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New Exact Solutions for the Nonlinear Potential Boussinesq
and Zkbbm Equations by Using (1/G')-Expansion Method
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Abstract: In this paper, the (1/G')-expansion method with the aid of Maple are used to obtain new exact
traveling wave solutions of the Nonlinear potential Boussinesq and ZKBBM Equations. The travelling wave
solutions are expressed by the hyperbolic functions, the trigonometric functions and the  rational  functions.
It is shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave
equations in mathematical physics and engineering.
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INTRODUCTION In the present paper, we will use the (1/G')-expansion

Finding exact solutions of nonlinear evolution our solutions can be expressed by a polynomial (1/G') and
equations (NEEs) is a very important part of nonlinear G = G( ) satisfies a second-order linear ODE
physical phenomena. It is a fact that exact solutions
provide  much  physical information and help one to G''( ) + G'( ) + µ = 0 
under-stand the mechanism that governs some physical
models, such as plasma physics, optical fibers, biology, where  and µ are constants, the degree of the
solid state physics, chemical physics and so on. polynomials can be determined by considering the

In recent years, different methods for finding exact homogeneous balance between the highest-order
solutions of nonlinear evolution equations have been derivatives and nonlinear terms in the given nonlinear
proposed, developed and extended. PDEs.. (1/G')-expansion method has first been introduced

These are the Jacobi elliptic function method [1], the by Yokus [30].The present paper investigates the
Hirota bilinear transformation [2], the Weierstrass applicability and effectiveness of the (1/G')-expansion
function method [3], the Darboux and Backlund transform method on nonlinear evolution equations and systems of
[4], the wronskian technique [5], homotopy perturbation NEEs.
method [6], the theta function method [7], symmetry
method [8, 9], the homogeneous balance method [10, 11], Description of (1/G')-Expansion Method: Suppose we
sine-cosine method [12-14], F-expansion  method  [15],
exp- function method [16-19], the Painleve expansion
method [20], the transformed rational function method
[21], the inverse scattering method [22-24], (G'/G)-
expansion method [25-29]. The key idea of the original
(G'/G)-expansion method is that the exact solutions of
nonlinear partial differential equations (PDEs) can be
expressed by a polynomial in one variable (G'/G) in which
G = G( ) satisfies the second ordinary differential
equation G''( ) + G'( ) + µG( ) = 0 where  and µ are
constants.

method, the main idea of (1/G')-expansion method is that

have the following NLPDEs in the form:

(1)

Step 1: The traveling wave variable

(2)

reduces (1) to an ODE in the form

(3)
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where V is a constant and P is a polynomial in u and its (10)
total derivatives ,while ' = d/d .

Step 2: Suppose that the solutions of (3) can be expressed Substituting (10) into (9) and using (5), the left hand
by a polynomial () as follows: side of (9) becomes a polynomial in (1/G') Setting the

(4) algebraic equations in a ,a  and V as follows:

where a (i = 0,1,...,N), , µ are constants determine Lateri

where G = G( ) satisfies the second order LODE 

(5)

Step 3: Determine the positive integer N in (4) by using
the homogeneous balance between the highest –order
derivatives and the nonlinear term in (3).

Step 4: The solution of the differential Eq. (5) is

(6)

Then

 = (7)

Step 5: By substituting (4) into (3) and using second
order LODE (5), the left-hand side of (3) can be converted
into a polynomial in terms of (1/G'). Equating each
coefficient of the polynomial to zero yields a system of
algebraic equations and solving the algebraic equations
by Maple we obtain a , c,  and µ constants.i

An Application
The potential Boussinesq Equation: In this section, we
apply the method to find the exact traveling wave
solutions of the nonlinear The potential Boussinesq
Equation

u  + u  u  + u  = 0. (8)tt x xx xxx

To this end , we see that the traveling wave variable
(2) permits us To convert (8) into the following ODE

V u'' + u'u'' + u''' = 0 (9)2

By balancing u'' '' with u' u'' in (9) ,we get N = 1
Consequently, we get

where a  and a  are constants.0 1

coefficients of this polynomial to zero yields a system of
0 1

 :  = 0, (11)

 :  = 0, (12)

 :  = 0, (13)

 :  = 0, (14)

 :  = 0. (15)

Solving the algebraic equations by the Maple or
Mathematica , we get the following results.

{ (16)

By substituting (16) into (10) using (6) we obtain

, (17)

where .

The ZKBBM Equation: We first consider the ZKBBM
equation.

(18)

To this end , we see that the traveling wave variable
(2) permits us To convert (18) into the following ODE

(19)

By balancing u''' with uu' in (19), we get N = 2.
Consequently, we get 

(20)
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where a , a  and a  are constants substituting (20) into (19) and using (5), the left hand side of (19) becomes a polynomial0 1 2

in (1/G') Setting the coefficients of this polynomial to zero yields a system of algebraic equations in a , a , a , and V as0 1 2

follows:

(21)

 :  + 

(22)

 :  + 6

(23)

 : –6aa a µ – 4 (24)1 2

 : – 4 (25)

Solving the algebraic equations by the Maple or Mathematica , we get the following results.

{ (26)

By substituting (26) into (20) using (6) we obtain

(27)

where  = x + Vt.

Classical Drinfel’d-Sokolov-Wilson System:

u  + pvv  = 0, (28)t x

v  + qv  + ruv  + su v = 0, (29)t xxx x x

where p , q , r and s are arbitrary constants, to this end , we see that the traveling wave variable

u(x, t) = u( ),  = x – ct permits us To convert (28) and (29) into the following ODE

–cu' + pvv' = 0, (30)

–cv' + qv''' + ruv' + su'v = 0, (31)
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According to step3,we get M=2 for u and N=1 for V, we assume that equations (30) and (31) have the following
formal solutions

(32)

(33)

where a , a , a , b  and b  are constants.0 1 2 0 1

Substituting (32) and (33) into (30) and (31) using (5), the left hand side of (30) and (31) becomes a polynomial in
(1/G') Setting the coefficients of this polynomial to zero yields a system of algebraic equations in a , a , a , b  b  and C0 1 2 0 1

which can be solved by Maple to find following results:

(34)

By substituting (34) into (32) and (33) using (6) we obtain

(35)

(36)

where .
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