
World Applied Sciences Journal 3 (4): 565-576, 2008
ISSN 1818-4952
© IDOSI Publications, 2008

Corresponding Author: Dr. H. Motameni, Department of Computer engineering, Islamic Azad University, Sari Branch, Iran
565

Analysis Software with an Object-Oriented Petri Net Model

1H. Motameni, 2A. Movaghar, 3B. Shirazi, 3M. Aminzadeh and 4H. Samadi

1 Department of Computer Engineering, Islamic Azad University, Sari Branch, Iran
2Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

3Department of Computer Engineering, University of Science and Technology of Mazandaran, Babol, Iran
4Research office, Islamic Azad University, Sari Branch, Iran

Abstract: Petri net is used widely to analyze and model various systems formally. Recently, Many Petri
nets mania devote their efforts to enhancing and extending the expressive Power of Petri nets. One such
effort is to extend Petri nets with object-oriented concepts. An object-oriented paradigm provides excellent
concepts to model real-world problems. Object-oriented concepts allow us to build software systems easily,
intuitively and Naturally. Although several high-level Petri nets with the concept of objects are suggested,
These nets do not fully support the object-oriented concepts. Object Oriented Methodology lacks the rigor
to verify formal validate the designed system. Petri Nets provide formal graphical representation,
incorporate concurrency and parallelism. In Colored Petri Nets (CPNs), Objects and object attributes can be
modeled with data structures. The hierarchical structure of (CPNs) is useful in representing Class
Inheritance and to describe dynamics of objects. To check the correctness of the designed system, there is a
need to integrate Object Oriented techniques at design level and use of (CPNs) at the Verification and
Validation level in software system development. This paper presents a technique to transform an Object
Oriented Design (OOD) into Hierarchical (CPNs) model with Object Oriented Petri Nets Model (OOPNM)
approach.

Key word: OOPNM • class • object • inheritance • encapsulation

INTRODUCTION

The development of a software system begins with
two main activities: requirements analysis and system
modeling. Requirements analysis serves two purposes;
to throughly understand the problem and to reduce
potential errors caused by ambiguous requirements. The
purpose of system modeling is to depict the overall
structure of the system by decomposing it into its
logical components. Many researchers have focused
their interests on the development of techniques to
support these two activities [1]. There are two ways to
achieve the goals of those two activities. One is to
formally specify and analyze systems and the other is to
naturally describe and model systems. When
specifying, modeling and analyzing the behavior of a
critical and complex system, we choose a language
which can formally depict the properties of that system.
Formal languages support us in describing system
properties clearly, exactly and in detail. In particular,
Petri net is the most widely used in various application
domains because of its simplicity and exibility in
depicting dynamic system behaviors and its strong
expressive and analytic power of system behaviors.
Despite the powerful capability of formal methods,

designers are still likely to recognize the shortage of
formal methods when analyzing and modeling systems
of various domains. Thus, many Petri net researchers
have devoted their efforts to enhancing and extending
the theory and techniques of Petri nets [2-4] including
high-level Petri nets such as (CPNs) [5,6].

The concepts of object-oriented paradigm such as
encapsulation, inheritance, etc., have been widely used
in the system modeling because they allow us to
describe systems easily, intuitively and naturally [5,6].
Designers who are familiar with formal methods have
come to understand the usefulness of the object-
oriented concepts. Along with this trend, object-
oriented formal methods have also become of particular
interest to researchers in recent years and many experts
have suggested object-oriented formal methods such as
object Petri nets (OPN), VDM++, Object-Z [6], etc.
Among these studies, research on OPN formalism
has been actively studied to extend Petri nets
formalism to OPN such as OBJSA [7], COOPN/2 [8]
and LOOPN++ [9].

