u,, u;, u,, Us, Uy,... in equation (6) we have
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+h + + -
x3 x5 x7 x9 x3

—2ht 12062 2520t 64K%% | 2t
u(x,t)=

—36288h**x® — 420h1x'0 + 44100133510 — 213373440 %4

2ht | —17028487h%*x® —10160640/° x> + 346248043 x® — 4300804°x*

35x2" | _8820hm* —3360h%x' 2t + 2100822 +1808804%2x12

+67914007%%x'0 — 420420 — 882042 x4 —1228800/%° + 35x'®

Example 2: Consider the cubic modified Boussinesq equation,

2
Uy H Uy +— U — (u3) =0
9 XX
Here the initial condition is
3
u(x,0)=1+tanh| =x
2
and the exact solution is given by [11]
3
u(x,y)=1+tanh Ex—3t
We have,
2 2 m—1
- U, 0 0u,_, 23u ou; auml, 28
) Tt 8 Pt | 20t S, S, ST,
ot ot|  ox 9 ox* =
We get
2 2
ul(x,t):—ﬂ tanh 7r —1| 4tanh éx —3+9tanh éx
2 2 2 2
) 3V 371061 33 (3 P 562059 33 (3 )
uy (x,t)=810h“ttanh| =x | —=———h’r tanh| =x | +———=ht> tanh| = x
2 8 2 4 2
8019 5 2 3 Y 2 3P 3
+——h“t"tanh| =x | —486Ah“ttanh 7x +18ht tanh| =x
2 2 2
196101 5 2 3\ 41553 33, 809919 3 Y
————h“t“tanh| =x | ———h"t t tanh| =x
4 2 2 2
59049 33 (3 10 13 4131 2 3. 2
2P i3 tanh| 2x | —14215547¢ tanh| 2 22 12t tanh| 2
2 2" 2"
188811 7 2 3 0 | 74601 2 2
——h“t" tanh| =x —httanh ———h“t" tanh| =
4 2 2 4
5
—@hzt2 tanh éx —324h2ttanh E 567 h2t2 tanh
2 2 25T 2"
2 9 6
+sahrtanh( x| + 144133 (3| - 364552 ann[ 2«
2 8 2 2 2
4779 59 3 47385 33 3
3 ——h“t* tan h( ) +Tht tanh[ x)—lShttanh(fx)

8 1 8
~15309%242 tanh(%xj —%ﬁﬁ tanh(%x) + %/ﬁﬁ tanh(%x]

4 4
18529333 tanh( 2 | +3645h2rtanh| Sx | 8073122 4 24302+ 2187433 2T,
2 2 4 2 2
Approximate solution can be calculated from equation (13)

u(x,t)zuo +uptuy+...
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Y Ym-1-i

(20)

@n

(22)

(23)
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Putting values in above equation we get the series solution as,
2 2
u(x,t) =1+ tanh Ex _ht tanh éx —1| 4tanh éx —3+9tanh ix
2 2 2 2 2
3V 371061 3V 562059 3 Y
8104%tanh| Zx | -2  tanh| 2x | + =" 1% tanh| = x
2 8 2 4 2
7 5
8019h2t tanh éx —486h21tanh —x
2 2
4 7
196101 t tanh| 2 41553 t tanhl 2 809919h tanh Ex
4 2
10 6 2
_ 39049 1353 tann( 25| — 1421558 tanh| 2x | 312 ann[ 2«
2 2 2 2 2
188811 3 ¢ 81 3\ , 74601 3. 2
=22 " h*?tanh| Zx | ——httanh| =x | +———h** tanh| =
4 2 2 2 4 2"
5
13365ht tanh| — — 324kt tanh 3x +ﬂh2t2 tanh Ex
2 2 2 2
3 V1114641 3 Y 3645 3 )
+54httanh| =x | +———— A3 tanh| =x | ——=h’ttanh| =x
2 8 2 2 2
3 3
4779h t“ tanh| — 47385ht tanh x —18ht tanh éx
2 8 2 2

8 11 8
—~153094%¢% tanh[%xj —L;“Sfﬁﬁ tanh[%x) +&2139h3z3 tanh[%xj

+18ht tanh[%x)

4 4
+852931° tanh(%x) +3645h2ttanh(%x) 6(Z5 W% +2430% + 21287 n —277;1; (24)

Table 1:

t/ x; 10 15 20 25 30

0.01 4.296x107° 2.703x107° 1.759x1073 1.219x107° 8.902x10°
0.02 8.603x107° 5.412x1073 3.520x107° 2.439x107° 1.781x1073
0.03 1.292x107* 8.125x107° 5.283x107° 3.661x10~° 2.672x107°
0.04 1.725x107* 1.084x107* 7.049x107° 4.883x107° 3.565x107°
0.05 2.159x10~* 1.356x10~* 8.817x107° 6.107x107° 4.458x107°

Error Analysis: Absolute error between exact solution (15) and approximate solution (20) up to third order iteration for
=-1.

Table 2:

t/x; 10 15 20 25 30
0.01 5.000x10~° 1.010°10°% 0.000 5.000x10~° 0.000
0.02 0.000 0.000 0.000 0.000 0.000
0.03 1.010x107% 0.000 1.010x1078 0.000 0.000
0.04 0.000 0.000 0.000 0.000 0.000
0.05 1.100x10* 0.000 5.000x10* 0.000 0.000

Error Analysis: Absolute error between exact solution (23) and approximate solution (24) up to second order iteration.
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CONCLUSION

In this work, the HAM is used to get the approximate
solution of Cubic and Modified Cubic Boussinesq
equations using Homotopy Analysis Method. Maple has
been used to generate analytical results. The numerical
results in Table (1) and Table (2) show that, the
approximate solution has a great agreement with the exact
solution. Using the error tables one can conclude that this
method is a powerful tool to find the approximate (some
time exact) solutions for many problems. It is worth
mentioning here that this method gives rapid convergence
of series solution due to its auxiliary parameter.
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