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Abstract: The dam is a part of civil works for the irrigation and flood control purposes. Specially, arch 
concrete dams have important characteristics because of high safety, economical design, designing 
complexity and its applications. Most of structure failures take place because of ingredients fracture. This 
event occurred by cracks witch their development is considered as a serious threat for the behavior of the 
structure. The exhibition methods of the cracks are classified in groups of Structural Health Monitoring 
(SHM) methods. The effect of cracks on the behavior of a structure is local stiffness differences that have 
great effects on the dynamic treatment of the structure. This matter is very significant in the difference 
between natural frequency and mode shapes, so analysis it will be lead to detect the crack. The new and 
useful method that has located in the of signal Analysis discussion has encounter with researches reception 
that is named as Wavelet Transform (WT). This transform is one of the useful mathematic transform
methods witch have a high ability in recognition of inconsistencies by index of Wavelet Transform graph in 
the shape of one or two close points that have noises in relation which other points. So, in this paper, first 
the theory of wavelet analysis is presented including continuous and discrete wavelet transform followed 
by its application to SHM. Then, using frequency analysis response of dam with ABAQUS software, crack 
detection possibility has been researched in dam structure under Wavelet analyzing in MATLAB software 
toolbox.
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INTRODUCTION

Water with good quality and in sufficient quantity 
is a basic requirement for humanity. Reservoirs and 
concrete dams that create those reservoirs provide a 
means to balance the fluctuation of natural water flow. 
Multipurpose reservoirs can serve for drinking water, 
irrigation in agriculture, production of clean renewable 
energy, recreation and flood protection. So, concrete 
arch dams and detection of probable damage on its 
body play a vital role in the infrastructure of many 
states for the provision of water resource and saving 
money.

It is necessary to use scientific methods for
reducing cost and time and also to meet industry
requirements. Finite Element Method (FEM) is
employed to solve different engineering problems in 
permanent, temporary, linear and nonlinear states [1]. 
Among finite element method software, the ABAQUS 
software  is  used because of high accuracy and ability 
of  dynamic  analysis such as earthquake and water 
wave loading on structures. This software is accurate 
research software and is employed in industry and 
university settings [2]. In order to Detection of damage, 

investigation of its incidence effects is necessary.
According to theoretical principles of structure, there is 
a relationship between dynamic and static response and 
stiffness as a result [3]. Any sudden change in stiffness 
leads to dynamic and static response variation. This 
condition will help to an estimate damage and
investigation of structural response before and after 
failure (Structural health monitoring) [4]. 

Wavelet method is a new and effective method for 
the realization of structural damage. There is a close 
relationship among wavelet method and frequency and 
time issues. The ability of this method is high in
recognition of damage location. Wrong and lieu (1998) 
proposed articles about fracture discovery by wavelet 
method. They explained fracture recognition in beam
by simple support (5). Currently, Lie and Chen (2001) 
published another article and they proposed a method 
based on Wavelet Finite Element Method (WFEM) in 
order to recognition of damage specifications. This 
method addresses to realization of damaged location 
like beam Fracture [6]. 

