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Abstract: Petri net is used widely to analyze and model various systems formally. Recently, Many Petri 
nets mania devote their efforts to enhancing and extending the expressive Power of Petri nets. One such 
effort is to extend Petri nets with object-oriented concepts. An object-oriented paradigm provides excellent
concepts to model real-world problems. Object-oriented concepts allow us to build software systems easily, 
intuitively and Naturally. Although several high-level Petri nets with the concept of objects are suggested, 
These nets do not fully support the object-oriented concepts. Object Oriented Methodology lacks the rigor 
to verify formal validate the designed system. Petri Nets provide formal graphical representation,
incorporate concurrency and parallelism. In Colored Petri Nets (CPNs), Objects and object attributes can be 
modeled with data structures. The hierarchical structure of (CPNs) is useful in representing Class 
Inheritance and to describe dynamics of objects. To check the correctness of the designed system, there is a 
need to integrate Object Oriented techniques at design level and use of (CPNs) at the Verification and 
Validation level in software system development. This paper presents a technique to transform an Object 
Oriented Design (OOD) into Hierarchical (CPNs) model with Object Oriented Petri Nets Model (OOPNM) 
approach.
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INTRODUCTION

The development of a software system begins with 
two main activities: requirements analysis and system 
modeling. Requirements analysis serves two purposes; 
to throughly understand the problem and to reduce 
potential errors caused by ambiguous requirements. The 
purpose of system modeling is to depict the overall 
structure of the system by decomposing it into its 
logical components. Many researchers have focused 
their interests on the development of techniques to 
support these two activities [1]. There are two ways to 
achieve the goals of those two activities. One is to 
formally specify and analyze systems and the other is to 
naturally describe and model systems. When
specifying, modeling and analyzing the behavior of a 
critical and complex system, we choose a language
which can formally depict the properties of that system. 
Formal languages support us in describing system
properties clearly, exactly and in detail. In particular, 
Petri net is the most widely used in various application 
domains because of its simplicity and exibility in
depicting dynamic system behaviors and its strong 
expressive and analytic power of system behaviors.
Despite the powerful capability of formal methods,

designers are still likely to recognize the shortage of 
formal methods when analyzing and modeling systems 
of various domains. Thus, many Petri net researchers 
have devoted their efforts to enhancing and extending 
the theory and techniques of Petri nets [2-4] including 
high-level Petri nets such as (CPNs) [5,6].

The concepts of object-oriented paradigm such as 
encapsulation, inheritance, etc., have been widely used 
in the system modeling because they allow us to
describe systems easily, intuitively and naturally [5,6]. 
Designers who are familiar with formal methods have 
come to understand the usefulness of the object-
oriented concepts. Along with this trend, object-
oriented formal methods have also become of particular 
interest to researchers in recent years and many experts 
have suggested object-oriented formal methods such as 
object Petri nets (OPN), VDM++, Object-Z [6], etc.
Among  these  studies,  research  on OPN formalism 
has  been actively studied to extend Petri nets
formalism to OPN such as OBJSA [7], COOPN/2 [8] 
and LOOPN++ [9]. 

Although the results of such studies have shown 
promise, these nets do not support fully all the major 
concepts of object-oriented paradigm. Object Oriented 
Methodology  is  an establis hed techniques for structure 
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software design.Object Orientedness supports
Inheritance, Polymorphism. Object Oriented
methodology is useful in order to design software
comprehensible, maintainable and flexible. However,
Objct Orientedness lacks analysis and verification
methods  of  designed  systems.  Petri  Nets  (PN) [9] 
are useful in describing and information systems that 
are characterized as being concurrent, asynchronous, 
distributed [8,9], parallel, nondeterministic and/or
stochastic. The graphical representation, simplicity and 
executable nasture of Petri Nets model make Petri Nets 
suitable for simulation, rapid prototyping and
verification of systems. There is a need to combine the 
Object Orientation with Petri Nets to get the advantages 
of both approaches. In this paper are presenting an 
approach  of  (OOPNM)   that   takes   advantage   of
both Object Orientedness (OO) and Petri Nets
methodologies by using Object Orientedness at the
design stage and Petri Nets at Verification and
Validation stage. (OOPNM) is based on the
combination of (OOD) [10] and Petri Nets (PN).
(OOPNM) uses the existing tools that support both 
methodologies. We can design a system in Object 
Oriented fashion using Unified Modeling Language
(UML) [9] and then we can transform this design in 
into (CPNs) model using CPN tools [10].

