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Abstract: Random waves at sea exert great forces on offshore structures. Jacket platform is a special type 
of offshore structures which is chiefly composed of tubular elements. Considering the several applications 
of these structures in marine industry, they should be designed under large forces caused by random waves. 
The forces on these elements, due to waves, can mainly be divided into two components namely inline 
force and transverse or lift force. Since inline force is usually greater and less complicated than lift force, it 
is mostly considered in analysis and design procedures. In this case, Morison equation is usually used as a 
computational method which needs two different coefficients, named drag and inertia, to determine the 
inline force. Choosing an appropriate method for determining these coefficients for a specified data is hard 
and their computing is a time-consuming affair. Usually, using these methods do not lead to suitable results 
because they do not involve all real environmental conditions. In this paper, to be free of determining the 
coefficients and other computations, we propose neural network method as a very good substitute for 
Morison equation as a simpler, easier and faster solution. 
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INTRODUCTION

Offshore platforms have many applications, such 
as oil exploitation, military purposes and research
stations and so on. An offshore platform, as well as 
dead and service loads, is under other loads that vary 
with time. These loads are mostly due to waves and 
currents.

The computation of the water wave forces on an 
offshore structure is one of the primary tasks in the 
design of the structure. It is also one of the most 
difficult  tasks  since  it  involves  the  complexity  of 
the  interaction  of  waves  with  the structure.
Moreover, the random nature of sea waves and the
inadequacy  of  even  some  of  the highly nonlinear 
wave  theories to describe  it,  its  effect  on  the 
offshore structure is obviously even more difficult. 
Nonetheless, some of the theories available today
coupled with our understanding of the interaction
phenomenon through analytical studies, laboratory
experiments and at sea measurements are reasonably 
accurate in predicting wave loads on a variety of
offshore structures but their computing is a time-
consuming affair [1].

The nature of wave forces on offshore structures, 
as the same as random sea, is random. It is necessary to 
say that it will be a more sophisticated trend when we 
deal with large forces caused by oscillatory loads
resulted from random waves than regular waves. 

Since tubular elements are usual elements in
constructing offshore structure, they are mostly used in 
research approaches. The forces on these elements, due 
to sea waves, can mainly be divided into two
components, namely, inline force and transverse or lift 
force. The inline force acts along with wave
propagation direction but lift force acts in transverse 
direction. Random nature of inline force is like waves 
and nearly resembles sea surface oscillations. Hence, it 
has a linear relationship with waves whereas the nature 
of lift force is different from sea surface oscillations 
and has a nonlinear relationship with waves (Fig. 1).

Wave forces on offshore structures are calculated 
in three different ways: Morison equation, Froude-
Krylov theory and diffraction theory. In order to
determine where these three methods are applicable a 
simple dimensional analysis is performed first [1].

The Morison equation assumes the force to be 
composed of inertia and drag forces linearly added 
together. The components involve an inertia (or mass) 
coefficient and a drag coefficient which should be
determined experimentally for different environmental 
conditions. Many researches have been done and good 
predictions resulted in determining these coefficients 
but still errors are considerable. Usual engineering 
practice is to assume them constant. This equation is 
applicable when the drag force is significant. This is 
usually the case when a structure is small compared to 
the water wavelength. Since the experimental data been 
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Fig. 1: Wave surface profile, inline and transverse forces at a period of time

used in this research, has the case which Morison
equation applies for, this method is used among the 
other methods.

The main objective of this paper is the evaluation 
of neural network ability in predicting the inline force 
in comparison with Morison equation as a conventional 
method.

This paper, firstly contains a review on Morison 
equation and the methods of determining its
coefficients then neural network method and our
proposed networks used in this research for inline force 
prediction are introduced. 

EXPERIMENTS

The data used in this research are from the
experiments done in delta wave flume of Delft
Hydraulics Laboratory (DHL) in the Netherlands. The 
flume is approximately 250m long, 5m wide and is 
normally filled with water to a depth of 5m. The waves 
are generated by a hydraulically driven plane
waveboard   and  their  energy  is  dissipated  at the 
other end of the flume through the use of a sloping 
concrete beach. The facility is capable of generating 
both regular and random wave trains. Various random 
wave spectra can be generated with the JONSWAP
spectrum being most commonly used. The random
waves  used  in  these tests were based on the
JONSWAP spectrum of H=1.5m significant wave
height and T = 5.9 s mean period.