For many years, damage identification methods 
have been studied by a number of researchers while the 
importance  of Nondestructive Evaluation (NDE) of the 
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civil infrastructure has been significantly increasing.
Damage detection is the first level of the more general
problem of damage identification. A further analysis 
and subsequent levels of damage identification of a 
structure include: classification and severity of damage, 
determination of the location of damage, prediction of 
possible breakdown or failure, and estimation of the 
remaining service life [7, 8]. The modal analysis
method one of many NDE methods, is based on the fact 
that the change of structural properties causes a
variation in the different modal parameters; namely
natural frequencies, damping ratios and mode shapes. 
Many analytical and experimental studies have been 
conducted to establish analytical correlations between 
damage severity and modal parameters. About 60 years 
ago Kirmser reported the relationship between natural 
frequencies and the introduction of a crack in an iron 
beam [9]. The use of mode shapes to study the dynamic 
behavior of structures requires that a number of
accelerometers  be  installed  on the structure. However, 
a  wavelet  analysis  can  make  it  possible to evaluate 
the soundness of structures by using only one
accelerometer  strategically  located  on  the  structure 
[10, 11]. Moreover, in order to detect damage using 
modal based methods, a complete dynamic analysis is 
often required and is usually performed by a finite
element analysis method to locate and quantify the
damage. This procedure has several difficulties: First, it 
is not always possible or convenient to measure the 
vibration response of a structure before damage.
Second, it is often not feasible to conduct a detailed 
dynamic analysis of a complete structure. Third, it is 
sometimes difficult to obtain accurate material
properties for a dynamic analysis. Furthermore, it is not 
easy to extract local information caused by small
damage from modal parameters that characterize the 
global behavior of a structure [12]. In order to eliminate 
these difficulties wavelet-based damage detection has 
been considered by several researchers over the last 
decade. Historically, wavelets were first applied in
geophysics to analyze data from seismic surveys, which 
are used in oil and mineral exploration, to get ‘pictures’ 
of layering in surface rock. In fact, geophysicists only 
rediscovered wavelets; mathematicians had developed 
them to solve abstract problems some twenty years 
earlier but had not anticipated their applications in 
signal processing [13]. While Fourier analysis consists 
of the breaking up of a signal into sine waves of various 
frequencies and phases, wavelet analysis is a breaking 
up of a signal into shifted and scaled versions of a 
mother wavelet or basis function. These results in 
variable sizes of a window function and make it
possible to detect the discontinuities and breakdown 
points   of  data  that  other  analyzing  methods  usually 

miss. The first researcher known to have applied
wavelet to vibration analysis is Newland [14-16]. He 
applied a wavelet analysis for the study of vibration of 
buildings caused by underground trains and road traffic 
by which he found the similarities between the response 
signals  in each floor.

WAVELET THEORY

Basis function: The Fast Fourier Transform (FFT) is a 
perfect tool for finding the frequency components in a 
signal. A disadvantage of the FFT is that frequency 
components can only be extracted from the complete 
duration of a signal. The frequency components are 
obtained from an average over the whole length of the 
signal. Therefore it is not a suitable tool for a non-
stationary signal such as the impulse response of
cracked beams, vibration generated by faults in a
gearbox, and structural response to wind storms, just to 
name a few. These types of problems associated with 
FFT can be resolved by using wavelet analysis.
Consequently, wavelet analysis has recently been
considered for damage detection and Structural Health 
Monitoring (SHM). It provides a powerful tool to
characterize local features of a signal. Unlike the
Fourier transform, where the function used as the basis 
of decomposition is always a sinusoidal wave, other 
basis functions can be selected for wavelet shape
according to the features of the signal. The basis 
function in wavelet analysis is defined by two
parameters: scale and translation. This property leads to 
a multi-resolution representation for non-stationary
signals. As mentioned before, a basis function (or
mother wavelet) is used in wavelet analysis. For a
wavelet of order N, the basis function can be
represented as

N 1
j

j
j 0

(n) ( 1) c ( 2 n j N 1)
−

=

ψ = − + − +Σ (1)

Where cj is coefficient. The basis function should 
satisfy the following two conditions [17, 19]: The basis 
function integrates to zero, i.e.

(t)dt 0
∞

−∞
ψ =∫ (2)

It is square integrable or, equivalently, has finite 
energy, i.e.

2
(t) dt

∞

−∞
ψ <∞∫ (3)

Eq. (2) suggests that the basis function be
oscillatory  or  have  a  wavy shape. Eq. (3) implies that 
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most of the energy in the basis function is confined to a 
finite duration. The important properties of basis
functions are ‘orthogonality’ and ‘biorthogonality’.
These properties make it possible to calculate the
coefficient very efficiently. There is no redundancy in 
the sense that there is only one possible wavelet
decomposition for the signal being analyzed. However, 
not all basis functions have these properties. A
frequently mentioned term in the definition of a basis 
function is ‘compact support’, which means that the 
values of the basis function are non-zero for finite 
intervals. This property enables one to efficiently
represent signals that have localized features.