OBJECT ORIENTED PETRI NET 
MODEL (OOPNM)

The presented model is a combination of object 
oriented and CPN. In this model we proposed a CPN 
that support all specifications of an object oriented 
model such as: 

Class, Objcet, encapsulation, inheritance. OOD
defines the hierarchy of classes and object co-
operations and then Petri Nets are used to represent 
those classes and object interaction. This integration 
will result in a Petri Nets inside Object construct[18]. 
The use of Petri Nets model will allow us to verify the 
system before its implementation.In these models new 
notations are used rather than existed notations in CPN 
model. The notations illustrate in Table 1:

More details about each of those notations are 
explained in part 3.

OOPNM structure: Regarding to the former notations 
and some notations like place, transition, arc the
following structure could be presented for the proposed 
model:

The OOPNM structure is a 7-tuple C = (P, T, OB, 
E, IN, I, O):
P: Finite set of places (P = {p1, p2, …, pn}),
T: Finite set of transitions (T = {t1, t2, …, tn}),

P and T: Disjoint (P n T = Ø)
OB: Finite set of object (OB = {ob1, ob2, …, obn}),
E Finite set of encapsulation (E = {e1, e2, …, en}),
IN: Finite set of inheritance (IN = {in1, in2, …, inn}),
I: Input function:
O: Output function:

The input and output functions in general are
T→Pn by as soon as creation of notations as OB, E, IN 
it may change. Those changes are in the following 4 
forms. We discuss these 4 forms for class notation, for 
other three notations it is the same [10-12].

Input/Output are places for class: The input to class 
is input place. so there is an input transition within 
class, which will transform the data and will put the 
data in an output place as in Fig. 1.

I(t1) = {p1} O(t1) = {p2}
I(t2) = {p1} O(t2) = {p3}
 I(ob1) = {p1} O(ob1) = {p4} 
I(t3) = {p2} O(t3) = {p4} 
I(t4) = {p3} O(t4) = {p4}

public class class1{
public void t1(){

p2=”1”;
 p1=”0”;

 } 
Public void t2(){

P3= “1”; 
P1 = “0”; 
}

public void t3(){ 
p4 = “1”; 
p2 =”0”; 
}

Table 1: Notations illustrate by their properties

condition

To show the encapsulation To show the class To show the object To show the inheritance
specification specification specification specification
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p3p2

p4

t1 t2

t3 t4

p4

ob1

Object from class 1

class1

p1p1

Fig. 1: A class and its object when I/O are places

Public void t4(){ 
P4 = ”1”; 
P3 = “0”;
}

}

class1 ob1 = new class1();
 if (p1=”1”) {

ob1.t1();
ob1.t2();

}
 if (p2 = “1”) { 

ob1.t3();
}
 if (p3 = “1”){ 

ob1.t4();
 }

The input to class is an input place. So, class will 
be explored to transition or transitions depending on the
functionality of class. These transitions are input
transitions within class. These transitions are then
explored to model the functionality performed by class 
as represented in Fig. 1 and the output will be returned 
to the output place that is connected to class by output 
arc. The expansion of transitions inside class will
depend on the type of functions it performs.

In Fig. 1, the arrows to transform class to the
corresponding Petri Net model are shown in both
directions to represent that we can refine class to get the 
Petri Nets models or we can abstract the Petri Nets 
model to have class constructs.