All physical positions of the cylinders and
measuring instruments are referred to a standard
Cartesian axis system in the flume, where the origin is 
at the mean water level on the centre line of the flume 
and the positive x direction is from the wave generator 
paddle and towards the beach (Fig. 2a and 2b). 
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Fig. 2: Delta wave flume

Figure 2c shows the general elevation of cylinders 
when mounted in the flume. The large fixed cylinder 
used in this experiments has two force measuring
sleeves at elevations of 1.5m and 2.5m below the mean 
water level. The length of the sleeves is 0.5 diameters 
(0.5D) and both are capable of measuring both the in-
line (x) and transverse (y) forces. Wave height gauges 
were positioned at the same downstream position as the 
cylinder. The flow velocity was always measured at the 
same elevation and downstream position as the force 
sleeves [6].

The data of the fixed cylinder with 0.5m diameter 
and the roughness of k/d= 0.038 at the elevation of 
1.5m below the mean water level, under the effect of 
random waves, were used in this research.

These data has been contaminated with unwanted 
noises during the experiments. The Matlab program 
command "filtfilt" was used in order to remove these 
noises. Sampling frequency of 40 HZ has been used in 
these experiments.

t (sec)
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MORISON EQUATION

The Morison equation was developed in describing 
the horizontal wave forces acting on a vertical pile 
which extends from the bottom through the free surface. 
The equation says that the force exerted by unbroken 
surface waves on a vertical cylindrical pile is linearly 
composed of two terms, inertia and drag. The principle 
involved in the concept of the inertia force is that a
water particle moving in a wave carries a momentum 
with itself. As the water particle passes around the
circular cylinder it accelerates and then decelerates.
This requires that work be done through the application 
of a force on the cylinder to increase this momentum. 
The incremental force on a small segment of the
cylinder needed to accomplish this is proportional to the 
water particle acceleration at the center of the cylinder. 

The principle cause of the drag force term is the 
presence of a wake region on the downstream side of 
the cylinder. The wake is a region of low pressure
compared to the pressure on the upstream side and thus 
a pressure differential is created by the wake between 
the upstream and downstream of the cylinder at a given 
instant of time. The pressure differential causes a force 
to be exerted in the direction of the instantaneous water 
particle velocity. In an oscillatory flow, the absolute 
value of the water particle velocity is inserted to insure 
that the drag force is in the same direction as the 
velocity.

Combining the inertia and drag terms of force, the 
Morison equation is written as:

( )
inertia drag

M I D D

2
I D

df df df
C .A . u / t .ds C .A . u .u.ds

A . .D /4 A 1/2. .D

= +

= ∂ ∂ +

=ρ π = ρ

(1)

In which df = inline force on the segment ds of the 
vertical cylinder, D = cylinder diameter, u/  t = local 
water particle acceleration at the centerline of the
cylinder, u = instantaneous   water   particle  velocity, 
ρ = mass density of water, CM = inertia coefficient and 
CD = drag coefficient. 

Since the drag term is proportional to the square of 
water particle velocity, it is non-linear. The inertia term 
is linear if the partial derivative of sinusoidal water 
particle velocity (linear theory) is used for the
acceleration. On the other hand, the inertia term is non-
linear if the local horizontal acceleration including
convective terms.

du u u u u
u u v w

dt t x y z
∂ ∂ ∂ ∂

= = + + +
∂ ∂ ∂ ∂

 (2)

In which u, v and w are the components of the 
water particle velocity vector in a rectangular Cartesian 
coordinate system [1]. 