CONTINUOUS WAVELET TRANSFOM (CWT)

The CWT is defined as:

21 t b
W(a,b) f(t). ( )dt

aa
−

= ψ∫ (4)

Where a and b are scale and translation parameters,
respectively and ψ* w is the complex conjugate of ψ.
The basis function ψ is represented as

j
j2

j.k (t) 2 ( 2 t k)ψ = ψ − (5)

If the scaling parameter a, is 0<a≤1, it results in 
very narrow windows and is appropriate for high
frequency components in the signal f (t). If the value of 
a, is a≥1 it results in the very wide windows and is 
suitable for the low frequency components in the signal. 
According to the uncertainty principle (also known as 
Heisenberg inequality), the resolution in time and
frequency has the following relationship:

1
t f

4
∆ ∆ ≥

π
(6)

And ∆f is proportional to the center frequency f, which
leads to:

f
C

f
∆

= (7)

Where C is a constant. Therefore, the time resolution
becomes  arbitrarily  good  at  high frequencies, while 
the   frequency   resolution  becomes  arbitrarily  good
at low frequencies [19]. This property helps to
overcome the limitation of Short Time Fourier
Transforms (STFT) in which the time-frequency
resolution is fixed. In order for  an  inverse  wavelet
transform  to  exist, the mother wavelet should satisfy 
the admissibility condition defined as:

2(t)
d

∞

−∞

Ψ
ω < ∞

ω∫ (8)

Where Ψ is the Fourier transform of ψ [20]. Eq. (4) can
be represented as

*
a , bW(a,b) f(t), (t)= ψ (9)

Therefore, CWT is a collection of inner products of 
a signal f (t) and the translated and dilated wavelets 
ψa,b(t). The value of the scale a is proportional to the
reciprocal of the frequency which results from:

tF ( ) a (a )a
 ψ = ψ ω  (10)

Where F[] daenotes the Fourier transform.

DISCRETE WAVELET TRANSFOM (DWT)

The main idea of DWT is the same as that of CWT.
While the CWT requires much calculation effort to find
the coefficients at every single value of the scale
parameter, DWT adopts dyadic scales and translations 
(i.e. scales and translations based on powers of two) in
order to reduce the amount of computation, which
results in better efficiency of calculation. Filters of
different cutoff frequencies are used for the analysis of 
the signal at different scales. The signal is passed 
through a series of high-pass filters to analyze the high 
frequencies, and through a series of low-pass filters to
analyze the low frequencies. In DWT the signals can be
represented by approximations and details. The detail at 
level j is defined as

j j ,k j.k
k z

D a (t)
∈

= ψ∑ (11)

Where a Z is the set of positive integers. The
approximation at level J is defined as: 

j j
j J

A D
>

=∑ (12)

Finally, the signal f (t) can be represented by [20]

j j
j J

f ( t ) A D
≤

= +∑ (13)

As opposed to the CWT where only a wavelet 
function   is   used, in DWT a scaling function is used, 
in  addition  to  the  wavelet function. These are related 
to low-pass    and   high-pass   filters, respectively. The
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scaling function φ(t)  must  satisfy  the  following 
three conditions [18]:

• It integrates to one:

(t)dt 1
∞

−∞
φ =∫ (14)

• It has unit energy:

(t)dt 1
∞

−∞
φ =∫ (15)

• The set consisting of φ(t) and its integer translate is
orthogonal:

( )(t), (t n) nφ φ − = δ (16)

The scaling function can also be represented as:

N 1

j
j 0

(n) c (2n j)
−

=

φ = φ −∑ (17)

j
j2

j , k(t) 2 ( 2 t k)φ = φ − (18)

Which are similar to Eq. (1) and (5), respectively. 
Not all wavelet functions have scaling functions. Only 
orthogonal wavelets have their scaling functions. This 
DWT can be very useful for on-line health monitoring
of structures, since it can efficiently detect the time of a
frequency change caused by stiffness degradation.
Further details about wavelet theory can be found in the
literature [17, 19, 20].