Input from a place and output to a transition for
class: Here, there is a transition or transitions within 
class that will process on this input, as shown in Fig. 2. 
This processed data will be stored in a place or places 
inside class, which is connected to the transition outside 
the  class. Petri Net  model  shown  within  the  dotted 
line  represents  the  various methods accepted by class. 

p1

p3p2

t1 t2

t3 t4

p1

ob2

Object from class2

class2

p5p4

t5

t5

Fig. 2: A class and its object when Input from a place 
and output to a transition

Again, the arrows to transform class to Petri Nets model 
are shown in both directions, meaning expansion of 
class and also abstraction of Petri Nets model to class is 
possible [12,13].

I(t1) = {p1} o(t1) = {p2}
I(t2) = {p1} o(t2) = {p3}
 I(ob2) = {p1} o(ob2)= {t5} 
I(t3)= {p2} o(t3) = {p4} 
I(t4) = {p3} o(t4) = {p5}
I(t5) = {p4,p5}

 public class class2 {
 public void t1(){

 p2=”1” 
 p1=”0”; 

}
 public void t2(){ 

P3=”1”;
P1=”0”;

}
public void t3(){ 

p4=”1”;
p2=”0”;

}
public void t4(){ 

P5=”1”;
P3=”0”;

}
public void t5(){ 

send out p4 and p5;
}

}

 class2 ob2= new class2(); 
 if(p1=”1”){ 

 ob2.t1(); 
 ob2.t2(); 

}
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t4 t5p5
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Fig. 3: A class and its object input from a transition and 
output to a place

 if(p2=”1”){ 
 ob2.t3(); 

 } 
 if(p3=”1”){ 

 ob2.t4(); 
 } 
 if(p1=”1”&& p5=”1”){ 

 ob2.t5();
 }

Input from a transition and output to a place for
class: Here, input to class is from a transition. So, there 
is a place or places inside class to store the data. Later, 
this data will be processed inside the class, depending 
on the type of data that can be mo0deled as shown in 
Fig. 3. The output from class goes to place. Therefore, 
there is a transition inside class, which is connected to 
the output place. Again, the transformation from class 
to Petri Nets model is shown in both directions, as it is 
possible in both ways.

I(t2) = {p1} o(t1) = {p1,p2}
I(t3) = {p2} o(t2) = {p3}
 I(ob3) = {t1} o(ob3) = {p5}
I(t4) = {p3} o(t3) = {p4}
I(t5) = {p4} o(t4) = {p5}
 o(t5) = {p6}

 public class class3{
public void t1(){

p1=”1”;
p2 =”1”; 

}
public void t2(){ 

p3=”1”;
p1 =”0”; 

}
public void t3(){ 

p4=”1”;

p2 =”0”; 
}
public void t4(){ 

p5=”1”;
p3 =”0”; 

}
public void t5(){
p5=”1”;
p4 =”0”;
}

}

class3 ob3 = new class3();
ob3.t1();

if(p1=”1”){
ob3.t2();

}
 if(p2=”1”){ 

ob3.t3();
 } 
 if(p3 = “1”){ 

ob3.t4();
 } 
 if(p4 = “1”){ 

ob3.t5();
 } 

Input/Output are transition for class: This case is 
represented in Fig. 4. In this case, Input and Output 
from class is from/to transition. The class expansion is 
as shown in Fig. 4, where there are places in class that 
will store the input data and after performing functions 
on this data, it will be sent to other transitions for 
further processing. Here also transformation from class 
to Petri Nets model is possible in both ways, that is 
abstraction and refinement of class is possible.

