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Abstract: Hyperspectral data potentially contain more information than multispectral data because of their 
higher spectral resolution. However, the stochastic data analysis approaches, successfully applied to 
classification of multispectral data, are not as effective as those for hyperspectral data. Various
investigations indicate that the key problem causing poor performance in the stochastic approaches to 
hyperspectral data classification is inaccurate class parameters estimation. It has been found that the 
conventional approaches can be retained if a preprocessing stage is established before feature extraction 
stage in the classification process. This paper, presents a combined preprocessing algorithm which includes
dimensionality reduction followed by class separability improvement. For the dimensionality reduction, the 
Sequential Parametric Projection Pursuit was used because of its special characteristics. For class 
separability improvement, a Lowpass filter was used. Experimental results showed that applying such a 
combination, improves the classification accuracy as compared with the case where either a dimensionally 
reduction or a class separability improvement algorithm is used individually.
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INTRODUCTION

Hyperspectral data potentially contain more
information than multispectral data because of their
higher spectral resolution. However, the stochastic
approaches applied to hyperspectral data analysis do 
not provide as accurate results as when applied to 
multispectral data analysis . This is because stochastic 
approaches lead to inaccurate classification
performance as the dimensionality (i.e. the number of 
spectral bands) increases [1]. In the stochastic
approaches, the characteristics of a class are modelled 
with a set of training samples [2]. Hughes [3] showed 
that if the number of training samples is finite and 
fixed, the accuracy of statistical parameter estimation 
decreases as the dimensionality increases, leading to a 
decline in the classification accuracy. Although
increasing the number of spectral bands potentially
provides more information about class separability, this 
positive effect is diluted by inaccurate parameter
estimation [1]. As a result, if the number of training 
samples is finite and remains constant, the classification 
accuracy first grows and then declines as the number of 
spectral bands increases (Fig. 1). This is often referred 
to as the Hughes phenomenon [3].

In order to increase the accuracy of statistical
parameter estimation, Jimenez et al. [4] and Hsieh et al.
[1] suggested a preprocessing stage before the feature 
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Fig. 1: Conceptual presentation of the hughes
phenomenon (N is the number of samples) [1]

extraction stage in classification of hyperspectral 
image data. Fig. 2 shows the steps of classifying
hyperspectral data.

The preprocessing stage should be designed in a 
way that the classification accuracy increases. In
general, the classification accuracy depends on four 
factors which are class separability, dimensionality,
training sample size and classifier type [5].

To date, various investigations have been carried 
out to increase the classification accuracy using the 
above factors. Hsieh et al. [1] showed that applying a 
lowpass filter increases the separability of image
classes, which in turn leads to an increment in the 
classification accuracy. Jimenez et al. [4] used a
statistical algorithm, so called the Projection Pursuit 
(PP), to reduce the dimensionality of hyperspectral
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Fig. 2: Sequence of analysis step for hyperspectral data classification

image data. Also Vaiphasa et al. [6] used a hyperpectral 
band selector that falls into the category of
dimensionality. For the factor “training sample size”, 
Shahshahani et al. [7] showed that by adding un-labeled
samples to the classifier design process the accuracy of 
the classification can also increase. Finally, Friedman 
[8], Hoffbeck et al. [9] and Bandyopadhyay [10] argued 
that the type of classifier has a reasonable effect on the 
accuracy of the classification.

The objective of this paper is to propose the
combination of the first two factors, i.e. dimensionality 
reduction and increasing class separability, as the two
steps of the preprocessing stage (Fig. 2). For the first 
step a Projection Pursuit (PP) and for the second step a 
LowPass Filter (LPF) algorithm was used. To
demonstrate the applicability of such a combination, the 
effect of each individual factor on the classification 
accuracy was evaluated first. Then, the accuracy of 
combining them on the classification accuracy was 
studied.

The Hughes phenomenon indicates that by
reducing the dimensionality, the class separability
decreases, leading to a decrease in the classification 
accuracy. To mitigate this negative effect, the second 
step in the preprocessing stage in Fig. 2 is to increase 
the class separability in a new lower dimensional space 
resulting from the first step.