STRUCTURAL HELTH MONITORING (SHM)

In order to extend the life of facilities more
attention should be given to infrastructures and
buildings. Even though structures are normally
designed to last 50-100 yr, overloads, excessive usage, 
exposure to extreme weather or environmental
conditions and other unexpected factors can cause more 
rapid deterioration of structures. In general, the
development of successful health monitoring methods
depends on two key factors: sensing technology and the 
associated signal analysis and interpretation algorithm. 
Over the past 10 yr, wavelet theory has been one of the 
emerging and fast-evolving mathematical and signal
processing tools for vibration analysis [21]. This new 
signal processing tool made it possible to decompose 
and  reconstruct  the measured  raw  data  efficiently. 
Al-khalidy et al. published numerous papers about
damage detection using wavelet analysis [22, 23]. Their 

main objective was to develop an on-line system to 
monitor the damage rate of a structure to assure its 
safety during severe environ-mental loading such as 
earthquake events. Estimating the damage rate of
structures caused by low cycle fatigue loads is
important to assure the safety of structures. However, it 
is difficult to detect the fatigue signals and to estimate 
the damage rate of structures from the detected signals. 
They applied the orthonormal discrete wavelet
transform to the detection of fatigue signals from the 
observed signals contaminated by noise. In the
orthonormal basis, the wavelet expansion of a function 
x(t) and the coefficients of wavelet expansion are
defined as:

j,k j , k
j k

(t) (t)π = α ψ∑∑ (19)

*
j,k j,kx(t) (t)dt

∞

−∞
α = ψ∫ (20)

Where αj,k are the coefficients of the wavelet
expansion of x(t). The structure in the study is
represented by a simple mass-spring-dashpot model and 
the governing differential equation of motion of the 
system is given by:

2

i2
i 1

d dm x(t) c x(t) kx(t) f ( t ) y(t) S (t )
dt dt =

+ + = = + δ − τ∑ (21)

Where m, c and k are system mass, viscous
damping coefficient, and stiffness, respectively; x(t) is 
the displacement response and f(t) the external
excitation is assumed to be a sum of the seismic
excitation, y(t) and a sequence of impulses occurring at 
random times. The impulses model the fatigue damages 
occurring at random times τi(i=1,2,…n) with a
magnitude S. The wave-let transform clearly picked up 
the exact time of impulse occurrence in the input. The 
researchers found that several factors played a role in 
the successful detection of the impulses in the input 
force, such as sampling rate, wavelet regularity, and 
signal-to-noise ratio. They also found that increasing 
the sampling rate makes it easier to detect the impulses. 
The higher the sampling rate is, the more the signal will 
overcome the noise. However, the magnitude of the 
wavelet coefficients αj,k decreases by 2-3 orders of 
magnitude when increasing the sampling rate from 8 to 
100 Hz. They suggested that if the noise level is low, 
high sampling rates should be adopted and vice versa.

Robertson et al. [24] presented a wavelet-based
method for the extraction of impulse response functions 
(Markov parameters) from measured input and output
data.  The input  data  and  the  Markov  parameters  are 
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approximated by the locally orthogonal 8 term
Dubieties wavelet functions, which leads to a simple
representation of the convolution integral in the wavelet
domain. They also performed structural system
identification  using  the Markov  parameters extracted
by the wavelet analysis [25]. The modes, mode shapes
and damping parameters of the state space based model 
were found.

Kitada [26] proposed a method of identifying non-
linear structural dynamic systems using wavelets. This
method made it possible to determine stiffness and
damping coefficients of a structure with severe material
nonlinearity without any assumption about nonlinear
characteristics of the structure. Other research studies
aimed at determining modal parameters using wavelets
can be found in the literature [27-29].

Hou et al. [30] provided numerical simulation data
from a simple structural model with breakage springs.
The governing equation of motion of the system is
given by

2

2

d d
m x(t) c x(t) k(t)x(t) f(t)

dt dt
+ + = (22)

The system stiffness k(t) is expressed by:

n

i
i 1

k(t) k( t )
=

= ∑ (23)

Where ki(t) represents the stiffness of the ith spring 
in the system at time t. If breakage of a spring occurs 
due to an excessive response, ki(t) is defined by:

*
i0, i

i

k if (x(t)) x t t
k( t )

0,otherwise

 ′ ′≤ ∀ ≤= 


(24)

Where ki0 and xi* are the initial stiffness and the 
thresh-old value of the ith spring, respectively.
However, if a spring is broken because of fatigue, ki(t)
is determined by:

*
i0, i

i
k ifN(t) N t t

k( t )
0,otherwise

′ ′ < ∀ ≤= 


(25)