Least Mean Square method (LSM): For considering 
environmental conditions in Morison equation, two 
inertia and drag coefficients are used which their
determinations needs having experimental data. In the 
data we used here, horizontal and vertical velocities, 
wave profile and exerted forces on the cylinder are 
existed. There are many methods for determining these 
coefficients like Bearman (BM), Klopman (KM), least 
squared method (LSM ), Fourier averaging method
(FAM)   and   least   square  fit  of  the  force spectrum 
(LS-FS) [7]

Since, in this research for existent data, it was 
found that LSM method compared to the other
mentioned methods gives less error in determining
coefficients, it will be explained here. 

In this method the coefficients are computed in a 
way which the sum square error of measured and
computed forces becomes minimum. If f is the
measured data and fp the calculated data, the difference 
between these two forces  for each sampling point is:

f p D D M Ie f f f C .A .u.u C .A.u= − = − −  (3)

The sum of squares will become:

N
2

s f
i 1

(e )L
=

= ∑ (4)

In the above formulas N can be either the number 
of points in a cycle or all of the points existed in the 
time-series. For determining force coefficients the LS 
value should be minimum and hence:
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A simultaneous solution of two above equations 
gives the necessary equations for coefficients
determination as follows:
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NEURAL NETWORK METHOD

Artificial neural networks are simplified models of 
human central nervous system. They are networks of 
highly interconnected neural computing elements
(neurons) that have the ability to respond to input
stimuli and to learn and adapt to the environment. 
Neural network is a method, which does not involve the 
use of complicated computational solutions. Being a 
relatively recent technique of computation, its
applicability in different areas in yet to be proved. The 
network is fed with input-output patterns from which it 
learns and thereby determines the connection weights 
and biases. After undergoing such training it becomes 
ready to predict the output of new input data. Built-in
dynamism, good generalization, data error tolerance 
make the network suitable for the present application. 
Occurrence of waves is basically random and hence 
neural  networks  seem  suitable  as  they  provide a 
non-deterministic and model-free mapping between a 
given set of input and output values. In the present 
study, we simulated the relationship between random 
wave particle kinematics with their corresponding
inline force using artificial neural network to see
whether  it  is  capable  of  learning the relation or not. 
We used Matlab neural network toolbox4 for
simulation of the network [8].

Linear network: Linear network can only solve
linearly separable problems since its transfer function is 
linear. This allows their outputs to take on any value 
(Fig. 3). For each input vector we can calculate the 
network’s output vector. The difference between an 
output vector and its target vector is the error. We 
would like to find values for the network weights and 
biases such that the sum of the squares of the errors is 
minimized or below a specific value. This problem is 
manageable because linear systems have a single error 
minimum. In most cases, we can calculate a linear 
network directly, such that its error is a minimum for 
the given input vectors and targets vectors. In other 
cases, numerical problems prohibit direct calculation. 
Fortunately, we can always train the network to have a 
minimum error by using the Least Mean Squares
(Widrow-Hoff) algorithm. For every multilayer linear 
network, there is an equivalent single-layer linear
network hence we use a single layer linear network 
which consists of three weights and one bias for 
training our data [2]. 

Unlike most other network architectures, linear
networks can be designed directly if input/target vector 
pairs are known. Specific network values for weights 
and biases can be obtained to minimize the mean square 

Fig. 3: Structure of a single-layer linear network

error by using the function newlind in Matlab toolbox 
as follows:

  Net = newlind (P, T) (7)

This returns a linear layer designed to output T 
(with minimum sum square error) given input P.

Mean square error: The least mean square error (LMS) 
algorithm is an example of supervised training, in 
which the learning rule is  provided with a set of
examples of desired network behavior:

{p1,t1}, {p2,t2}, …,{pQ, tQ}

Here pq is an input to the network and tq is the 
corresponding target output. As each input is applied to 
the network, the network output is compared to the 
target. The error is calculated as the difference between 
the target output and the network output. We want to 
minimize the average of the sum of these errors.

Q Q
2 2

K 1 K 1

1 1mse e(k) (t(k) a(k))
Q Q= =

= = −∑ ∑ (8)

The LMS algorithm adjusts the weights and biases 
of the linear network so as to minimize this mean 
square error. Fortunately, the mean square error
performance index for the linear network is a quadratic 
function. Thus, the performance index will either have 
one global minimum, a weak minimum or no minimum,
depending on the characteristics of the input vectors. 
Specifically, the characteristics of the input vectors
determine whether or not a unique solution exists [2].