The rapid increase with dimensionality in training 
sample size required for density estimation has been 
termed the “curse of dimensionality” by Bellman  [11]
which leads to the Hughes phenomenon in a classifier 
design. The curse of dimensionality for the high
dimensional data analysis using statistical methods has 
been known for decades. Many feature extraction
algorithms have been developed and implemented for 
solving this problem. Some well known and widely 
used algorithms include principal component analysis 
(PCA) [12, 13] discriminant analysis feature extraction 
(DAFE) [14] and decision boundary feature extraction 
(DBFE) [15]. A number of problems associated with 
these algorithms are discussed in Jimenez et al. [4] and 
Landgrebe  [2], the most important of which are the 
computational performance in full dimensionality and 
the Hughes phenomenon. Therefore, in order for a
feature extraction algorithm to have accurate results, 
the dimensionality of the hyperspectral image has
to be reduced. For this, the data from the high
dimensional space (original image bands) are to be

transferred to a lower dimensional space with fewer 
number of bands, where the feature extraction
process is, then, carried out. 

An ideal dimensionality reduction scheme should 
be able to consider the redundancy between the spectral 
bands and to avoid the computations in the high
dimensional space in order to reduce the required
number of training samples and to take advantage of the 
high dimensionality of hyperspectral data  [4]. For this 
purpose, in this paper parametric projection pursuit
[4, 16] was used and implemented because of its  special 
characteristics. Projection Pursuit (PP) projects the 
total number of bands of a hyperspectral image into 
several subspaces, accomplishing the computations of 
parameter estimation in these subspaces [4]. As a result, 
the Hughes phenomenon is expected to be reduced and, 
thus, the classification accuracy to increase. The
method used to increase the class separability is a
lowpass filter in the lower space resulting from the
previous step. 

In the following sections, the PP and the LPF
algorithms used and implemented in this research
are discussed further. The results of tests carried
out to evaluate the performance of each of these
algorithms alone, along with the combined
technique proposed in this paper, are discussed and 
conclusions are made. 

MATERIALS AND METHODS

In this section, the PP algorithm which is used here 
for reducing the dimensionality of hyperspectral image 
data is described. As will be shown, the PP algorithm 
has different approaches, the best of which is defined. 
In addition, the LPF and its effect on the class
separability is discussed as well. 

Projection pursuit and dimensionality reduction:
Friedman and Tukey [17] introduced the term
projection pursuit for a technique for exploratory
analysis of multivariate data sets. The method seeks 
out “interesting” linear projection of the multivariate 
data onto a lower dimensional subspace  [16]. For the 
first time, projection pursuit was used by Jimenez et al.
[4] in order to reduce the dimensionality of
hyperspectral data and is briefly described in the
following lines adapted mainly from Jimenez et al. [4]
and Lin et al. [18].

Hyperspectral
Data

Preprocessing
Dimensionality Reduction

Class Separability Improvement
Feature Extraction Classification
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Fig. 3: Block diagram for projection pursuit algorithm

The hyperspectral data set for each class forms a 
D×N matrix X, where D denotes the spectral
dimensionality; N is the number of pixels and X
represents the data set in the original space. If A is a 
transform matrix of dimension D×M, where M is the 
number of projections then the transformation
procedure is done by matrix A as:

Y = ATX (1)

where Y is an M×N matrix, which is the orthogonal
projection of the hyperspectral data onto a new
M-dimensional coordinate system. The axes of the new 
coordinate system lie in the direction of a linear
combination of the original coordinate, D. In this case; 
the columns of A are required to be mutually
orthogonal. If H is a function measuring the efficiency 
of a sample in the projected subspace, then the function
H (ATX) is referred to as the projection index; and 
projection pursuit attempts to find the transformation
matrix, A, which produces a local optima of H (ATX)
by numerical optimization. Once the optimized
transform matrix A is obtained, the original data can be 
projected onto a lower dimensional space. The
transform matrix, A, reduces the dimensionality of
the original data from D to M. As a result, the
transformation reduces the required number of 
training samples and thus mitigates the Hughes
phenomenon for an accurate classification to overcome 
the curse of dimensionality. The steps and details of the 
projection pursuit algorithm are shown in Fig. 3.

