
World Applied Sciences Journal 3 (4): 559-564, 2008
ISSN 1818-4952
© IDOSI Publications, 2008

Corresponding Author: Dr. H. Motameni, Department of Computer Engineering, Islamic Azad University, Sari Branch, Iran
559

Designing a Software Tool for Evaluating Qualitative Parameters
1H. Motameni, 2A. Movaghar, 3M. Ebrahimi, 3S. Peirovi and 4A. Khosrozadeh Ghomi

1Department of Computer Engineering, Islamic Azad University, Sari Branch, Iran
2Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

3Department of Computer Engineering, University of Science and Technology of Mazandaran, Babol, Iran
4Department of Computer Engineering, Islamic Azad University, Amol Branch, Iran

Abstract: UML is known as one of the most common methods in software engineering. Since this
language is semi-formal, many researches and effort have been performed to transform this language into
formal methods including Petri nets. The quality of an architectural design of a software system has a great
influence on achieving non-functional requirements to the system. Thus, the operation of verification and
validation of the qualitative and nonfunctional parameters could be achieved with more ability. In this
paper, a case tool named AriaPN which is presented for calculating performance parameters from
Generalized Stochastic Petri Net (GSPN) to be able to analyze the stochastic behavior of the system. We
discuss about them in this paper in addition to a case study.

Key words: Software engineering • UML • Generalized Stochastic Petri Net (GSPN) • Continuous Time
Markov Chain (CTMC) • Non-functional parameters • markov reward models • case tool

INTRODUCTION

Nowadays, UML diagrams are extensively used
in software design. However, the semi-formal
characteristic of this method is a limitation for
verification operations and predicting non functional
parameters is more critical control, critical reactive and
real time systems. Several researches have been
performed to tackle with the semi formal problem of
UML [1-12]. Some of these researches have only used a
transformation algorithm, which transforms the created
UML model into a Petri net which transforms model
into a Petri net as a mathematical and formal model
that, in turn, contains the visual aspect of modeling and
pursues the verification operation which further ability
[1-6]. Some of the researches in this field besides
representing a transformation algorithm (or with out
presenting an algorithm and only by using the available
Algorithm) evaluates the capability of the non
operational parameters and commonly qualitative
parameters on the obtained nets of the UML model
created [7-12]. IN our previous researches besides of
studying and presenting transformational patterns for
some kinds of usual UML diagrams, especially state
diagrams and Activity diagrams, we presented methods
for evaluating some qualitative parameters [13-17].

In this research, we present at first about evaluating
qualitative parameters. Then we discuss about AriaPN
to introduce its fundamentals, at last a case study is
introduced which is explained by AriaPN that we
designed it.

EVALUATING QUALITATIVE PARAMETERS
WITH MARKOV CHAIN THEORIES

For example, a metric for comparing the security of
different architectures can be gained by using the
equation [17]:

p pt t
p Pt T

t p
t T p P

Net

S TS f

f SJ

Security
2

∈∈

∈ ∈

    ∗ ∗   
    + 
 
  =

∑∑
∑ ∑

Where St is the data security factor associated to
the transition t, ft is the firing rate of t, Sp is the
data security factor associated to the place p, Tp
is the expected time in which there is a token in
place p. This is similar to the authors' previous
work using simulation. Identically the reliability can
be computed, but because the reliability is usually
related to the processes of system, the reliability
factor is just usually associated to the transitions
than the places [17]:

t t
t T

Net
t

t T

RL f
Reliability

f
∈

∈

 
∗ 

 =
∑
∑

Where RLt, stands for the reliability of process t.

World Appl. Sci. J., 3 (4): 559-564, 2008

560

We can compute some other parameters like those
computed above for example we can gain a metric for
comparing the availability of different architectures but
because availability is usually related to the places of
the system. Thus, the availability factor is usually
associated to the places than transitions. We can gain it
by the equation [13]:

p p
p P

p
p P

NetAvalibility

(a T)

SJ
∈

∈

=

∗∑
∑

Which Ap is the availability associated to the
transition t, tp is the expected time in which there is a
token in place P.