Although the results of such studies have shown
promise, these nets do not support fully all the major
concepts of object-oriented paradigm. Object Oriented
Methodology is an establis hed techniques for structure

World Appl. Sci. J., 3 (4): 565-576, 2008

566

software design.Object Orientedness supports
Inheritance, Polymorphism. Object Oriented
methodology is useful in order to design software
comprehensible, maintainable and flexible. However,
Objct Orientedness lacks analysis and verification
methods of designed systems. Petri Nets (PN) [9]
are useful in describing and information systems that
are characterized as being concurrent, asynchronous,
distributed [8,9], parallel, nondeterministic and/or
stochastic. The graphical representation, simplicity and
executable nasture of Petri Nets model make Petri Nets
suitable for simulation, rapid prototyping and
verification of systems. There is a need to combine the
Object Orientation with Petri Nets to get the advantages
of both approaches. In this paper are presenting an
approach of (OOPNM) that takes advantage of
both Object Orientedness (OO) and Petri Nets
methodologies by using Object Orientedness at the
design stage and Petri Nets at Verification and
Validation stage. (OOPNM) is based on the
combination of (OOD) [10] and Petri Nets (PN).
(OOPNM) uses the existing tools that support both
methodologies. We can design a system in Object
Oriented fashion using Unified Modeling Language
(UML) [9] and then we can transform this design in
into (CPNs) model using CPN tools [10].

OBJECT ORIENTED PETRI NET
MODEL (OOPNM)

The presented model is a combination of object
oriented and CPN. In this model we proposed a CPN
that support all specifications of an object oriented
model such as:

Class, Objcet, encapsulation, inheritance. OOD
defines the hierarchy of classes and object co-
operations and then Petri Nets are used to represent
those classes and object interaction. This integration
will result in a Petri Nets inside Object construct[18].
The use of Petri Nets model will allow us to verify the
system before its implementation.In these models new
notations are used rather than existed notations in CPN
model. The notations illustrate in Table 1:

More details about each of those notations are
explained in part 3.

OOPNM structure: Regarding to the former notations
and some notations like place, transition, arc the
following structure could be presented for the proposed
model:

The OOPNM structure is a 7-tuple C = (P, T, OB,
E, IN, I, O):
P: Finite set of places (P = {p1, p2, …, pn}),
T: Finite set of transitions (T = {t1, t2, …, tn}),

P and T: Disjoint (P n T = Ø)
OB: Finite set of object (OB = {ob1, ob2, …, obn}),
E Finite set of encapsulation (E = {e1, e2, …, en}),
IN: Finite set of inheritance (IN = {in1, in2, …, inn}),
I: Input function:
O: Output function:

The input and output functions in general are
T→Pn by as soon as creation of notations as OB, E, IN
it may change. Those changes are in the following 4
forms. We discuss these 4 forms for class notation, for
other three notations it is the same [10-12].

Input/Output are places for class: The input to class
is input place. so there is an input transition within
class, which will transform the data and will put the
data in an output place as in Fig. 1.

I(t1) = {p1} O(t1) = {p2}
I(t2) = {p1} O(t2) = {p3}
 I(ob1) = {p1} O(ob1) = {p4}
I(t3) = {p2} O(t3) = {p4}
I(t4) = {p3} O(t4) = {p4}

public class class1{
public void t1(){

p2=”1”;
 p1=”0”;

 }
Public void t2(){

P3= “1”;
P1 = “0”;
}

public void t3(){
p4 = “1”;
p2 =”0”;
}

Table 1: Notations illustrate by their properties

condition

To show the encapsulation To show the class To show the object To show the inheritance
specification specification specification specification

World Appl. Sci. J., 3 (4): 565-576, 2008

567

p3p2

p4

t1 t2

t3 t4

p4

ob1

Object from class 1

class1

p1p1

Fig. 1: A class and its object when I/O are places

Public void t4(){
P4 = ”1”;
P3 = “0”;
}

}

class1 ob1 = new class1();
 if (p1=”1”) {

ob1.t1();
ob1.t2();

}
 if (p2 = “1”) {

ob1.t3();
}
 if (p3 = “1”){

ob1.t4();
 }

The input to class is an input place. So, class will
be explored to transition or transitions depending on the
functionality of class. These transitions are input
transitions within class. These transitions are then
explored to model the functionality performed by class
as represented in Fig. 1 and the output will be returned
to the output place that is connected to class by output
arc. The expansion of transitions inside class will
depend on the type of functions it performs.

In Fig. 1, the arrows to transform class to the
corresponding Petri Net model are shown in both
directions to represent that we can refine class to get the
Petri Nets models or we can abstract the Petri Nets
model to have class constructs.