As can be seen in Fig. 3, the optimization of
projection index is one of the steps in the projection 
pursuit dimensionality reduction algorithm. The
main issue in the projection pursuit algorithm is
the definition of the projection index [4]. Such a

projection index needs to be defined such that by its 
optimization within the PP algorithm, the “interesting” 
projections can be selected [4, 16]. What “interesting” 
means depends on what function or projection
index one uses.

In remote sensing data analysis, “interesting”
would certainly be a projection which separates data 
into different meaningful clusters which are exhaustive, 
separable and of information value [4, 19].

To date, a number of non-parametric projection
indices have been proposed. Among these are the
Friedman-Tukey index [16], negative Shannon entropy 
[12] and the Moment index suggested by [20]. These
nonparametric projection indices require a lot of
training samples in order to estimate the statistical
parameters in their algorithms [4]. Therefore, to solve 
this problem, researchers have proposed some
parametric indices. Parametric indices use a prior
information in the form of training samples to carry out 
their supervised calculations [4]. Among them are the 
Divergence distance [19], Fisher criterion and
Bhattacharyya distance [4].

A major problem with Divergence and Fisher
indices is that they do not have a linear, one to one 
relationship with classification accuracy [2]. This is the 
main reason why these indices were not used as
projection indices in this work; instead the
Bhattacharyya distance was used as the projection 
index because of its special characteristics.

The Bhattacharyya distance is a special case of 
Chernoff distance [2, 14]defined as: 

i jx
B ln P(x | )P(x | )dx= − ω ω∫ (2)

Where P(x|ωi) and P(x|ωj) are the values of ith and 
jth class probability distribution at the position x. When 
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the distribution function of classes is normal, this
distance is computed by [2, 14]:

1 i j
i jT

ij i j i j
i j

1 [ ]
1 1 2B (M M ) (M M ) Ln
8 2 2 | || |

− Σ + Σ
Σ + Σ 

= − − + 
Σ Σ 

(3)

where Mi and Mj are the means of classes i and j  and Σi

and Σj are the covariance matrices of those classes. Bij is
the Bhattacharyya distance between the two classes. In 
case the number of classes is more than two, the
minimum Bhattacharyya distance among the classes 
could be used.

The Bhattacharyya distance fulfills the
requirements of a projection index to be “interesting” 
due to some of its inherent properties. Unlike the Fisher 
and Divergence indices, Bhattacharyya distance has a 
nearly linear, nearly one-to-one relationship with
classification accuracy [2]. Also it estimates the
parameters of each pair of classes separately; thus it is 
class specific. The other advantage of Bhattacharyya 
distance is that it is constructed from two terms, due to 
the mean and covariance of classes. This illustrates, for 
example, that two classes can have the same mean 
value and still be quite separable, in which case the first 
term is zero [21]. On the basis of these arguments and 
in view of empirical results [4], in the projection pursuit 
algorithm the Bhattacharyya distance is preferred to the 
Fisher criterion and Divergence index as a projection 
index in this research. Because of the use of parametric 
index (Bhattacharyya distance) in PP algorithm, it is 
called parametric projection pursuit (PPP).

In the PPP algorithm, the matrix A is used to 
project the data set X, from the original dimension onto 
a lower dimensional subspace, Y as Y = ATX. In the 
matrix A, the number of columns corresponds to the 
number of groups into which the entire features in the 
original space are projected. The columns of matrix A
are orthogonal to each other because the PPP seeks to 
find an orthogonal basis onto which the data are
projected. Therefore, the entries of each column are 
zero except the position of the corresponding group of 
adjacent bands. The form of matrix A is shown in 
equation (4) [18].

(4)

Each group of adjacent bands in equation (4) will 
be initialized with a bank of estimated guesses for the
ai. If the initial number of groups is assumed to be 
given, then the construction of matrix A is to choose 
one estimated guess ai from the corresponding vector 
bank. There are four initial guesses in each bank. The 
first and second are based on the assumption that the 
mean and covariance difference between class 1 and 
class 2 is respectively dominant in the Bhattacharyya 
distance. The third initial guess is a vector that averages 
all the features in each group of adjacent bands in the 
original space. The fourth initial guess for the ai is a 
vector that selects only one feature in the ith group.