Where N(t) is the total number of cycles of the 
response in the time interval [0, t] and Ni is the
allowable number of cycles for the i th spring. In order 
to calculate Eq. (22) fourth-order Runge-Kutta
integration is used. The discrete wavelet transformation 
of the response curve showed clear spikes, which they 
attributed to the occurrence of structural damage. The 
authors also investigated the noise intensity and damage 

Fig. 1: A sketch of three DOF spring-mass-dashpot
model (from [25] with permission from CRC
Press)

severity. They provided a delectability map that
represents a qualitative relationship between the noise 
intensity and damage level. In conclusions, the authors 
state that structural damage or the change in system 
stiffness may be detected by spikes in the details of the 
wavelet decompositions of the response data. In another
research performed by Hou and Noori [31] a MDOF
model with three degrees of freedom is used, as shown
in Fig. 1, instead of a SDOF model.
The total inter-mass stiffness ki(t) is expressed by:

in

i ij
j 1

k (t) k (t)
=

=∑ (26)

Where kj(t) represents the stiffness of the jth spring 
of the ith mass in the system at time t.

The objective (compared to their previous study) is
to identify the location of damage in the structure. The
details in discrete wavelet transform of each external
excitation show the moment when a spring is broken.
Therefore, the location of damage can be identified.

Hou and Hera [32] proposed pseudo-wavelets to
identify system parameters, and the associated pseudo-
wavelet transform was developed. One of the pseudo
wavelets that is based on the Fourier amplitude
response function for a linear SDOF system subjected
to an impulse input is defined as

2

2

*
* * 0
0 0

2 * 2 * 2 2
0 0 0

W( ; ; )
( ) (2 )

ω
ω ω ς = β

ω − ω + ς ωω
(27)

Where ω0
* is the shifting parameter, ζ0

* is the scaling 
factor, and β b is a normalizing factor. The pseudo-
wavelet transform (PWT) can then be defined as:

* * * *
F 0 o 0 00

C ( , ) F( )W( ; ; )d
∞

ω ς = ω ω ω ς ω∫ (28)

Where Cf is the pseudo-wavelet transform of F(ω). For
a  MDOF  system, the truncated PWT was used and
was  found  to  be  much more accurate compared to the
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non-truncated pseudo-wavelet transform approach. The
truncated PWT involves constructing a truncated
response spectrum by setting the transform to zero for
any frequency outside the frequency range determined
in the neighborhood of a local maximum.

Another approach to locate damage is to study the
curvature mode shapes and wavelet maps. The residual
of a mode shape is the difference between the damaged
and undamaged mode shapes. The curvature of the
residual of a mode shape is the second derivative of the
residual of this mode shape. This is referred to as the
curvature mode shape. Wavelet transforms can then be
applied to the curvature mode shapes. However, when
applied to stationary signals (such as mode shapes of a
vibrating structure), curvature mode shapes and wave-
let maps fail to determine the exact location of the
damage. Amaravadi et al. [33] proposed a new
technique that combines these two methods for
enhancing the sensitivity and accuracy in damage
location. First, the curvature mode shape is calculated 
from the residual of individual mode shapes. Then a
wavelet map is constructed for each curvature mode 
shape. The proposed technique was experimentally
verified using a lattice structure made of vertically 
stacked aluminum beams, and a cantilever beam.
Damage was simulated as side notches in one of the 
beams. The results show that the proposed method 
accurately predicts the location of the damage. Since 
the wavelet number indicates the location of damage, 
the accuracy of this method depends on the number of 
wavelet coefficients contained in the signal.

In WT analysis, the frequency resolution becomes 
quite poor in the high frequency region. To overcome 
this drawback Sun and Chang [11] applied the wavelet 
packet transform (WPT) instead of WT to the dynamic 
signals measured from a structure. WPT is another
extension of WT that provides complete level-by-level
decompositions. The wavelet packet component signal
fi

j(t) can be expressed by a linear combination of wave
let packet functions ψi

j,k(t) as follow:

i i i
j j,k j,kf (t) c (t)

∞

−∞

= ψ∑ (29)

and the coefficients ci
j,k are obtained from

i i
j,k j,kc f(t) (t)dt= ψ∫ (30)

provided that the wavelet packet functions are
orthognormal. For damage detection, location and
severity, a three-span bridge model is used. The
response of the bridge model to an impact force is 
measured  and then decomposed by WPT. The next step 

is to calculate the component energy at each level and 
this energy is used as inputs into neural network models 
for damage assessment. The researchers found that a 
neural network model is capable of identifying the
presence of damage that corresponds to as small as 4% 
of the rigidity reduction in any element. For damage 
location and severity, another neural network model 
could locate and quantify moderate (10-20% EI
reduction) and severe (20-30% EI reduction) damages. 
Liu et al. [34], Wu and Du [35], and Hwang et al. [36]
also used the wavelet packets or wavelet basis neural 
network for damage detection.