Input from a place and output to a transition for
class: Here, there is a transition or transitions within
class that will process on this input, as shown in Fig. 2.
This processed data will be stored in a place or places
inside class, which is connected to the transition outside
the class. Petri Net model shown within the dotted
line represents the various methods accepted by class.

p1

p3p2

t1 t2

t3 t4

p1

ob2

Object from class2

class2

p5p4

t5

t5

Fig. 2: A class and its object when Input from a place
and output to a transition

Again, the arrows to transform class to Petri Nets model
are shown in both directions, meaning expansion of
class and also abstraction of Petri Nets model to class is
possible [12,13].

I(t1) = {p1} o(t1) = {p2}
I(t2) = {p1} o(t2) = {p3}
 I(ob2) = {p1} o(ob2)= {t5}
I(t3)= {p2} o(t3) = {p4}
I(t4) = {p3} o(t4) = {p5}
I(t5) = {p4,p5}

 public class class2 {
 public void t1(){

 p2=”1”
 p1=”0”;

}
 public void t2(){

P3=”1”;
P1=”0”;

}
public void t3(){

p4=”1”;
p2=”0”;

}
public void t4(){

P5=”1”;
P3=”0”;

}
public void t5(){

send out p4 and p5;
}

}

 class2 ob2= new class2();
 if(p1=”1”){

 ob2.t1();
 ob2.t2();

}

World Appl. Sci. J., 3 (4): 565-576, 2008

568

p2p1

t2 t3ob3

Object from class3
class3

p4p3

t1

p5

t4 t5p5

t1

Fig. 3: A class and its object input from a transition and
output to a place

 if(p2=”1”){
 ob2.t3();

 }
 if(p3=”1”){

 ob2.t4();
 }
 if(p1=”1”&& p5=”1”){

 ob2.t5();
 }

Input from a transition and output to a place for
class: Here, input to class is from a transition. So, there
is a place or places inside class to store the data. Later,
this data will be processed inside the class, depending
on the type of data that can be mo0deled as shown in
Fig. 3. The output from class goes to place. Therefore,
there is a transition inside class, which is connected to
the output place. Again, the transformation from class
to Petri Nets model is shown in both directions, as it is
possible in both ways.

I(t2) = {p1} o(t1) = {p1,p2}
I(t3) = {p2} o(t2) = {p3}
 I(ob3) = {t1} o(ob3) = {p5}
I(t4) = {p3} o(t3) = {p4}
I(t5) = {p4} o(t4) = {p5}
 o(t5) = {p6}

 public class class3{
public void t1(){

p1=”1”;
p2 =”1”;

}
public void t2(){

p3=”1”;
p1 =”0”;

}
public void t3(){

p4=”1”;

p2 =”0”;
}
public void t4(){

p5=”1”;
p3 =”0”;

}
public void t5(){
p5=”1”;
p4 =”0”;
}

}

class3 ob3 = new class3();
ob3.t1();

if(p1=”1”){
ob3.t2();

}
 if(p2=”1”){

ob3.t3();
 }
 if(p3 = “1”){

ob3.t4();
 }
 if(p4 = “1”){

ob3.t5();
 }

Input/Output are transition for class: This case is
represented in Fig. 4. In this case, Input and Output
from class is from/to transition. The class expansion is
as shown in Fig. 4, where there are places in class that
will store the input data and after performing functions
on this data, it will be sent to other transitions for
further processing. Here also transformation from class
to Petri Nets model is possible in both ways, that is
abstraction and refinement of class is possible.

I(t2) = {p1} o(t1) = {p1,p2}
I(t3) = {p2} o(t2) = {p2}
 I(ob4) = {t1} o(ob4) = {t4}
I(t4) = {p3,p4} o(t3) = {p4}

p2p1

t2 t3
ob4

Object from class4
class4

p4p3t4

t1

t4

t1

Fig. 4: A class and its object input/output are transition

World Appl. Sci. J., 3 (4): 565-576, 2008

569

 public class class4{
public void t1(){

p1=”1”;
p2 =”1”;

}
public void t2(){
p3=”1”;
p1 =”0”;

}
public void t3(){

p4=”1”;
p2 =”0”;