As mentioned above the main goal of PP is the 
optimization of the projection index in order to find the 
“interesting” projections. In this respect, Jimenez et al.
[4] proposed two techniques for the optimization of the
projection index which are parallel parametric
projection pursuit (PPPP) and sequential parametric
projection pursuit (SPPP). In PPPP, for each group of 
adjacent bands, the projection index is computed
separately, by optimization of which a feature is
extracted for each group. Jimenez at al. [4]
demonstrated that the accuracy of PPPP is lower than 
that of SPPP, as the projection indices are computed 
independently in each group without incorporating
other groups. Therefore, they proposed SPPP, in which 
the linear combinations of adjacent bands are calculated 
in a way that optimizes the global projection index in 
the projected subspace [22]. The global projection 
index is the Bhattacharyya distance of the entire
projected data set instead of the Bhattacharyya distance 
of each group of adjacent bands [18].

In order to estimate the number of groups and the 
number of adjacent bands in each group, a top-down
binary decision tree algorithm developed by Jimenez
et al. [4] was used in this research. This algorithm, 
starts by considering the total number of initial bands as 
a group. It then continues by using a series of binary 
decisions and ends when it reaches the maximum
number of features established by the analyst.
Alternatively, the process stops when the increasing 
rate of Bhattacharyya distance reaches a certain
threshold.

The whole process of the SPPP algorithm can be 
summarized as follows. First, the total number of
spectral bands in the original data space is divided into 
G groups of adjacent bands; G is the initial number of 
groups which depends on the minimum number of
training samples in each class. Then the transformation 
matrix A, with characteristics described earlier, with G
columns is created. Now the optimization of A is
started with the first group of adjacent bands. That is, to 
replace non-zero elements in the first column of A with 



World Appl. Sci. J., 3 (5): 785-796, 2008

789

Fig. 4: Processes of the SPPP algorithm

the vector that maximizes the Bhattacharyya distance, 
while holding the remaining columns of A unchanged. 
The choices for the vector are the four groups of vectors 
described earlier. This procedure is repeated for each of 
the remaining columns of A. Again, the optimization of 
A is repeated until the increase of Bhattacharyya
distance is either below a preset threshold or no longer 
increases. In this step, by applying the top-down
decision tree, the number of groups (G) increases by 
one. The procedure is repeated, this time by new
created matrix A with G+1 columns. These steps are 
repeated until the number of columns of A becomes 
equal to 20. Figure 4 shows the procedure of SPPP 
algorithm in brief.

Lowpass filter and class separability:  Class
separability is invariant under any nonsingular
transformation [14]. However, any singular
transformation maps X onto a lower dimensional Y
(e.g. projection pursuit), losing some of the
classification information [14]. Moreover, the class

separability decreases when the dimensionality
is reduced by PP. As a result a technique to mitigate 
this negative dimensionality reduction effect
is required. Increasing the class separability
compensates for the loss of classification
information caused by the PP dimensionality
reduction algorithm.

In general, the lowpass filter is used to smooth 
the image in the field of image processing. However, 
in this paper, as proposed by Hsieh et al. [1], this 
filter is used to increase class separability. This 
filter is further described based mainly on the text 
adapted from Hsieh et al. [1].

The lowpass filter is a spatial averaging operator 
[23]. Assuming X(i,j) is the value of a pixel whose 
spatial coordinates are i and j, the new value after 
applying a lowpass filter with a window size of w at 
spatial location (i,j), is Y where [25]:

kl
(k,l) W

Y(i,j) c X(i k,j l)
∈

= + +∑ (5)
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In this equation, ckl is the average of the weights 
within the window. To simplify the implementation
process, ckl  is considered to be equal for all weights 
[1]; therefore ckl =1/w.

