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Abstract: Due to high solidity to weight ratio of composite they have been used widely. A many all the 
special features of composites, the layers arrangement, heat transfer and convection in these kinds of 
materials are of the most important features of them. Since heat conductivity of composite are dependent on 
the direction, they are grouped both in isotropic and anisotropic material and thermal analysis of them is 
possible no matter of symmetrical or non-symmetrical boundary condition, they have important rate in 
scientific and engineering courses.
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INTRODUCTION

At recent years, many researches are carried out 
about different solutions methods on the heat transfer of 
anisotropic materials. Generally, in a lot of engineering 
problems, it is necessary to know heat flaw and thermal 
distribution in multi-layers composites. 

 Many of researchers have been tried to solve the 
heat  transfer  problems  (conduction and radiation and
so on) in the composite materials. For example,
Bularvin and Kashchov [1] and Mulholland and Cobble 
[2] have been solved heat transfer on the anisotropic 
multi-layers composite materials. 

A general solution methods including of
experimental heat transfer tests in composite materials 
are carried out by Han and Cosner [3], Azcvedeo et al.
[4], Chen et al. [5], Archer and Horne, Takao and Taya 
[6], Okey [7], Miller and Weaver [8], Tittle and
Robinson [9], DeMonte [10], Onyejekwe [11], Heisler 
[12] and Ozis ik [13]. 

In this paper, Energy equation and heat flaw is 
studied for anisotropic solids and heat conduction
tensor is obtained for this materials. Then, the tensor 
components are obtained for a composite laminate.

The analytical solution of such problems is not 
possible, because of their difficulties. Thus, the
numerical solution is used. 

ANALYTICAL FORMULATIONS

Generally, the flux relations for orthogonal
curvilinear coordinate system (u1, u2, u3) can be
expressed as: 
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The energy equation in orthogonal curvilinear
coordinate system (u1, u2, u3) for anisotropic solids is:
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Where aj is transformation factor. Cylindrical
coordinates (r, φ, z): 

u1= r a1=1

u2=φ a2 = r

The nine heat conductivity coefficients of kij

matrix, are the components of a second order tensor. In 
the triclinic system, the symmetrical or non-
symmetrical conditions does not change the number of 
conductivity coefficients; so all the nine kij coefficients 
can be non-zero [14].
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Due to symmetric planes in this problem, the
conductivity tensor reduces to [15]: 
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If the direction of coordinate system axes to be not 
parallel with the fiber direction, using the
transformation tensor, we can determine the heat
transfer coefficients on the desired axis directions.

The off-axis conductivity matrix components can 
be expressed as [16]:
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The energy equation of a laminate is represented as 
follow:
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Also, the flux equation can be written as:
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NUMERICAL SOLUTION METHOD

Due to complexity of the above mentioned
equations, some numerical solution methods is
necessary. The finite difference method (FDM) and in 
this case FTCS (Forward in time and central in space) 
was selected for solving the problem. 

In Fig. 1, used schematic meshing for the
cylindrical vessel is represented with inner radius, a and 
outer radius, b, in polar coordinate (r, f) .

Temperature in an arbitrary point in the cylinder is 
the function of the coordinates of that point. i.e:
( ) ( ) i,j,kT ,r,z T i r , j ,k z Tφ = ∆ ∆φ ∆ ≡

Fig. 1: Two dimensional schematic of meshing in a
cylindrical coordinates and virtual node i, M+1

i 0,1,2,...,N
j 0,1,2,...,M
k 0,1,2,...,O

=
=
=

(8)

And r, f  and z are restricted as: 
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Suppose in the r=b, the heat transfer to be through the 
convection. Thus we have:
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DISCRETIZATION METHOD

We can adjusting the equation (6) in the following 
form:
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Because this problem is not time dependent,
variation of T related to time in right side of
equation(11) is zero. This adjusting is necessary for 
using  equation  (6)  in  FTCS method. The two sides of 
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equations (11) can be divided by ρCP and we define the 
below constants for each lamina:
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Now the discretized form of energy equation can 
be written as:
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At this stage, for the first series operations, i.e. o
i,j,kT

an arbitrary temperature for internal nodes and for the 
boundary nodes the boundary conditions must be
assumed.