}
public void t4(){

send out p3 and p4;
}

}

class4 ob4 = new class4();
ob4.t1();
 if(p1=”1”){

ob4.t2();
 }
 if(p2=”1”){

ob4.t3();
 }
 if(p3=”1” && p4=”1”){

ob4.t4();
 }

NOTATIONS

The significant point in applying these notations is
the Petri model simplification. To understand better,
initially some explanations are given to identify the
concepts of those notations in an object oriented model
and then the applications [13, 14] of them are described
in an example model.we may have been wondering
what the big deal is with objects and object-oriented
technology. Is it something we should be concerned
with and if so, why? If we sift through the hype
surrounding the whole object-oriented issue, we'll find
a very powerful technology that provides a lot of
benefits to software design. The problem is that object-
oriented concepts can be difficult to grasp. And we
can't embrace the benefits of object-oriented design if
we don't completely understand what they are. Because
of this, a complete understanding of the theory behind
object-oriented programming is usually developed over
time through practice. A lot of the confusion among
developers in regard to object-oriented technology has
led to confusion among computer users in general. How
many products have we seen that claim they are object-
oriented? Considering the fact that object orientation is

a software design is sue, what can this statement
possibly mean to a software consumer? In many ways,
"object-oriented" has become to the software industry
what "new and improved" is to the household cleanser
industry. The truth is that the real world is already
object oriented, which is no surprise to anyone. The
significance of object-oriented technology is that it
enables programmers to design software in much the
same way that they perceive the real world [14].

Encapsulation: Encapsulation is the process of
packaging an object's data together with its methods. A
powerful benefit of encapsulation is the hiding of
implementation details from other objects. This
means that the internal portion of an object has more
limited visibility than the external portion. This
arrangement results in the safeguarding of the internal
portion against unwanted external access. The external
portion of an object is often referred to as the object's
interface because it acts as the object's interface to the
rest of the program. Because other objects must
communicate with the object only through its interface,
the internal portion of the object is protected from
outside tampering. And because an outside program
has no access to the internal implementation of an
object, the internal implementation can change at any
time without affecting other parts of the program.
Encapsulation provides two primary benefits to
programmers:

Implementation hiding: This refers to the protection
of the internal implementation of an object. An object is
composed of a public interface and a private section
that can be a combination of internal data and methods.
The internal data and methods are the sections of the
object hidden. The primary benefit is that these sections
can change without affecting other parts of the program
[15,16].

Modularity: This means that an object can be
maintained independently of other objects. Because the
source code for the internal sections of an object is
maintained separately from the interface, we are free to
make modifications with confidence that our object
won't cause problems to other areas. This makes it
easier to distribute objects throughout a system [16].

Example 1: As we know time is presented as " hour :
minute : second" and it is clear that, 0 < hour <=12, 0
<= minute <=60 , 0<= second <=60, assume that we
receive 3 numbers and we want to show the time. The
input numbers can be positive or negative.

Now the same Petri model is presented by the
concept of encapsulation [17].

World Appl. Sci. J., 3 (4): 565-576, 2008

570

Hour
Get

number

Minute
Get number

Second
Get number

Show
clock

If h was true
H
= h

If m was
true M = m

If s was true S = s

Fig. 5: PN before use encapsulation specification

hour

minute

second

(H >0 & H <= 12) ? H : 0

(m >=0 & m<= 60)? M : 0

(s>= 0 & s<=60)? S : 0

Show
clock

Fig. 6: PN after use encapsulation specification

As it is considered by comparing the Fig 5 and 6,
the below one is more simple and clear than the top
figure.

Class and object: Objects are software bundles of
data and the procedures that act on that data. The
procedures are also known as methods. The merger of
data and methods provides a means of more accurately
representing real-world objects in software. Without
objects, modeling a real-world problem in software
requires a significant logical leap. Objects, on the other
hand, enable programmers to solve real-world problems
in the software domain much easier and more logically.
As evident by its name, objects are at the heart of
object-oriented technology [17]. To understand how
software objects are beneficial, think about the common
characteristics of all real-world objects. Lions, cars and
calculators all share two common characteristics: state
and behavior. For example, the state of a lion includes
color, weight and whether the lion is tired or hungry.