If the samples X(i ??k , j ??l) with (k ,l)?∈W within the 
window are independent and identically distributed
random vectors with the normal density N(MX, ΣX),
then the lowpass filtered sample Y obtained from
equation (5) would possess a normal density N(MY, ΣY)
where [25] :

Y X Y X

1
M M

w
= =∑ ∑ (6)

As pointed out earlier, the Bhattacharyya distance 
is used as a measure of class separability because of 
its special characteristics. From equation (3) it is
observed that the Bhattacharyya distance between
two classes, 1 and 2, has been constructed from two 
terms which are [1]:

X 1 X 2XB B B= + (7)

T 11X 2 X
1X 1 X 2 X 1X 2 X

1B ( M M ) [ ] (M M )
8 2

−+
= − −

∑ ∑

1 X 2 X

2 X

1 X 2 X

1
| [ ] |1 2B L n

2 | | | |

+
=

∑ ∑
∑ ∑

(8)

The first and the second terms in equation (7)
represent the class separability due to the mean and 
covariance differences respectively. By applying a
lowpass filter to the image, the Bhattacharyya distance 
from equation (8) becomes [1]:

Y 1Y 2Y 1X 2XB B B wB B= + = + (9)

where the first term, B1Y = wB1X, indicates that the 
class separability increases by w times if M1X ≠ M2X
due to the mean difference. The second term B2Y = B2X
shows that the class separability is not affected by the 
lowpass filter due to the covariance difference. 

In this paper, in order to show the effect of 
lowpass filter on class separability a TM sensor image 
(Fig. 5) from the Environment for Visualizing Images 
(ENVI 4.2) software samples was used. For this, the 
two bands of the feature space of the image were
plotted before and after applying the lowpass filter with 
the window size 3 (Fig. 6).

As can be seen in Fig. 6, after applying the lowpass 
filter on the image, the variation of each class is 
reduced; consequently, the gap between classes in the 

Fig. 5: TM sensor image in bands 1 as red, 3 as green 
and 5 as blue

a) Before applying the lowpass filter 

(b) After applying the lowpass filter

Fig. 6: Scatter plot of three classes before and after 
applying the lowpass filter for a TM sensor 
image
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Table 1: Number of training and test samples for each class

Training samples Test samples
Class name No. of pixels No. of pixels

Grass/pasture-mowed Wood 373 2468
Soybeans no-till 239 1294
Corn no-till 197 968
Corn 208 1434
Soybeans-clean 197 714
Corn-min 205 614
Grass/pasture 220 836
Grass/trees 197 497
Hay-windrowed 217 747

207 489

Total 2260 10061

Fig. 7: AVIRIS Hyperspectral test data

feature space is widened, leading to higher class
separability.

A drawback of applying a lowpass filter on the 
image is its spectral mixing effect. In other words, by 
applying the lowpass filter the small classes become 
mixed as the spatial resolution is lost. Therefore, the 
lowpass filter is to be used when the image consists 
mainly of homogenous large classes.

Hyperspectral test data: The hyperspectral data set, 
used in this research is the one used by Landgrebe and 
his group [1, 2, 4] for several years and it was available
on the internet. The data had been obtained in June 
1992 and was a segment of Airborne Visible/Infrared 
Imaging Spectrometer (AVIRIS) data of north-west
Indiana’s Indian Pine test site. Figure 7 shows this
portion of AVIRIS image in bands 10 as red, 60 as
green and 135 as blue. The data set consists of

145× 145 pixels of the AVIRIS image in 195 spectral 
bands at 10 nm interval in the spectral region from 
0.40 to 2.45 µm at a spatial resolution of 20 m and 
covering an agricultural area. The AVIRIS sensor
collects data in 224 spectral bands. Four of the 224 
AVIRIS bands contain no data or zero values. From 
the 220 spectral bands, 195 were used, discarding the 
water absorption bands.

As mentioned above, the image was obtained in 
June, by which time most of the crops in the
agricultural portion of the test site had not reached their 
maximum ground cover. This in turn, leads to
inaccurate classification result as the image includes not 
only crops but also variations in the soil type, soil 
moisture and previous crop residuals [2].

In the experiment, ten classes were defined: corn, 
corn no-till, soybean-clean, soybean no-till, wood,
grass/pasture-mowed, corn-min, grass/pasture,
grass/trees and hay-windrowed. No-till, min and clean 
are three levels of tillage indicating a great, moderate 
and small amount of residue of previous year’s crops, 
respectively. The total number of training samples was 
2260. Table 1 shows the number of training samples 
and test samples for each class.