This is similar to our previous work using
simulation. Another parameter that we can gain a
metric is performance efficiency because performance
efficiency is usually related to the transitions of the
system it is associated to the transitions than places and
we can gain it by the equation [13]:

t t
t T

t
t T

PerformanceEfficiency Net

(P f)

f
∈

∈

=

∗∑
∑

Where tP is the performance efficiency that associated
to the transition t and ft is the firing rate of transition t.

TOOL

We have designed a case tool, AriaPN, which is
implemented by java programming language, so there
will be the possibility of GSPN drawing, edition and
calculating of qualitative parameters related to drawing
GSPN in it. One of the most important and significant
characteristics of AriaPN is the platform independency
which provides causes of its execution and using in
different hardware and operation systems [18-25].

For designing AriaPN, we have used Modeling-
View-Control pattern or MVC summary. MVC is a
pattern which has been encouraged in designing GUI
programs and in object-oriented languages very much.
One MVC program in java is made based on swing and
listener elements. When a GUI program works with an
object, it can show it using a model. Here, a model
means a complete representation of the used object by
the use of program. This model can be a graphic
picture. Program includes some views on models. Each
view of the model has its own method in contact with it
but all of them relate to general model and ultimately, a
view which relates to user interface performs it as
object controller. For instance, this object may be a
bottom or menu

Fig. 1: Model-view control

When a controller receives an order from the user,
it uses suitable information from a definite point of
view for model adjustment. Everywhere the model
changes, all views are informed and will update it. This
is considered as an excellent pattern (Fig. 1).
Reasonably every view is followed by a controller. For
example there will be only a model class but different
views by their control classes relate to the model.
Controllers will respond to done measures from the user
and where is necessary, it takes it needed information
and sends a message to the model to create some
changes in itself. In the part of case tool designing, for
each part of GSPN component, a separate class has
been considered-one class for place, one class for
transition, one class for arc and one class for inhibitor-
and in fact every place or transition which is designed
in the program, is kept in one vector from the same
class type. This program has been designed
automatically graph available from GSPN and has
obtained derived CTMC of it and by the use of Markov
theories and noted relations in the previous part, it
calculates the related amounts to qualitative parameters

Familiarity with major used parts of user: AriaPN
has three main parts for edition of a GSPN and
calculation of qualitative parameters related to it: GSPN
editor part for drawing GSPN, a property panel for
information edition related to the existed components in
the designed GSPN and result panels for representation
of the resulted messages from compile and the values of
qualitative parameters which are calculated by AriaPN

The method of working with case tool, AriaPN: In
AriaPN, there is the possibility of drawing new GSPN,
saving the designed GSPN in the program and also
retrieval saved files by this program. In this program,
component of GSPN including inhibitor, arc, immediate
transition, timed transition, place can be easily designed
by the user and show the values and primary
information needed for each of the components

Also, after drawing GSPN and giving suitable
values for information needed for all objects existing
in the designed GSPN, there is the possibility of error-
finding in the given GSPN which this error-finding is

Model

Give me
data, please!

I have
changed!

ControlView

I have
changed!

World Appl. Sci. J., 3 (4): 559-564, 2008

561

conducted automatically by the program and the error
cases are declared to the user if existing and in the
part of GSPN editor also, parts in which error has
been occurred are distinguished automatically from
other parts

The most important possibility of AriaPN which in
fact is the designing goal of AriaPN is performing the
designed GSPN in the program and calculating the
qualitative parameters by the use of Continuous Time
Markov Chain (CTMC) derived from it and the related
theories. After the required processing bye the program,
the result of parameters, evaluations are represented in
parameters part

Storage and retrieval project in AriaPN: Files caused
by AriaPN having DAT suffix and in the form of saved
object and just by the same program are renewable

For renewing of the saved files, the program reads
the file in the form of object and puts each object with
regard to its class type in the vector of that class until it
is used and represented in the program

CASE STUDY

This case study proposes a selection framework of
multiple navigation primitives for a service robot using
Generalized Stochastic Petri Nets (GSPN’s). A guide
robot ‘Jinny’ was developed by using a Petri net (PN)
based control architecture, which was designed for
multifunctional service robots.

Through their experiences they concluded it is
important for the robot adaptively to select its
navigation primitives according to the conditions of
environments. For example, in general cases, it is
advisable that the robot uses a map-based navigation
[20].