I(t2) = {p1} o(t1) = {p1,p2}
I(t3) = {p2} o(t2) = {p2}
 I(ob4) = {t1} o(ob4) = {t4} 
I(t4) = {p3,p4} o(t3) = {p4}

p2p1

t2 t3
ob4

Object from class4
class4

p4p3t4

t1

t4

t1

Fig. 4: A class and its object input/output are transition
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 public class class4{
public void t1(){ 

p1=”1”;
p2 =”1”; 

}
public void t2(){ 
p3=”1”;
p1 =”0”; 

}
public void t3(){ 

p4=”1”;
p2 =”0”; 

}
public void t4(){ 

send out p3 and p4; 
}

}

class4 ob4 = new class4(); 
ob4.t1();
 if(p1=”1”){ 

ob4.t2();
 } 
 if(p2=”1”){

ob4.t3();
 } 
 if(p3=”1” && p4=”1”){ 

ob4.t4();
 } 

NOTATIONS

The significant point in applying these notations is 
the Petri model simplification. To understand better,
initially some explanations are given to identify the
concepts of those notations in an object oriented model 
and then the applications [13, 14] of them are described 
in an example model.we may have been wondering 
what the big deal is with objects and object-oriented
technology. Is it something we should be concerned 
with and if so, why? If we sift through the hype
surrounding the whole object-oriented issue, we'll find 
a very powerful technology that provides a lot of
benefits to software design. The problem is that object-
oriented concepts can be difficult to grasp. And we 
can't embrace the benefits of object-oriented design if 
we don't completely understand what they are. Because 
of this, a complete understanding of the theory behind 
object-oriented programming is usually developed over 
time through practice. A lot of the confusion among 
developers in regard to object-oriented technology has 
led to confusion among computer users in general. How 
many products have we seen that claim they are object-
oriented? Considering  the fact that object orientation is 

a software design is sue, what can this statement
possibly mean to a software consumer? In many ways, 
"object-oriented" has become to the software industry 
what "new and improved" is to the household cleanser 
industry. The truth is that the real world is already 
object oriented, which is no surprise to anyone. The 
significance of object-oriented technology is that it 
enables programmers to design software in much the 
same way that they perceive the real world [14].

Encapsulation: Encapsulation is the process of
packaging an object's data together with its methods. A 
powerful benefit of encapsulation is the hiding of
implementation  details  from  other objects. This
means that the internal portion of an object has more 
limited visibility than the external portion. This
arrangement results in the safeguarding of the internal 
portion against unwanted external access. The external 
portion of an object is often referred to as the object's 
interface because it acts as the object's interface to the 
rest of the program. Because other objects must
communicate with the object only through its interface, 
the internal portion of the object is protected from
outside  tampering. And because an outside program 
has no access to the internal implementation of an 
object, the internal implementation can change at any 
time without affecting other parts of the program.
Encapsulation provides two primary benefits to
programmers:

Implementation hiding: This refers to the protection 
of the internal implementation of an object. An object is 
composed of a public interface and a private section 
that can be a combination of internal data and methods. 
The internal data and methods are the sections of the 
object hidden. The primary benefit is that these sections 
can change without affecting other parts of the program 
[15,16].

Modularity: This means that an object can be
maintained independently of other objects. Because the 
source code for the internal sections of an object is 
maintained separately from the interface, we are free to 
make modifications with confidence that our object 
won't cause problems to other areas. This makes it 
easier to distribute objects throughout a system [16].

Example 1: As we know time is presented as " hour : 
minute : second" and it is clear that, 0 < hour <=12, 0 
<= minute <=60 , 0<= second <=60, assume that we 
receive 3 numbers and we want to show the time. The 
input numbers can be positive or negative. 

Now the same Petri model is presented by the
concept of encapsulation [17].



World Appl. Sci. J., 3 (4): 565-576, 2008

570

Hour
Get

number

Minute
Get number

Second
Get number

Show
clock

If h was true
H
= h

If m was 
true M = m

If s was true S = s

Fig. 5: PN before use encapsulation specification

hour

minute

second

( H >0 & H <= 12) ? H : 0

( m >=0 & m<= 60 )? M : 0

( s>= 0 & s<=60 )? S : 0

Show
clock

Fig. 6: PN after use encapsulation specification

As it is considered by comparing the Fig 5 and 6, 
the below one is more simple and clear than the top 
figure.