Lions also have certain behaviors, such as roaring,
sleeping and hunting. The state of a car includes the
current speed, the type of transmission, whether it is
two-wheel or four-wheel drive, whether the lights are
on and the current gear, among other things. The
behaviors for a car include turning, braking and
accelerating. As with real-world objects, software
objects also have these two common characteristics
(state and behavior). To relate this back to
programming terms, the state of an object is determined
by its data; the behavior of an object is defined by its
methods. By making this connection between real-
world objects and software objects, we begin to see
how objects help bridge the gap between the real world
and the world of software inside our computer [18].

We've dealt only with the concept of an object that
already exists in a system. We may be wondering how
objects get into a system in the first place. This question
brings we to the most fundamental structure in object-
oriented technology: the class. A class is a template or
prototype that defines a type of object. A class is to an
object what a blueprint is to a house. Many houses can
be built from a single blueprint; the blueprint outlines
the makeup of the houses. Classes work exactly the
same way, except that they outline the makeup of
objects. In the real world, there are often many objects
of the same kind. Using the house analogy, there are
many different houses around the world, but all houses
share common characteristics. In object-oriented terms,
we would say that our house is a specific instance of the
class of objects known as houses. All houses have states
and behaviors in common that define them as houses.
When builders start building a new neighborhood of
houses, they typically build them all from a set of
blueprints. It wouldn't be as efficient to create a new
blueprint for every single house, especially when there
are so many similarities shared between each one.
The same thing is true in object-oriented software
development; why rewrite tons of code when we can
reuse code that solves similar problems? In object-
oriented technology, as in construction, it's also
common to have many objects of the same kind that
share similar characteristics [19]. And like the
blueprints for similar houses, we can create blueprints
for objects that share certain characteristics. What it
boils down to is that classes are software blueprints for
objects. As an example, the car class discussed earlier
would contain several variables representing the state of
the car, along with implementations for the methods
that enable the driver to control the car. The state
variables of the car remain hidden underneath the
interface. Each instance, or instantiated object, of the
car class gets a fresh set of state variables. This brings
we to another important point: When an instance of

World Appl. Sci. J., 3 (4): 565-576, 2008

571

procedure

ready

idel

sent

p1

p2

t1
t2

Procedure

3 2

Storage

p3

accept
t3

p4

t4

p5

accepted

consume

ready

Consumers

Fig. 7: PN before use class and object specification

procedure

ready

idel

sent

p1

p2

t1
t2

3 2

Storage

p3

accept
t3

p4

t4

p5

accepted

consume

ready

Class1 that its name can be producer
Class 2 that its name can be

consumers

Fig. 8: PN after use class specification

3 2

StorageObject from class1 Object from class2

Fig. 9: PN after use object specification

an object is created from a class, the variables declared
by that class are allocated in memory. The variables are
then modified through the object's methods. Instances
of the same class share method implementations but
have their own object data. Where objects provide the
benefits of modularity and information hiding, classes
provide the benefit of reusability. Just as the builder
reuses the blueprint for a house, the software developer
reuses the class for an object. Software programmers
can use a class over and over again to create many
objects. Each of these objects gets its own data but
shares a single method imp lementation. Using a class
notation doesn’t make any change in the structure of a
Petri model, but when instead of a whole class an object
is used the simplification is realized. Partitioning a Petri
model to some classes depends on the designer; it is
possible for a designer to divide a Petri model to one or
two classes and consequently one or two objects and
the same model may be divided into 3 or more classes
in another designer's view point [20-22].

Example 2: Producer-Consumer System
A producer-consumer system, consist of one

producer, two consumers and one storage buffer with
the following conditions:

The storage buffer may contain at most 5 items;
• The producer sends 3 items in each production;
• At most one consumer is able to access the storage

buffer at one time;
• Each consumer removes two items when accessing

the storage buffer.

A producer-consumer system
• In this Petri net, every place has a capacity and

every arc has a weight.
• This allows multiple tokens to reside in a place to

model more complex behaviour.

In OOPNM one can divide PN model to one or two
classes and another may divide it into several classes. It

World Appl. Sci. J., 3 (4): 565-576, 2008

572

Ob

ob1

ob2

Ob , ob1 , ob2 are objects from
class1

Fig. 10: PN before use inheritance specification

Ob

ob1

ob2

Inheritance
class object

Inheritance
class object

Fig. 11: PN after use inheritance specification

has considered that when the number of classes and
object creation are increased, difficult and busy Petri
models become simpler [22].