In general, navigation task is accomplished by
the cooperation of several components such as a
localizer and a path planner. As the related components
and navigation primitives increase, it becomes
troublesome to manage the relationships between
them. A major scope of this paper is to propose a
selection framework of multiple navigation primitives
for a service robot.

In this approach, modeling, analysis and
performance evaluation are carried out based on the
Generalized Stochastic Petri Nets (GSPN’s). Owing to
the formalism, the strategy has following three major
advantages. First, the framework is developed on firm
mathematical foundation. This advantage makes it
possible to set up state equations and other
mathematical models governing the behaviors of a
system. Second, the method supports modular and
incremental designs of navigation framework since
GSPN’s have powerful modeling ability. It can model
concurrency, asynchronous events, logical priority
relations and structural interactions. Also, the
transformation from GSPN model to the mathematical
representation can be automated by several free or
commercialized tools. Third, as a graphical tool,
GSPN’s can represent both static and dynamic aspects
of a system.

In this case study, It is considered two types of
navigation primitives, AutoMove and Contour tracking.
The detailed description of these motions is
summarized in Table 1.

From this observation, one rule is made for the
primitive selection. It is that if the localizer falls into
the Warning state, Contour tracking is unconditionally
selected. The criterion of this selection problem is
“which primitive leads the robot to a goal faster than
the other with guaranteeing localization safety.”

The modeling method goes through following
procedure. First, based on a given system description,
navigation primitives and required components are
identified. Primitives are designed as places and the
changes between them are modeled as transitions. Each
component is represented as an independent GSPN’s
model. You can see the resultant GSPN model which is
drown in our AriaPN environment in Fig. 2.

Table 2 describes the physical meaning of places
and transitions of the model. The GSPN model has six
places, seven timed transitions (drawn as white bars)
and three immediate transitions (drawn as black bars).

The initial marking is M0= (1, 0, 0, 0, 0, 1, 0, 1, 0),
which is denoted as P0P5P7 in the reachability graph in
Fig. 3 by specifying the places having tokens.

Table 1: Description of two navigation

Type AutoMove Contour tracking

Algorithm Shortest path planning with obstacle avoidance A (left, right, center) wall-following technique using only laser scan data

Merits Optimality (shortest path to anypoint on the maps)Reactive
Generally (applicable in any situations) Rise localization ralability

Less affected by localization accuracy

Desirable Generally applicable, but the perdormance drops An area where there are amny static feature like salls or exhibits
environment in a nerrow or crowded region

World Appl. Sci. J., 3 (4): 559-564, 2008

562

Fig. 2:

Fig. 3: The reachability graph of the system

Table 2: Description of the transition
Transition Description Firing rate
t0 Start AutoMove (Prob. p) -
t1 Start contour tracking (prob. 1-p) -
t2 (t4) Convert to contour tracking (AutoMove) λ1 (λ2)

due to performance estimation
t3 convert to contour tracking due -

to localization warming
t5 (t6) localization warming (Success) event firedλ3 (λ4)
t7 (t8) Path planner normal (Abnormal) event firedλ5 (λ6)
t9 (t10) AutoMove (Contour tracking) completed λ7 (λ8)
t11 (t12) task failed to due to no path to λ9 (λ10)

the goal (failure of contour tacking)
t13, t14 initialization λ11

The localizer has two internal states, Success and
Warning. In the initial marking, a token is assigned to
P3, i.e., it is assumed that the localizer initially knows
its position. The Warning event t5 fires when the
localizer fails in estimating robot’s accurate position for
several steps. Two navigation primitives, AutoMove and
Contour tracking, are modeled as P1, P2, respectively.
Initially, the robot selects its motion by a random
switch comprising the transitions t0 and t1 with
corresponding probabilities p and 1-p, respectively. The
transition between them takes place according to the
change of localizer states. The immediate transition t3
means that the robot takes Contour tracking as soon as
the localizer Warning event fires. The other transition
between two primitives, t2 and t4, are modeled as timed

World Appl. Sci. J., 3 (4): 559-564, 2008

563

Fig. 4: Reduced embedded Markov chain

Table 3: Description of the places

Place Description

P0 Navigation available
P1 (P2) Running AutoMove (Contour tracking)
P3 (P4) Compilation success (Failure)
P5 (P6) Localization success (Warning)
P7 (P8) State: path planner Normal (Abnormal)

transitions in order to express that the robot can change
its current navigation primitive during the localizer
Success state, if necessary. One of the most important
modeling issues is how to set the firing rates
Λ={λ1,…,λ7}. In order to perform the evaluation of
GSPN designs, it is necessary to obtain an embedded
Markov chain (EMC).