Class  and  object: Objects are software bundles of 
data and the procedures that act on that data. The 
procedures are also known as methods. The merger of 
data and methods provides a means of more accurately 
representing real-world objects in software. Without 
objects, modeling a real-world problem in software
requires a significant logical leap. Objects, on the other 
hand, enable programmers to solve real-world problems 
in the software domain much easier and more logically. 
As evident by its name, objects are at the heart of 
object-oriented technology [17]. To understand how
software objects are beneficial, think about the common 
characteristics of all real-world objects. Lions, cars and 
calculators all share two common characteristics: state 
and behavior. For example, the state of a lion includes 
color,  weight  and  whether  the  lion is tired or hungry. 

Lions also have certain behaviors, such as roaring,
sleeping and hunting. The state of a car includes the 
current speed, the type of transmission, whether it is 
two-wheel or four-wheel drive, whether the lights are 
on and the current gear, among other things. The
behaviors for a car include turning, braking and
accelerating. As with real-world objects, software
objects also have these two common characteristics 
(state and behavior). To relate this back to
programming terms, the state of an object is determined 
by its data; the behavior of an object is defined by its 
methods. By making this connection between real-
world objects and software objects, we begin to see 
how objects help bridge the gap between the real world 
and the world of software inside our computer [18].

We've dealt only with the concept of an object that 
already exists in a system. We may be wondering how 
objects get into a system in the first place. This question 
brings we to the most fundamental structure in object-
oriented technology: the class. A class is a template or 
prototype that defines a type of object. A class is to an 
object what a blueprint is to a house. Many houses can 
be built from a single blueprint; the blueprint outlines 
the makeup of the houses. Classes work exactly the 
same way, except that they outline the makeup of
objects. In the real world, there are often many objects 
of the same kind. Using the house analogy, there are 
many different houses around the world, but all houses 
share common characteristics. In object-oriented terms, 
we would say that our house is a specific instance of the 
class of objects known as houses. All houses have states 
and behaviors in common that define them as houses. 
When builders start building a new neighborhood of 
houses, they typically build them all from a set of
blueprints. It wouldn't be as efficient to create a new 
blueprint for every single house, especially when there 
are  so  many  similarities  shared  between each one. 
The same thing is true in object-oriented software
development; why rewrite tons of code when we can 
reuse code that solves similar problems? In object-
oriented technology, as in construction, it's also
common to have many objects of the same kind that 
share similar characteristics [19]. And like the
blueprints for similar houses, we can create blueprints 
for objects that share certain characteristics. What it 
boils down to is that classes are software blueprints for 
objects. As an example, the car class discussed earlier 
would contain several variables representing the state of 
the car, along with implementations for the methods 
that enable the driver to control the car. The state
variables of the car remain hidden underneath the
interface. Each instance, or instantiated object, of the 
car class gets a fresh set of state variables. This brings
we to  another  important  point: When  an   instance  of 
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Fig. 7: PN before use class and object specification
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Fig. 8: PN after use class specification

3 2

StorageObject from class1 Object from class2

Fig. 9: PN after use object specification

an object is created from a class, the variables declared 
by that class are allocated in memory. The variables are
then modified through the object's methods. Instances 
of the same class share method implementations but 
have their own object data. Where objects provide the 
benefits of modularity and information hiding, classes 
provide the benefit of reusability. Just as the builder 
reuses the blueprint for a house, the software developer 
reuses the class for an object. Software programmers 
can use a class over and over again to create many 
objects. Each of these objects gets its own data but 
shares a single method imp lementation. Using a class 
notation doesn’t make any change in the structure of a 
Petri model, but when instead of a whole class an object 
is used the simplification is realized. Partitioning a Petri 
model to some classes depends on the designer; it is 
possible for a designer to divide a Petri model to one or 
two classes and consequently one or two objects and 
the same model may be divided into 3 or more classes 
in another designer's view point [20-22].