LMS or Widrow-Hoff learning algorithm: The LMS 
algorithm or Widrow-Hoff Delta Rule, introduced by 
Widrow  and Hoff  1960,  is  based  on an approximate 



World Appl. Sci. J., 3 (4): 674-683, 2008

678

steepest descent procedure which is a form of
supervised learning. Here again, linear networks are
trained on examples of correct behavior. Widrow and 
Hoff had the insight that they could estimate the mean 
square error by using the squared error at each iteration. 
If we take the partial derivative of the squared error 
with respect to the weights and biases at the kth
iteration we have

2

1,j 1,j

e (k) e(k)
2e(k)

w w
∂ ∂

=
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(9)

for j = 1, 2,…, R and

2e ( k ) e(k)
2e(k)

b b
∂ ∂

=
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(10)

next look at the partial derivative with respect to the 
error.

[ ]
p

1,j 1,j 1,j

R

1,t i
t 11,j 1,j

t(k) a(k)e(k) t(k) (w (k) b or
w w w

e(k)
t(k) w p(k ) b

w w =

∂ −∂ ∂  = = − + ∂ ∂ ∂

 ∂ ∂  = − +  ∂ ∂   
∑

(11)

Here pi (k) is the ith element of the input vector at 
the k th iteration.
Similarly,
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 This can be simplified to:
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Finally, the change to the weight matrix and bias 
will be:

                       2? ??e (k). P (k) and 2? ?e(k ).

These two equations form the basis of the Widrow-
Hoff (LMS) learning algorithm.

These results can be extended to the case of
multiple neurons and written in matrix form as:

TW(k 1) W(k) 2 e(k).p (k)
b(k 1) b(k) 2 e(k)

+ = + α
+ = + α

(15)

Here the error e and the bias b are vectors and ? is
a learning rate . If ? is large, learning occurs quickly, 
but if it is too large it may lead to instability and errors 
may even increase. To ensure stable learning, the
learning rate must be less than the reciprocal of the 
largest eigenvalue of the correlation matrix pTp of the 
input vectors. In Matlab toolbox we have a
MAXLINLR function which returns the maximum
learning rate for a linear layer with a bias [2].

Backpropagation neural network: Backpropagation
is a systematic method for training multilayer networks. 
It has a mathematical foundation that is strong if not 
highly practical. Despite its limitations, back
propagation has dramatically expanded the range of 
problems to which ANNs can be applied and it has 
generated many successful demonstrations of its power 
(Wassermann). This model is used to provide a
mapping between some input and output quantities by 
forming a continuous function. It can be applied to any 
multilayer network that uses differentiable activation 
functions and supervised training. It is an optimization 
procedure based on gradient descent that adjusts
weights to reduce the system error. During the learning 
phase, input patterns are presented to the network in 
some sequence. Each training patterns set is propagated 
forward layer by layer until an output pattern is
computed. The computed output is then compared to a 
desired or target output and an error value is determined. 
The errors are used as inputs to feedback connections 
from which adjustments are made to the synaptic
weights layer by layer in a backward direction. The 
backward linkages are used only for the learning phase, 
whereas the forward connections are used for both the 
learning and the operational phases. The process is 
repeated a number of times for each pattern in the 
training set until the total output error converges to a 
minimum or until some limit is reached in the number 
of training iterations (epochs) completed. For more
details on backpropagation algorithm refer to references 
[3, 5, 8, 9, 11].