Gurley et al. [37] developed a wavelet-based
coherence and bi coherence technique in order to detect 
intermittent first-and higher-order correlation between a
pair of signals. The classical approach for reduction of
variance is to perform ensemble averaging by using
localized time integration. In this study, the
introduction of a variable integration window was
predicated on the multi resolution character of wavelets 
and high-lighted that the lack of ensemble averaging 
results in much of the observed spurious coherence. 
These correlation schemes can be applied in problems 
involving wave-structure interactions or seismic
response of structures where intermittent correlation 
between linear and nonlinear processes is of interest.

Accordingly, by obtaining geometrical dimensions 
of karoon1 case studied dam from related designing 
map and also its mechanical and physical
characteristics in damaged and safe cases, the damage 
was modeled by ABAQUS software. Support condition 
and physical properties are the same for both sates.

MODELINGOF THE DAM 
BY ABAQUS SOFTWARE

A case study has been done to make finite element 
model.  It  can  be  a real model or simulated one. 
Besides of difficulty of creating and analyzing a real 
model rather than a simulated one, its results will be 
accurate and real. Meanwhile, by investigation of dam 
model and prediction of structure behavior, probable 
weak   points   under  applied  load  can  be  realized. 
So, the information of Karoon1 (Fig. 1 and 2), double-
curvature arch dam, was prepared and its real model 
was created exactly from designing map. In this dam, 
internal and external radiuses, internal and external
angles of arches are vary depend on their level. The 
axis which passes through arches’ center is not
asymmetrical.  So, this dam is considered as one of the 
most complex dams. Table 1 summarized the
specifications of mentioned dam body.

The finite element model of both safe (Fig. 3) and 
damaged  (Fig.  4  and  5)  states of dam was created by 
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Table 1: Geometrical specification of karoon1 dam

6 m Thickness at Crest Double curvature arch dam Dam type

177.5 m Normal water level 372 m Length of crest
0.2 Poason concerete coefficent 200 m Height from foundation
2400 kg/m3 Concrete density 33.5 m Thickness at base

Table 2: The frequencies of the first four modes 

Fourth mode freqency Third mode freqency Secound mode freqency First mode freqency Sample

3.3423 2.9860 2.1455 1.8680 Safe
3.3181 2.9735 2.1354 1.8614 Cracked

Fig. 1: Plan of Karoon1 dam

Fig. 2: Upstream view of karoon1 dam

ABAQUSE software and then analyzed in the
frequency bond of (0-100 Hz). The dam has a quadratic 
surface. Therefore the 3-dimension solid element
(C3D20RH) was used in modeling of dam’s geometry 
to fit the finite element model with its real geometry. A 
crack with dimensions of 10m (in height) by 4m (in 
depth) by 0.2m (in width) has been supposed at the 
crest level in midpoint of up stream of dam (Fig. 5). 

Fig. 3: Finite element mesh of safe dam body

Fig. 4: The model of cracked dam under frequency 
analysis

FREQUENCY ANALYSIS OF DAM

In this study, the responses of two Frequency 
analyses were studied. Results showed that the
frequency has been reduced in models that have crack. 
Table 2 presents the values of the first four frequencies 
of both cracked and safe models.
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Fig. 5: The details of meshing of cracked dam in ABAQUS software

Fig. 6: SWT window in MATLAB software

GRAFICAL WINDOW OF STATIONARY 
WAVELET TRANSFORM

A set of frequencies, which are being created
during the short period of time, could repeat in another 
period of time. These types of signals are called
stationary signals. Figure 6 shows SWT window.