Example 2: Producer-Consumer System
A producer-consumer system, consist of one

producer, two consumers and one storage buffer with 
the following conditions:

The storage buffer may contain at most 5 items;
• The producer sends 3 items in each production;
• At most one consumer is able to access the storage 

buffer at one time;
• Each consumer removes two items when accessing 

the storage buffer.

A producer-consumer system
• In this Petri net, every place has a capacity and

every arc has a weight.
• This allows multiple tokens to reside in a place to 

model more complex behaviour.

In OOPNM one can divide PN model to one or two 
classes and another may divide it into several classes. It 
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ob2

Ob , ob1 , ob2 are objects from 
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Fig. 10: PN before use inheritance specification

Ob

ob1

ob2

Inheritance
class object

Inheritance
class object

Fig. 11: PN after use inheritance specification

has considered that when the number of classes and 
object creation are increased, difficult and busy Petri 
models become simpler [22]. 

Inheritance: What happens if we want an object that is 
very similar to one we already have, but that has a few 
extra characteristics? We just inherit a new class based 
on the class of the similar object. Inheritance is the 
process of creating a new class with the characteristics 
of an existing class, along with additional
characteristics unique to the new class. Inheritance
provides a powerful and natural mechanism for
organizing and structuring programs. So far, the
discussion of classes has been limited to the data and 
methods that make up a class. Based on this
understanding, all classes are built from scratch by 
defining all the data and all the associated methods. 
Inheritance provides a means to create classes based on 
other classes. When a class is based on another class, it 
inherits all the properties of that class, including the 
data  and  methods  for  the  class. The  class  doing  the 

inheriting is referred to as the subclass (or the child 
class) and the class providing the information to inherit 
is referred to as the superclass (or the parent class).
Using the car example, child classes could be inherited 
from the car class for gas-powered cars and cars 
powered by electricity. Both new car classes share
common "car" characteristics, but they also add a few 
characteristics of their own. The gas car would add, 
among other things, a fuel tank and a gas cap; the 
electric car would add a battery and a plug for
recharging. Each subclass inherits state information (in 
the form of variable declarations) from the superclass. 
Inheriting the state and behaviors of a superclass alone 
wouldn't do all that much for a subclass. The real power 
of inheritance is the ability to inherit properties and 
methods and add new ones; subclasses can add
variables and methods to the ones they inherited from 
the superclass. Remember that the electric car added a 
battery and a recharging plug. Additionally, subclasses 
have the ability to override inherited methods and 
provide    different    implementations    for    them.  For 
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Fig. 12: PN before use notations

Fig. 13: CPU_interruption_ cycle class

example, the gas car would probably be able to go 
much faster than the electric car. The accelerate method 
for the gas car could reflect this difference.Class
inheritance is designed to allow as much flexibility as 
possible. A group of interrelated classes is called an 
inheritance tree, or class hierarchy. An inheritance tree 
looks much like a family tree: it shows the relationships 
between classes. Unlike a family tree, the classes in an 
inheritance tree get more specific as we move down the 
tree [23]. We can create inheritance trees as deep as 
necessary to carry out our design, although it is
important to not go so deep that it becomes
cumbersome  to  see  the relationship between classes. 
By understanding the concept of inheritance, we
understand  how  subclasses  can  allow specialized data 
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Fig. 15: Enabling_memory1_conflict class
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Fig. 16: Enabling_memory2_conflict class extends
Enabling_memory1_conflict class

and methods in addition to the common ones provided 
by the superclass. This enables programmers to reuse 
the code in the superclass many times, thus saving extra 
coding effort and eliminating potential bugs. One final 
point to make in regard to inheritance: It is possible and 
sometimes useful to create superclasses that act purely 
as templates for more usable subclasses [24]. In this 
situation, the superclass serves as nothing more than an 
abstraction for the common class functionality shared 
by the subclasses. For this reason, these types of
superclasses are referred to as abstract classes. An 
abstract class cannot be instantiated, meaning that no 
objects   can   be   created  from  an  abstract  class. The 