PROBLEM DEFINITION

We want to find out that on what wave parameters 
or wave particle kinematics, namely, wave height,
horizontal velocity and vertical velocity, does the neural 
network depends to learn the relationship between
inputs and output appropriately which is called
sensitivity analysis. Various training pattern cases were 
formed to obtain the desired output in the form of 
predicted inline force. Each case involves a different 
combination of input-output parameters (Table 1).
Inputs   to the   network   are   random   wave  particle 
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Table 1: Different cases of network training

Input case Inputs Output No. of training patterns No. of testing patterns

1 Wave height Inline force 24000 5000
2 Horizontal velocity Inline force 24000 5000
3 Vertical velocity Inline force 24000 5000
4 Wave height,

Horizontal velocity,
Vertical velocity Inline force 24000 5000

5 Wave height,
Horizontal velocity Inline force 24000 5000

6 Wave height,
Vertical velocity Inline force 24000 5000

W3

W2

W1

Horizontal
  Velocity

Vertical
Velocity

Wave
Height

1

b

Inline
Force Yp

Fig. 4: A schematic of the proposed single-layer network

kinematics while the output of the network is inline 
force. The networks we used here are of feedforward 
type. The first one is a single-layer network with
Widrow-Hoff learning algorithm. The other one is a 
multilayer network with backpropagation algorithm.

The data have been divided into two training and 
testing sets (Table 1). For the Morison equation method 
we use the training set for calculating inertia and drag 
force and the testing set for predicting the inline force 
using the coefficients computed from training set with 
LSM method. 

For neural network method we use the training set 
for training the network to determine the connection
weights and biases then the testing set for evaluating 
the network’s performance.

In Fig. 4, a schematic of the proposed single-layer
linear network has been shown. The inputs to the
network are wave height, horizontal and vertical water 
particle velocity and the output is inline force. The
connection weights are w1, w2 and w3 with one bias b.

The relationship between the inputs and the output 
is as follows:

predicted 1 2 X 3 yY w . H w .V w .V b= + + + (16)

Our proposed values of w1,w2, w3 and b will come 
in the results section. 

For comparing the performance, the root-mean-
square (RMS) error between the measured and
predicted values is used as the agreement index which 
is defined as:

( )

( )

N 2

mi pi
i 1

N
2

mi
i 1

y y
RMS

y

=

=

−
=
∑

∑
(17)

In which ymi is the value of measured force and ypi

denotes   the value   of   predicted   force and N is the 
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Table 2: A comparison of RMS error, correlation coefficient and time of training of different methods for four cases

RMS error of testing set Correlation coefficient (R) Time of training (sec)
---------------------------------------------------- ---------------------------------------------- ------------------------------------------

Input Linear Nonlinear network Morison Linear Nonlinear Morison Linear Nonlinear network
cases network Epochs = 1000 equation network network equation network Epochs = 1000

1 0.82732 0.82211 0.35754 0.548 0.560 0.97 0.08 510.50
2 0.82608 0.81686 0.549 0.563 0.08 549.35
3 0.63838 0.64395 0.765 0.760 0.08 558.00
4 0.35033 0.33373 0.936 0.936 0.13 576.80
5 0.82048 0.80270 0.558 0.584 0.10 563.00
6 0.40322 0.38274 0.914 0.922 0.11 568.00

Fig. 5: Inline force prediction in four different cases with linear network

number of data in testing set. The accuracy improves if 
RMS approaches zero. The other agreement index used 
in this paper is the coefficient of correlation between 
the measured and predicted forces [10]. 

SIMULATION RESULTS

Simulations of different methods, on our data, for 
all six cases were done. Table 2 shows results of these 

simulations consisting RMS error and correlation
coefficient of each method. The case four gives the 
least RMS error for neural networks and that implies 
that vertical velocity parameter has a key role in 
network performance. Neural network (both type)
showed less error compared to the Morison equation 
but not too far differences. The nonlinear network with 
BP algorithm showed less error than linear network but 
many   much   more  time  for   its   training  than  linear
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Fig. 6: A regression between Morison equation prediction and the actual force

Fig. 7: A regression between linear neural network prediction (case4) and the actual force

Fig. 8: A regression between nonlinear network (case4) prediction and the actual force
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Fig. 9: A comparison between inline force prediction of Morison equation and linear neural network with actual data

Fig. 10: Neural Network prediction of inline force when input velocities to network are experimental or computed
from stokes wave theory

network (Table 2). The simulations were done by a 
pentium4 PC with 1.8 GB CPU and 256 MB DDRAM.

Since time is very important in design procedures 
and the RMS error of two neural network types does 
not differ much, a single layer linear network with one 
neuron and Widrow-Hoff learning algorithm can be 
appropriately employed for inline force prediction. 