According to Fig. 4, followings are identical in 
graphical window:

• Input signal 2-Signal without noise
• Signal with noise 4. Decomposed: signal with noise
• Decomposed: signal with out noise

The indices of analyzed signals (d1, d2) relate to 
selected level number.

ANALASIS OF SAFE-DAM WITH WAVELET

After analysis of dam by ABAQUS software, the 
responses  were used for wavelet analysis by MATLAB 

software in special toolbar of wavelet. In safe model, in 
the first frequency mode, the displacement responses of 
96 points at crest level with equal distances have been 
took in two directions; involve width direction of dam 
(U1) and reservoir length direction (U2). This response 
that had 1.8650 Hz frequency has been analyzed in 
different scales. Because of paper space limitation, five 
results  by  Sym2 wave (scale 2) have been shown in 
Fig. 7 and 8.

ANALYSIS OF CRACK-DAM WITH WAVELET

Similarly, the response of cracked dam was
considered in first frequency mode in ninety-six points 
of dam at crest level in equal distances. Displacements 
are in width direction of dam (U1), reservoir direction 
(U2)   and   perpendicular  direction  to  dam  width
axis (U3). Figure  9  shows  cracked dam analyzed 
model. Fig. 10-12 indicate results.

According to the figures, the graphs involve
considerable rise at or around crack location. But there

21

3

4 5
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Fig. 7: The graph of SWT for safe sample response under Sym2 wavelet analyzer (Mode1-U1)

Fig. 8: The graph of SWT for safe sample response under Sym wavelet analyzer (Mode1-U2)

Fig. 9: Cracked dam analyze mode1 by ABAQUS software
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Fig. 10: The graph of SWT for response of cracked dam under Sym2 wavelet analyzer (Mode1-U1)

Fig. 11: The graph of SWT for response of cracked dam under sym2 wavelet analyzer (Mode1-U2)
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Fig. 12: The graph of SWT for response of cracked dam under sym2 wavelet analyzer (Mode1-U3)

Fig. 13: SWT for response of safe dam under Ciof
wavelet analyzer (Mode1-U2)

Fig. 14: SWT for response of cracked dam under Ciof 
wavelet analyzer (Mode1-U2)

Fig. 15: SWT for response of safe dam under Bior
wavelet analyzer (Mode1-U2)

Fig. 16: SWT for response of cracked dam under Bior 
wavelet analyzer (Mode1-U2)
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Fig. 17: SWT for response of safe dam under Db
wavelet analyzer (Mode1-U2)

Fig. 18: SWT for response of cracked dam under Db 
wavelet analyzer (Mode1-U2)

Fig. 19: SWT for response of safe dam under Dmey 
wavelet analyzer (mode1-U2)

Fig. 20: SWT for response of cracked dam under Dmey 
wavelet analyzer (Mode1-U2)

was no noise or any harmony in graphs of safe dam 
(Fig. 7 and 8). In other words, the location of crack is in 
central of crest level in location of 48th point (center of 
96 selected points).Wavelet-transform has been used to 
recognition of damage place for characteristic of SWT 
which are different from other methods. It has high 
clearance ability to distinguish of different frequencies. 
SWT can show the location of frequency changes that 
these locations are points that they have been damaged. 

The results of analysis with other wavelets have 
been shown in Fig. 13-20 only in noise state (because 
of paper limitation) in safe and damaged dam in
reservoir direction (U2). As figures indicate,
recognition of crack location is possible.

CONCLUSION

• Wavelet-transform has high ability in analysis of 
static and dynamic response signals. This property 
is clear in recognition of discrete and
uncoordinated situations such as sudden fluctuation
in stiffness. 

• The effects of damage on wavelet coefficient graph 
are more compressed in low scales and the location 
of noise is clear. Meanwhile, increase in scale
which is corresponding with decrease in frequency 
leads to wide spreading noise and low clearness.

• Selection of proper scale is important in wavelet 
analysis. Higher scales are recommended for
recognition of small damages and low scales are 
recommended for recognition of damages near
support.

• By investigation of wavelets type in low scales, 
Dmey, Sym, Bior, Ciof, Db and Haar wavelets are 
introduced as a useful wavelets in crack detection. 
As experienced in this research, Coif, Db and Sym 
wavelets have suitable efficiency in recognition of 
crack location rather than other wavelets.
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