Inheritance: What happens if we want an object that is
very similar to one we already have, but that has a few
extra characteristics? We just inherit a new class based
on the class of the similar object. Inheritance is the
process of creating a new class with the characteristics
of an existing class, along with additional
characteristics unique to the new class. Inheritance
provides a powerful and natural mechanism for
organizing and structuring programs. So far, the
discussion of classes has been limited to the data and
methods that make up a class. Based on this
understanding, all classes are built from scratch by
defining all the data and all the associated methods.
Inheritance provides a means to create classes based on
other classes. When a class is based on another class, it
inherits all the properties of that class, including the
data and methods for the class. The class doing the

inheriting is referred to as the subclass (or the child
class) and the class providing the information to inherit
is referred to as the superclass (or the parent class).
Using the car example, child classes could be inherited
from the car class for gas-powered cars and cars
powered by electricity. Both new car classes share
common "car" characteristics, but they also add a few
characteristics of their own. The gas car would add,
among other things, a fuel tank and a gas cap; the
electric car would add a battery and a plug for
recharging. Each subclass inherits state information (in
the form of variable declarations) from the superclass.
Inheriting the state and behaviors of a superclass alone
wouldn't do all that much for a subclass. The real power
of inheritance is the ability to inherit properties and
methods and add new ones; subclasses can add
variables and methods to the ones they inherited from
the superclass. Remember that the electric car added a
battery and a recharging plug. Additionally, subclasses
have the ability to override inherited methods and
provide different implementations for them. For

World Appl. Sci. J., 3 (4): 565-576, 2008

573

t9 t10 t11 t12

t13 t14 t15

t16 t17
t18

p6 p7 p8

p9

p10

p11

p12

getDISK

Fig. 12: PN before use notations

Fig. 13: CPU_interruption_ cycle class

example, the gas car would probably be able to go
much faster than the electric car. The accelerate method
for the gas car could reflect this difference.Class
inheritance is designed to allow as much flexibility as
possible. A group of interrelated classes is called an
inheritance tree, or class hierarchy. An inheritance tree
looks much like a family tree: it shows the relationships
between classes. Unlike a family tree, the classes in an
inheritance tree get more specific as we move down the
tree [23]. We can create inheritance trees as deep as
necessary to carry out our design, although it is
important to not go so deep that it becomes
cumbersome to see the relationship between classes.
By understanding the concept of inheritance, we
understand how subclasses can allow specialized data

World Appl. Sci. J., 3 (4): 565-576, 2008

574

getDISK

Fig. 14: Central_Server_Model class

t1 t2 t3
t4

p1

p2 p3

Fig. 15: Enabling_memory1_conflict class

t9 t10 t11 t12

t13 t14 t15

t16 t17
t18

p6 p7 p8

p9

p10

p11

p12

Fig. 16: Enabling_memory2_conflict class extends
Enabling_memory1_conflict class

and methods in addition to the common ones provided
by the superclass. This enables programmers to reuse
the code in the superclass many times, thus saving extra
coding effort and eliminating potential bugs. One final
point to make in regard to inheritance: It is possible and
sometimes useful to create superclasses that act purely
as templates for more usable subclasses [24]. In this
situation, the superclass serves as nothing more than an
abstraction for the common class functionality shared
by the subclasses. For this reason, these types of
superclasses are referred to as abstract classes. An
abstract class cannot be instantiated, meaning that no
objects can be created from an abstract class. The

reason an abstract class can't be instantiated is that parts
of it have been specifically left unimplemented. More
specifically, these parts are made up of methods that
have yet to be implemented--abstract methods. Using
the car example once more, the accelerate method
really can't be defined until the car's acceleration
capabilities are known. Of course, how a car accelerates
is determined by the type of engine it has. Because the
engine type is unknown in the car superclass, the
accelerate method could be defined but left
unimplemented, which would make both the accelerate
method and the car superclass abstract. Then the gas
and electric car child classes would implement the
accelerate method to reflect the acceleration capabilities
of their respective engines or motors.

In Petri models the point of using a same structure
Petri model with some variations in many places is
observed. To show the concept of inheritance pay
attention to the Fig. 10 and 11:

Assume that ob1, ob2, ob3 are 3 objects of a class
called class1. If we want to use the concept of
inheritance, the above model could be summarized as
follows:

The object-oriented Petri net model OOPNM is
useful because

• OOd is transformed to Petri Nets model and hence
Verification and Validation is possible with object-
oriented Petri net model approach.