Figure 4 shows the EMC induced from the
reachability graph of Fig. 3, which is derived from
GSPN model of Fig. 2. And ft, Pt, RLt, St, Ap, tp, Sp are
as follow:

ft = ft0 … ft14} = {0, 0, 0.013, 0,800, 0.011, 800,
0.019, 789, 0.0062, 0.0053, 0.001, 0.001, 900,
900}

Pt = {Pt0 … Pt14} = {0.019, 0.058, 0.512, 0.323,
0.512, 0.032, 0.432, 0.212, 0.56, 0.003, 0.009,
0.232, 0.221, 0.531, 0.531}

RLt = {RLt0 … RLt14} = {0.487, 0.47, 0.602, 0.535,
0.441, 0.382, 0.423, 0.593, 0.409, 0.325, 0.352,
0.292, 0.432, 0.573, 0.573}

St = {St0 … St14} = {0.503, 0.508, 0.723, 0.603,
0.516, 0.512, 0.523, 0.738, 0.601, 0.473, 0.427,
0.471, 0.582, 0.529, 0.529}

Ap = {Ap0 … Ap8} = {0.198, 0.553, 0.57, 0.482,
0.089, 0.432, 0.301, 0.742, 0.462}

Tp = {Tp0 … Tp8} = {0.057, 0.193, 0.215, 0.101,
0.003, 0.112, 0.062, 0.352, 0.178}

Sp = {Sp0 … Sp8} = {0.331, 0.573, 0.527, 0.631,
0.216, 0.443, 0.405, 0.613, 0.302}

Using Equations in section 2, it is obtained:
Availability = 0.0045018, Performance Efficiency =
0.5500028, Security = 0.1776238 and Reliability =
0.3999999. This is shown in Fig. 5.

CONCLUSION

In this paper, we presented a case tool named
AriaPN for evaluating non-functional parameters.
Using the amounts of the qualitative parameters related
to a UML scheme which is calculated by this case tool,
we can asses the amount of suitability and efficiency of
our desired UML model and we can examine it. Also,
this case tool can be a suitable tool in order to
education, investigations and engineering works in
respect of designing the model. The future working
field is about the AriaPN development in such a way
that it receives UML scheme from the user and
performs automatically the conversion of UML into
GSPN and the remained works related to parameters
calculation which have been explained in this paper
[25-28]

REFERENCES

1. Faul M.B., 2004. Verifiable Modeling Techniques
Using a Colored Petri Net Graphical Language.
Technology Review Journal, spring/summer.

World Appl. Sci. J., 3 (4): 559-564, 2008

564

2. Shin, M., A. Levis and L. Wagenhals, 2003.
Transformation of UML-Based System Model into
CPN Model for Validating System Behavior. In
Proc. of Compositional Verification of UML
Models, Workshop of the UML'03 Conference,
California USA, Oct. 21

3. Bernardi, S. S. Donatelli and J. Merseguer, 2002.
From UML Sequence Diagrams and Statecharts to
Analysable Petri Net Models. ACM Proc. Int’l
Workshop Software and Performance, pp: 35-45.

4. Eshuis, R., 2002. Semantics and Verification of
UML Activity Diagrams for Workflow Modelling.
Ph.D Thesis, University of Twente.

5. Pettit, R.G. and H. Gomaa, 2002. Validation of
dynamic behavior in UML using colored Petri nets’
UML. (2000 , Zaragoza, Spain, pp: 295-302.

6. Saldhana, J. and S.m. Shatz, 2000. UML Diagrams
to Object Petri Net Models: An Approach for
Modeling and Analysis. Proc. of the Int. Conf. on
Software Eng. and Knowledge Eng. (SEKE),
Chicago10-103.

7. Elkoutbi, M. and Rodulf K. Keller, 1998. Modeling
Interactive Systems with Hierarchical Colored Petri
Nets. 1998 Advanced Simulation Technologies
Conf., Boston, MA, pp: 432-437.