RESULTS AND DISCUSSION

The aim of the experiments discussed in this
section was to evaluate how the preprocessing stage 
(Fig. 2) increases the classification accuracy. As the 
first step of preprocessing (i.e. the dimensionality
reduction) the data were projected from the original 
dimension to a lower dimensional subspace by the
SPPP algorithm. Then a lowpass filter with a window 
size 3 was applied to the image in order to increase the 
class separability. To evaluate the class separability the 
Bhattacharyya distance was used. Having performed 
the preprocessing, two different feature extraction
techniques were used to compare the results. These are 
DAFE [14] and DBFE [15]. Because many researchers 
[1, 2, 4] have used these techniques as supervised 
feature extraction in their research, they were adopted 
here in order for the results of this research to be
comparable to those performed by the others. Once the 
features were extracted, the data were classified by the 
maximum likelihood (ML) [14] classifier. The ML
classifier was used because it is the most conventional 
parametric classifier which uses first and second order 
statistics in its algorithm. Finally, a field test was done 
to evaluate the classification accuracy of different
methods; the overall accuracy vs., the number of
features in each method were plotted. In the following, 
the results of the mentioned tests are presented and 
discussed.
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Table 2: The partition group of adjacent bands for different numbers of features and their corresponding Minimum and incremental percentage 
of Bhattacharyya distance in SPPP algorithm

Number of Numbers of adjacent bands per feature Minimum Bhattacharyya Increment percentage
features and listed in increasing order of wavelength Distance (MBD) of MBD (∆BIi)

1 195 0.0188
5 12 12 24 49 98 0.5069 45%
10 12 12 6 6 6 6 49 49 24 25 1.0290 6%
15 12 6 6 6 6 6 6 49 24 25 12 12 6 6 13 1.3876 8%
20 12 6 6 6 6 6 3 3 24 25 12 12 6 6 13 12 12 6 6 13 1.7644 3%

                    Spectral Signature for 10 Features          Spectral Signature for 15 Features

Spectral Signature for 20 Features Original Spectral Signature (195 bands)

Fig. 8: Spectral signature in high dimension (195 bands) and in low dimension (10, 15and 20 features selected by 
decision tree in SPPP algorithm) for Corn class

SPPP for dimensionality reduction: In this section, 
the results of applying the SPPP algorithm on the
hyperspectral test data to reduce its dimensionality are 
presented. The algorithm projects every group of
adjacent bands into one feature and the final number of 
features is the dimensionality of the projected subspace. 
As discussed earlier, the top-down decision tree was 
used to estimate the number of adjacent bands in each 
group. Table 2 shows the partition groups of adjacent 
bands combined to create features and their
corresponding minimum and incremental percentage
of Bhattacharyya distance for different set of features 
(i.e.1, 5, 10, 15 and 20). In Table 2, the incremental 
percentage of Minimum Bhattacharyya Distance
(MBD) for each set of features is calculated with
respect to its previous set. For example the 45%, is the 
incremental percentage of MBD for the case of 5
features compared to that of 4 features. As can be seen, 
in this table when the number of features increases, the 
corresponding MBD increases as well. The maximum
value of MBD for up to 20 features is 1.7644 and it 
occurs in the 20 features case. Also, the incremental 

percentage of MBD decreases with a rise in the number 
of features. This increment is about 45% and 3% for 5 
and 20 features, respectively. This means the increment 
is very low when the number of features is close to 20. 
Thus the class separability does not increase
significantly for more than 20 features. This is the
reason for the algorithm stopping when the number
of features is 20 (Table 2).

An example of actual signature of one class (Corn) 
for 195 bands of the image and the different set of 
features selected by the top-down decision tree in 
the SPPP algorithm is shown in Fig. 8. As the 
number of features increases, the shape of the spectral 
signature becomes more similar to that of the 
original one. It could be explained that, by increasing 
the number of features, the number of adjacent bands 
which are combined to create one feature is reduced; 
consequently more important information of the
class is maintained. Therefore, the shape of the
spectral signature in the projected subspace
becomes more similar to that of the original one 
within the original space.
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Fig. 9: Average Bhattacharyya distance among the
classes for DAFE, DBFE, SPPP, LPF+DAFE,
LPF+DBFE and SPPP+LPF