• Object-oriented Petri net model supports
Inheritance therefore incremental modification is
possible. With incremental modification,
enhancement[25] of the system is also possible.

• Functionalities of objects can be explored in detail,
so that allows system designer to see various states
of object during its execution. This helps in
maintaining the software systems[24,25].

• System debugging is easier as we can verify and
validate each individual object-oriented Petri net
model And later we can connect them together and
verify and validate the interactions among
them.This also helps in adding new object-oriented
Petri net model into the net. We can verify the new
object-oriented Petri net model before their
integration with the system and then we can
correctly specify their interactions with other
object-oriented Petri net model in the system and
then these interactions can be verified and
validated.

• OOPNM can transform difficult and busy PN
model to simpler.

• Use of existing tools for both OOD and Petri Nets
modeling. These existing tools can be enhanced

World Appl. Sci. J., 3 (4): 565-576, 2008

575

Object from Central _Server_Model class

Object from CPU_interruption _ cycle class

Object from Enabling _memory1_conflict class

Object from
Enabling_memory2_conflict

class extends
 Enabling_memory1_ conflict

class

Fig. 17: PN when use notations

further to integrate this approach and hence to
support direct mapping from OOD to Petri Nets
models with object-oriented Petri net model.

THE CENTRAL SERVER MODEL EXAMPLE

The example chosen to illustrate this possibility is
a simple central server system in which the CPU can be
interrupted by the arrival of higher priority tasks as well
as by failures [25].

CONCLUSIONS

The maturity and popularity of object-oriented
paradigms have steadily increased. One of the main
requirements in modeling and analysis[22-27] for
complex and large software systems is that the design
models should be unambiguous, precise and variable.
To full these requirements, experts have suggested
several methods which combine object-oriented method
with formal methods. Although a number of high-level
Petri nets[23] with the concepts of objects were
suggested with a clear idea in specific concerns, they
did not fully support suficient features that are needed
in modeling of systems with object-oriented concepts.
To solve this problem, we suggest an object-oriented
Petri net model OOPNM, which supports most features
of object-oriented concepts with clear semantics.
Further, we describe the modeling and analysis methods
for system models and making it possible to develop a
complex system incrementally and iteratively. This has

been achieved from such bases as encapsulated and
modularized objects, abstract information modeling,
decomposition and refinement approach and
incremental reachability analysis.

The object-oriented Petri net model can be
transformed into CPN models that can be verified and
validated by simulation or analytical methods such as
place and atransition invariants. Hence, OO system can
be checked for various exception cases or various
behavioral scenarios. We can use existing tools that
support OOD to design system and there are numerous
tools that support CPN modeling.Hence, we need some
in-built features in these tools that will automatically, or
with human guidance, transform OOD diagrams to
CPN models [25,29].

REFERENCES

1. Thayer, R.H. and M. Dortman, 1997. Software
Requirement Engineering, IEEE Computer Society
Press, Silver Spring.

2. Brauer, W., R. Gold and W. Vogler, 1990. A
survey of behaviour and equivalence preserving
refinement of Petri nets. In: APN'90, Lecture
Noters in Computer Science, 483: 1-46.

3. Cardoso, J., R. Valette and D. Dubios, 1991. Petri
nets with uncertain markings. In: APN'90, Lecture
Notes in Computer Science, 483: 64-78.

4. Fehling, R., 1993. A concept of hierarchical Petri
nets with building blocks. In: APN'93, Lecture
Notes in Computer Science, 674: 148-168.

World Appl. Sci. J., 3 (4): 565-576, 2008

576

5. Huber, P., K. Jensen and R.M. Shapiro, 1991.
Hierarchies in coloured Petri nets. In: APN'90,
Lecture Notes in Computer Science, 483: 313-341.

6. Jensen, K., 1992. Coloured Petri Nets: Basic
concepts, Analysis methods and Practical use,
Springer, Berlin, Vol: 1.2.

7. Eliens, A., 1995. Principles of Object-Oriented
Software Development, Addison-Wesley,
Wokhingham, UK.

8. Jacobson et al. I., 1992. Object-Oriented Software
Engineering: A Use Case Driven Approach,
Addison-Wesley, Wokhingham, UK.