BOUNDARY CONDITIONS

As it was said before, the boundary conditions for 
the radial orientation includes two requirements; heat 
transfer on outer boundary. Since the heat transfer
coefficient is unknown (can not be prescribed), it may 
be assumed to be proportional to the differences
between the boundaries and ambient temperature, i.e:

( )rq h T T∞= − (14)

where temperature is assumed to be constant in the 
vessel.

This assumption is correct, because we use
laminated cylinder with only constant internal pressure 
and there is not heating source and so on and we 
suppose the gas is in the stable condition.

According to Fig. 1, since temperature in the f 
orientation has an alternately 2π, an accurate boundary 
condition can be found at that point, that is:

0,j,k N,j,kT T= (15)

Fig. 2: A schematic of vessel with it's isolated caps

And because there are two caps at the ends of the 
vessel which includes a small part of total area of
vessel, let us assume that there is no heat transfer at the 
ends, in the other word, we suppose that the caps are 
isolation.

At last in order to solve the problem for middle 
layers,  we  need  six  boundary  conditions  for each 
layer  (two  boundary  conditions  for  each  orientation 
of r, f , z).

Let us assume that for every arbitrary orientation, 
for nth middle layer, the temperature and flux on the 
internal boundary of nth layer equal to these on the 
external boundary of (n-1)th layer and also, temperature 
and flux on the external boundary of nth layer is equal 
to those on the internal boundary of (n+1)th layer. It 
may be thought that these boundary conditions are more 
than needed, but they are imperfect. Temperature and 
flux values are unknowns on the internal layers. By 
considering every two imperfect conditions together a 
perfect condition will be formed. It should be noted 
that, flux values can be obtained via simultaneous 
solving of equation(7).

PROBLEM DEFINITION

The inner radius and the length of cylindrical
section are 151mm and 600mm, respectively. This
pressure vessel is fabricated by intersecting filament 
winding at all sections and hoop filament winding at 
cylindrical section. 

Totally there are eight layers by intersecting
filament winding and two layers with hoop filament 
winding. Three major and convectional stacking
sequences that are important due to mechanical design 
are studied here. The twist angle of fiber, θ, is measured 
due to cylinder axis. These angles are shown in Table 1.

For all the stacking sequences, the layer
thicknesses  are 2.193mm, except the-88 and 88 that are 
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Table 1: Three stacking sequence A, B and C 

Layer's Stacking Stacking Stacking

No. sequence A sequence B sequence C 

1 25.4 25.4 -88.0
2 29.6 -25.4 -53.8

3 53.7 29.6 -53.7

4 53.8 -29.6 -29.6
5 88.0 53.7 -25.4

6 -88.0 -53.7 25.4

7 -53.8 53.8 29.6
8 -53.7 -53.8 53.7

9 -29.6 88.0 53.8

10 -25.4 -88.0 88.0

Fig. 3: Log of residual in terms of number of response 
iterations

2.02 mm. These results are related to carbon epoxy 
composite T300/5208. The uniform internal
temperature of vessel is 350°k and ambient temperature 
is 297°k. This temperature difference is intended for 
obtaining more clear results and it may only occur
under special condition.

Boundary condition on outer surface of vessel is 
supposed as convection. Heat transfer coefficient is one 
of the major parameters in convection. Herein the
effects of these parameters on heat distribution are
checked via using values shown in Table 2. In this 
paper, for all temperature distributions, convection
coefficient is obtained equal to 21 w/m2.°C.

In this problem, convergence is depend on mesh 
size, forward time steps, initial guess, longitudinal and 
transverse conductivity coefficient values, heat
conduction coefficient value and etc. In Fig. 3, you can 
see an example of Log of residual or errors variations in 
terms of the number of response iterations in this 
section.