Impact of SPPP and LPF on the class separability:
Figure 9 shows the average Bhattacharyya distance as a 
measure of separability between the 10 classes defined 
for the test image for different algorithms in the 20 
features space. The Bhattacharyya distance was the 
average of 45 Bhattacharyya distances where 45 refers 
to the number of 2 class combinations within the 10 
classes. In Fig. 9, the DAFE and DBFE are the results 
of projection from 195 bands to 20 features by
discriminant analysis and decision boundary feature
extraction respectively. Likewise, LPF+DAFE and
LPF+DBFE are the results of the lowpass filter applied 
to the image followed by the DAFE and DBFE
algorithms, to extract 20 features from 195 original
bands. SPPP is the result of reducing the 195 bands to 
20 features by SPPP algorithm while SPPP+LPF is the 
result of dimensionality reduction using SPPP followed 
by applying the lowpass filter on the image. The
window size of the lowpass filter is 3. 

As can be seen in Fig. 9, applying the lowpass 
filter to the image increases the average Bhattacharyya 
distance in the case of DAFE from 8.3 (BX in Eq.7)
to 17.7 (BY  in Eq.9) and in the case of DBFE from 17.7 
to 21.5. The increase is due to the application of the 
lowpass filter on the image making the first term in 
Bhattacharyya distance increase (Eq.9). Also, the 
SPPP algorithm preserves more information, in 
terms of average Bhattacharyya distance, than DAFE 
and DBFE. This is because DAFE and DBFE do their 
computations at the original dimensionality (i.e.195
bands) where the Hughes phenomenon takes place. 
Moreover, in order to calculate the features, DAFE
maximizes the Fisher criterion rather than the
Bhattacharyya distance. Figure 9 indicates that the

maximum average Bhattacharyya distance (32.4) is
achieved when the combination of the SPPP and LPF 
is used. 

Impact of preprocessing stage on classification
accuracy: In this part of the experiment, the impact of 
SPPP and LPF as the two steps of preprocessing block 
(Fig. 2) on the classification accuracy is evaluated. For 
this, two experiments were accomplished: one by using 
DAFE and the other by DBFE. In each experiment, four 
data sets were used to do the preprocessing and feature 
extraction processes. The data sets were, then, classified 
by the ML classifier. The first data set was prepared by 
direct application of DAFE and DBFE on the 195
original bands to reach 20 features (DAFE in Fig. 10 
and DBFE in Fig. 11). For preparing the second data 
set, first the lowpass filter was applied on the image and 
then DAFE and DBFE algorithms were used to extract 
20 features (LPF +DAFE in Fig. 10 and LPF+DBFE in 
Fig. 11). The second data set was used to evaluate the 
effect of the lowpass filter on the classification
accuracy. For preparing the third data set, first the data 
were projected from the original 195 bands to 20
features by SPPP method; then DAFE and DBFE were 
used to extract different number of features among 
these 20 features (SPPP +DAFE in Fig. 10 and
SPPP+DBFE in Fig. 11). In fact, the third data set was 
used to evaluate the impact of the first step of the 
preprocessing block (SPPP) on the classification
accuracy.

The fourth data set is similar to the third one. The 
difference is that in the former, the lowpass filter was 
applied on the image after the application of SPPP.
Then, DAFE and DBFE were used to extract different 
numbers of features (SPPP+LPF+DAFE in Fig. 10 
and SPPP+LPF+DBFE in Fig. 11). In fact the fourth 
data set was used to evaluate the impact of the first as 
well as the second step of the preprocessing block 
(SPPP and LPF). 

Figure 10 and 11 show the test field ML
classification accuracy versus the number of features 
(1 to 20) for the four data sets in each experiment. 
Figure 10 shows that the classification accuracy is 
saturated after 9 features in DAFE. The reason is that 
discriminant analysis feature extraction algorithm
extracts only (L -1) features where L (9 in this case) is 
the number of classes [14, 24]. Therefore, the
maximum classification accuracy occured in 9 features 
and is 76.9%. The rest of features in DAFE method 
were selected randomly. This means, the classification 
accuracy does not increase after 9 features. 