8. Bernardinello, L. and F. De Cindio, 1992. A
Survey of Basic Net Models and Modular Net
Classes. LNCS, Springer-Verlag, 609: 609.

9. Balsamo, S. et al., 2004. Model-Based
Performance Prediction in Software Development:
A Survey. IEEE Transactions on Software
Engineering, 30 (5): 295.

10. Merseguer, J., J.P. L´opezGrao and J. Campos,
2004. From UML Activity Diagrams To Stochastic
Petri Nets:Application To Software Performance
Engineering. ACM, WOSP 04 January 1416, 2004.

11. Fukuzawa, K. et al., 2002. Evaluating Software
Architecture by Colored Petri Net. Dept. of
Computer Sience, Tokyo Institute of Technology
Ookayama 2-12-1, Meguro, UK, Tokyo 152-8552
Japan 2002

12. Merseguer, J., S. Bernardi, J. Campos and S.
Donatelli, 2002. A Compositional Semantics for
UML State Machines Aimed at Performance
Evaluation. Silva, M., A. Giua and J.M Colom
(Eds.). Proc. of the th Intl. Workshop on Discrete
Event Systems) WODES'02), Zaragoza, Spain,
pp: 295-302.

13. Motameni, H et al., 2006. Mapping State Diagram
to Petri Net: An Approach To use markov Theory
For Analyzing non-Functional Parameters. IEEE,
International Conferenceon Computer, Information
and System Science, December 4_14 2006,
University of Bridgport, USA (presented).

14. Motameni, H. et al., 2006. Using Markov Theory
For Deriving Non-Functional Parameters On
Transformed Petri Net From Activity Diagram.
Proc of software engineering conference (Russia),
16-17 November 2006, Moscow, Russi,
(Presented).

15. Motameni, H., M. Zandakbari and Movaghar,
2006. Deriving performance parameters from the
activity diagram using gspn and markov chain.
ICCSA 2006 Proceeding of 4th International
Conference on Computer Science and Its
Aapplications, San Ddiego,California.

16. Motameni, H. et al., Evaluating UML State
Diagrams Using Colored Petri Net" SYNASC'05.

17. Motameni, H. et al., 2005. Verifying and
Evaluating UML Activity Diagram by Converting
to CPN. Proc. of SYNASC'05, Romania, Sep 2005,
(presented).

18. Object Management Group, UMLTM Profile for
Schedulability, Performance and Time
Specification, OMG Document, Version 1.1,
January 2005.

19. Rumbuaugh, J., M. Blaha, W. Premerlani, F. Eddy
and W. Lorensen, 1991. Object-Oreinted Modeling
and Design. Prentice hall, Englewood Cliffs, NJ,
USA.

20. Wang, lu, 2005. Fuzzy UML. Seminararbeit,
Sommersemester.

21. Zongmin, Ma., 2005. Fuzzy Information Modeling
With the UML. Idea.

22. Ma, Z.M., 2004. Extending UML For Fuzzy
Information Modeling In Object_Oriented
Database. Theories and Practices, Idea Group
Publishing.

23. Murata, T., 1989. Petri Nets: Properties, Analysis
and Applications. Proceedings of IEEE, 77: 540-
541.

24. Bernardinello, L., F. De Cindio, (Ordinary) Petri
Nets (PN), <http://www.daimi.au.dk/PetriNets/
classification>(accessed July 2005).

25. Jensen, K., 2005. Colored Petri nets (CPN),
http://www.daimi.au.dk/PetriNets/classification/lev
el3/CPN.html> (accessed July 2005).

26. Burcin Bostan-Korpeoglu and Adnan Yazici, 2006.
A Fuzzy Petri Net Model For Intelligent Database,
Data and Knowledge Engineering (2006), Elsevier.

27. Nihal, Y.Ö., 2007. On the Numbers of the
Form n = x2 + Ny2, World Applied Sciences
Journal, 2(1): 45-48.

28. Erçetin, S.S., B. Çetin and N. Potas, 2007. Multi-
Dimensional Organizational Intelligence Scale
(Muldimorins), World Applied Sciences Journal,
2(3): 151-157.