9. Rumbaughetal, J., 1991. Object-oriented Modeling
and Design, Prentice-Hall, Englewood Cliffs, NJ.

10. Bastide, R., 1995. Approaches in unifying Petri
nets and the object-oriented approach. In:
Proceeding of the International Workshop on
Object-oriented Programming and Models of
Concurrency, Turin, Italy, June, 1995,
http://wrcm.dsi.unimi.it/PetriLab/ws95/home.html.

11. Harel, D. and E. Gery, 1996. Executable object
modeling with statechart. In: Proceedings of the
18th International Conference on Software
Engineering, Germany, March 1996, pp: 246-257.

12. Schuman, S.A., 1997. Formal Object-oriented
Development, Springer, Berlin.

13. Bsattiston, E., F.D. Cindio and G. Mauri, 1988.
OBJSA Nets: A class of high-level nets having
objects as domains. In: APN'88, Lecture Notes in
Computer Science, 340: 20-43.

14. Biberstein, O. and D. Buchs, 1994. An object-
oriented specification language based on
hierarchical algebraic Petri nets. In: Proceedings of
the IS-CORE Workshop Amsterdam, September
1994 (and TR: EPFL-DI 94-76).

15. Lakos, C. and C. Keen, 1994. LOOPN++: A new
language for object-oriented Perti nets, Technical
Report R94-4, Networking Research Group,
Univesity of Tasmania, Australia.

16. Jensen, K., 1997. Coloured Petri Nets. Basic
Concepts, Analysis methods and Practical Use.
Vol.Vol. 1, Basic Concepts,Springer-Verlag.

17. Rumbaugh, J., I. Jacobson and G. Booch, 2005.
The Unified Modeling Language reference
Manual, 2nd Edn. Boston, Mass.: Addison Wesley.
18.Lakos, C., 1995. The object orientation of

object Petri nets. In: Proceeding of the
International Workshop on Object-oriented
and Models of Concurrency Turin, Italy,
(within the 16th International conference on
ATPN 95).

19. Lakos, C., 1997. On the abstraction of coloured
Petri nets. In: Proceedings of Petri Net Conference
97, Touloure, France.

20. Lee, Y.K. and S.J. Park, 1993. OPNets: An object-
oriented high-level Petri net model for real-time
system modeling. J. Syst. Software, 20: 69-86.

21. Murata, T., 1989. Petri nets: Properties, analysis
and applications, Proc. IEEE, 77 (4): 541-580.

22. Perkusich, A. and J.C.A. Figueiredo, 1997. G-Nets:
A Petri net based approach for logical and timing
analysis of complex software systems. J. Syst.
Software, 39: 39-59.

23. Some, S. and R. Dssouli, 1996. An enhancement of
timed automata generation from timed scenarios
using grouped states, Technical Report 1029,
University of Montreal, Canada.

24. Ullman, J.D., 1998. Elements of ML Programming,
ML97 Edition, Prentice-Hall, Englewood Cliffs,
NJ, 164 J.-E. Hong, D.-H. Bae/Information
Sciences 130 (2000), pp: 133-164.

25. Mikolajczak, B. and D. Mukhin, A Method of
Concurrent Object-oriented Design Using High-
Level Petri Nets. Proceedings of the IEEE
International Conference on Systems, Man,
Computers, SMC'98, San Diago, USA, pp: 295-
300.

26. Lakos, Ch., 2002. The Challenge of Object
Orientation for the Analysis of Concurrent
Systems. Proceeding of the Conference on
Applications and Theory of Petri Nets, Springer
Verlag, LNCS-2360, pp: 59-67.

27. Bauskar, B.E. and B. Mikolajczak, 2006. Abstract
Node Method For Integration of Object Oriented
design with Colored Petri Nets. Proceedings of the
Third International Conference on Information
Technology.

28. Nihal, Y.Ö., 2007. On the Numbers of the Form
n = x2 + Ny2, World Applied Sciences Journal,
2(1): 45-48.

29. Erçetin, S.S., Çetin, B. and N. Potas, 2007. Multi-
Dimensional Organizational Intelligence Scale
(Muldimorins), World Applied Sciences Journal,
2(3): 151-157.