By comparing Fig.10 and 11 it can be seen that the 
classification accuracy is greater in DAFE than that in 
DBFE in all subsets of features. Since the DBFE
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Fig. 10: Test field classification accuracy for different subset of features and for different methods: DAFE,
SPPP+DAFE, LPF+DAFE and SPPP+LPF+DAFE

Fig. 11: Test field classification accuracy for different subset of features and for different methods: DBFE,
LPF+DBFE, SPPP+DBFE and SPPP+LPF+DBFE
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algorithm depends on how well the training samples 
approximate the decision boundaries, the required
number of training samples could be much more for the 
high dimensional data. Here, only 2260 samples were 
used (Table 1) and, as expected, the classification
accuracy after DBFE is weaker than that of DAFE. It is 
also observed, that the overall classification accuracy is 
increased when the SPPP is applied to the data. This 
increment happens for almost all subsets of features
(especially for more than 11 features) in Fig. 10 and all 
subset of features in Fig. 11. The reason is that unlike 
the DAFE (or DBFE) that does the computations at full 
dimensionality (195 bands), the SPPP algorithm does 
the computations at the lower dimensional space. This 
allows the approach to deal better with Hughes
phenomenon and high dimensional space
characteristics, preserving more information. The
increment of classification accuracy for 20 features is 
around 5% for SPPP+DAFE as compared with DAFE 
and 33% for SPPP+DBFE as compared with DBFE
data sets. Also, the classification accuracy improves 
when the lowpass filter is applied on the image before 
using the feature extraction algorithms. In the case
where the number of features is 20, the overall
classification accuracy is 76.3% before and 84.1% after 
applying LPF for DAFE whereas it was 60.9% before 
and 70.9% after applying LPF for DBFE. As pointed 
out earlier, the lowpass filter makes the Bhattacharyya 
distance increase, leading to an improvement to the 
classification accuracy. 

Although Fig. 9 shows that the performance of 
DBFE is better than that of DAFE in terms of average 
Bhattacharyya distance, Fig.10 and 11 indicate that 
DAFE performs better than DBFE in terms of
classification accuracy. The reason is that, the values 
plotted in Fig. 9 are the averages of 45 numbers of 
Bhattacharyya distances among the 10 classes and do 
not show the class separability between each individual 
class pair. Another reason is that, the DBFE is more 
sensitive to the number of training samples rather than 
the separability between the classes.

Also from Fig. 9 it is obvious that LPF contribute 
significantly over SPPP for average Bhattacharyya
distance while as shown in Fig.11 the most contribution 
comes from SPPP for increasing the classification
accuracy. This could be explained by the fact that 
DBFE needs many more training samples to
approximate the decision boundaries in its algorithm 
for high dimensional data. In addition, as mentioned 
earlier, it is more sensitive to the number of training 
samples (2260 training samples i.e. 10% of total
samples in this work) than the separability between
the classes. 

Fig. 10 and 11 show that the maximum
classification accuracy happens with 20 features and is 
86.3% for both feature extraction algorithm, i.e.
SPPP+LPF+DAFE and SPPP+LPF+DBFE. All these
experiments suggest that the preprocessing of
hyperspectral image data by the combination of SPPP 
and LPF, as proposed in this paper, gives best results in 
terms of classification accuracy.

CONCLUSION

This paper reported on the development of a
preprocessing stage used before feature extraction stage 
in the classification of hyperspectral images data. The 
preprocessing stage includes a dimensionality reduction 
by SPPP and then applying a LPF on hyperspectral 
images data to increase the class separability.

The SPPP algorithm reduces the dimensionality by 
projecting the total number of bands into several
subsets of features, doing the computations for each 
subset separately. This allows the approach to deal 
better with the Hughes phenomenon and the
hyperspectral data characteristics, preserving more
information. However, after the application of SPPP,
the class separability decreases. This negative effect can 
be mitigated by application of LPF which increases the 
Bhattacharyya distance as a measure of class
separability. As a consequence, the classification
accuracy increases. Although class separability
increases by increasing the size of the lowpass filter, 
small classes might be lost, because the spatial
resolution is lost. Therefore, the size of the window 
must be selected with respect to the smallest class
in the image.

The results of this research indicate that, although 
the application of SPPP and LPF before feature
extraction stage increases the classification accuracy 
individually, the combination of SPPP and LPF, as the 
two steps of preprocessing stage results a higher
accuracy in the classification.
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