TEMPERATURE DISTRIBUTIONS IN 
DIFFERENT LAYERS

The Temperature distributions in the layers are
shown in Fig. 4-6 according to number of nodes in the 
each layer. Due to small thickness of layers, the number 
of nodes is a few. In Fig. 7, the temperature distribution 
for each layer for stacking sequence of C is represented 
too.

Fig. 4: Temperature distribution in nodes of each layer
for stacking sequence of A

Fig. 5: Temperature distribution in nodes of each layer 
for stacking sequence of B

Fig. 6: Temperature distribution in nodes of each layer 
for stacking sequence of C
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Fig. 7: Temperature distribution contour in nodes of 
each layer for stacking sequence of C

Fig. 8: Temperature distribution in nodes of each layer 
for stacking sequence of A

Fig. 9: Temperature distribution in nodes of each layer 
for stacking sequence of B

Fig. 10: Temperature distribution in nodes of each layer 
for stacking sequence of C

Fig. 11: Temperature distribution as contour in nodes of 
each layer for stacking sequence of C

Fig. 12: Temperature distribution behavior in vessel's 
layers for stacking sequence of A exposed to 
radiation

Fig. 13: Temperature distribution behavior in vessel's 
layers for stacking sequence of B exposed to 
radiation

If we assume that this vessel is exposed to a 500 
watt radial radiation source that placed in a far distance, 
a new boundary condit ion will be added. In this
configuration we see that the change of temperature 
behavior in more than the half of the vessel that
exposed to the radiation source. It is clear that there is 
temperature    magnitude    at    location   that   radiation 
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Fig. 14: Temperature distribution behavior in vessel's 
layers for stacking sequence of C exposed to 
radiation

Fig. 15: Temperature distribution changes in 1th
vessel's layer in radiation condition

Fig. 16: Temperature distribution changes in 2th
vessels' layer in radiation condition

orientation and normal vector of surface have same 
direction. In Fig. 8-10. You can see the effect of this 
new condition with contour in Fig. 11.

Based on the radiation, the temperature distribution 
behavior in the inner nodes of each layer with the 
tangential direction for the stacking sequences of A, B 
and   C   are  shown  in  Fig.  12-14. As you can see, the 

Fig. 17: Temperature distribution changes in 3th
vessels' layer in radiation condition

Fig. 18: Temperature distribution changes in 4th
vessels' layer in radiation condition

Fig. 19: Temperature distribution changes in 5th
vessels' layer in radiation condition

radiation changes the temperature uniformity in about 
190° up to 350° and cause the relatively thermal shock 
in-10° to 190°. According to our prediction, the
maximum value is occurred in 90° and external layers 
show the high temperature changes. An important note 
is that, various stacking sequences cause no effect on 
temperature distribution and there is a full compatibility 
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Fig. 20: Temperature distribution changes in 6th
vessels' layer in radiation condition

Fig. 21: Temperature distribution changes in 7th
vessels' layer in radiation condition

Fig. 22: Temperature distribution changes in 8th
vessels' layer in radiation condition

between profiles of temperature distributions for three 
stacking sequences.

In order to get the final result, the temperature 
distribution diagrams for each layer of three stacking 
sequences are provided and a random point is enlarged. 
This results are shown in Fig. 15-24.

RESULTS AND CONCLUSION

Using a laminated vessel with optimum stacking 
sequence  is  the  most  important portion in designing a 

Fig. 23: Temperature distribution changes in 9th
vessels' layer in radiation condition

Fig. 24: Temperature distribution changes in 10th
vessels' layer in radiation condition

composite structure and it is important that we know 
stacking sequence affect on the other engineering
parameters. For example, heat transfer and temperature 
distribution in structure layers, are considered among 
these parameters. Figures 3-14 does not show a large 
changes from the effect of stacking sequence on
temperature distribution at each layer. In all figures, it 
was found that different stacking sequences have
negligible difference and don’t follow a certain
procedure. So it is not possible to answer the question 
which stacking sequence has the higher temperature 
distribution profile at about 80° to 100°. 

Generally, we can conclude that stacking sequence 
has no significant effect on the temperature distribution. 
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