reason an abstract class can't be instantiated is that parts 
of it have been specifically left unimplemented. More 
specifically, these parts are made up of methods that 
have yet to be implemented--abstract methods. Using 
the car example once more, the accelerate method
really can't be defined until the car's acceleration
capabilities are known. Of course, how a car accelerates 
is determined by the type of engine it has. Because the 
engine type is unknown in the car superclass, the 
accelerate method could be defined but left
unimplemented, which would make both the accelerate 
method and the car superclass abstract. Then the gas 
and electric car child classes would implement the
accelerate method to reflect the acceleration capabilities 
of their respective engines or motors. 

In Petri models the point of using a same structure 
Petri model with some variations in many places is 
observed. To show the concept of inheritance pay 
attention to the Fig. 10 and 11:

Assume that ob1, ob2, ob3 are 3 objects of a class 
called class1. If we want to use the concept of
inheritance, the above model could be summarized as 
follows:

The object-oriented Petri net model OOPNM is 
useful because

• OOd is transformed to Petri Nets model and hence 
Verification and Validation is possible with object-
oriented Petri net model approach.

• Object-oriented Petri net model supports
Inheritance therefore incremental modification is 
possible. With incremental modification,
enhancement[25] of the system is also possible.

• Functionalities of objects can be explored in detail, 
so that allows system designer to see various states 
of object during its execution. This helps in
maintaining the software systems[24,25].

• System debugging is easier as we can verify and 
validate each individual object-oriented Petri net 
model And later we can connect them together and 
verify and validate the interactions among
them.This also helps in adding new object-oriented
Petri net model into the net. We can verify the new
object-oriented Petri net model before their
integration with the system and then we can
correctly specify their interactions with other
object-oriented Petri net model in the system and 
then these interactions can be verified and
validated.

• OOPNM can transform difficult and busy PN
model to simpler.

• Use of existing tools for both OOD and Petri Nets 
modeling.  These existing   tools  can  be  enhanced 
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Object from Central _Server_Model class

Object from CPU_interruption _ cycle class

Object from Enabling _memory1_conflict class

Object from
Enabling_memory2_conflict

class extends
 Enabling_memory1_ conflict

class

Fig. 17: PN when use notations

further to integrate this approach and hence to 
support direct mapping from OOD to Petri Nets 
models with object-oriented Petri net model.

THE CENTRAL SERVER MODEL EXAMPLE

The example chosen to illustrate this possibility is 
a simple central server system in which the CPU can be 
interrupted by the arrival of higher priority tasks as well 
as by failures [25]. 

CONCLUSIONS

The maturity and popularity of object-oriented
paradigms have steadily increased. One of the main 
requirements in modeling and analysis[22-27] for
complex and large software systems is that the design 
models should be unambiguous, precise and variable. 
To full these requirements, experts have suggested 
several methods which combine object-oriented method 
with formal methods. Although a number of high-level
Petri nets[23] with the concepts of objects were
suggested with a clear idea in specific concerns, they 
did not fully support suficient features that are needed 
in modeling of systems with object-oriented concepts. 
To solve this problem, we suggest an object-oriented
Petri net model OOPNM, which supports most features 
of object-oriented concepts with clear semantics.
Further, we describe the modeling and analysis methods 
for system models and making it possible to develop a 
complex system incrementally and iteratively. This has 

been achieved from such bases as encapsulated and 
modularized objects, abstract information modeling,
decomposition and refinement approach and
incremental reachability analysis.

The object-oriented Petri net model can be
transformed into CPN models that can be verified and 
validated by simulation or analytical methods such as 
place and atransition invariants. Hence, OO system can 
be checked for various exception cases or various 
behavioral scenarios. We can use existing tools that 
support OOD to design system and there are numerous 
tools that support CPN modeling.Hence, we need some 
in-built features in these tools that will automatically, or 
with human guidance, transform OOD diagrams to
CPN models [25,29].
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