Figure 5 shows the results of testing the single-
layer linear network for six cases of Table 1. As you see 
without vertical velocity parameter as one of the inputs 
to the network, the prediction of the network for inline 
force is not desirable.

In Fig. 6-8, regressions between simulation results 
and the actual force have been done. The value of the 
correlation coefficient (R) for each regression is shown 
on its figure. As you see, the Morison equation has the 
best R-value (0.97). 

Figure 9 shows a comparison between the
predictions of Morison equation and linear network. 
The values of inertia and drag coefficients obtained 
from LSM method for the training data are CM = 2.1408 
and  CD = 1.454. These coefficients were used for
predicting the inline force of the testing set.

Table 3: Values of weights, bias and learning rate of designed linear 

network

Network W1 W2 W3 b Lr (learning rate)

Linear 31.588 285.88 -1089.6 42.919 0.00013608

The designed linear network with case4 inputs
gives values of weights and bias as in Table 3. 

Because usually we have just wave height
parameter measured at sea, we also investigated the
case which we have only the wave height measured 
along with velocities computed with Stokes (Fenton) 
wave theory, as testing inputs to the network which had 
been trained with measured parameters (Fig. 10). For 
more details on Stokes (Fenton) wave theory refer to 
reference [4]. The RMS of this case of testing inputs 
which consists of measured wave height, computed
horizontal velocity and computed vertical velocity is 
0.57146.

CONCLUSION

The main results of this research are:
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• Since linear neural network method is not restricted
to the type of data and calculation of some
coefficients, it can be used for inline force
prediction.

• Neural network (both type) showed less error
compared to the Morison equation but not too far 
differences.

• Since time is very important in design procedures 
and the RMS error of two neural network types 
does not differ much, a single layer linear network 
with one neuron and Widrow-Hoff learning
algorithm can be appropriately employed for inline 
force prediction.

• Linear network is preferable to the other networks 
since it needs the least time to train.

• It can be seen that neural network can give
satisfactory results, very close to the real ones.

• A comparison between outputs of Morison
equation and Neural network method showed that 
NN can be a simpler, easier and faster solution.

• The case four gives the least RMS error for neural 
networks and that implies that vertical velocity 
parameter has a key role in network performance.

• It was observed that the trained single-layer linear 
network with just a hidden neuron can
appropriately predict any new data which the
network had not experienced before.

REFRENCES

1. Chakrabarti, S.K., 1987. Hydrodynamics of
Offshore Structures. Computational Mechanics
Publications. New York.

2. Mackwood, P.R., 1993. Wave and Current Flows 
around Circular Cylinders at Large Scale. LIP
Project 10D.

3. Naghipour, M., 1996. The Accuracy of
Hydrodynamic Force Prediction for Offshore
Structures and Morison’s Equation. Ph.D Thesis, 
Heriot Watt University.

4. Patterson, D.W., 1996. Artificial Neural Network, 
Theory and Applications. Prentice Hall. Singapore.

5. Demuth, H. and M. Beale, 2001. Neural Network 
Toolbox for Use with Matlab, User's Guide
(version 4). The Mathworks, Inc.

6. Fausett, L., 1994. Fundamentals of Neural
Networks Architectures, Algorithms and
Applications. Prentice Hall. United States.

7. Haykin, S., 1994. Neural Networks, Macmillan
College Publishing Company, Inc. United States.

8. Rumelhart, D.E., G.E. Hinton and R.J. Williams, 
1986. Learning Representations by Back
propagation Errors. Nature, 323: 533-536.

9. Wasserman, P.D., 1989. Neural Computing,
Theory and Practice.Van Nostrand Reinhold.
United States.

10. Tsai, C.P., C. Lin and J. Shen, 2002. Neural
Network for Wave Forecasting among Multi-
Stations. Ocean Engineering, 29: 1683-1695.

11. Fenton, J.D., 1985. A Fifth-order Stokes Theory 
for Steady Waves. Journal of Waterway, Port, 
Coastal and Ocean Engineering, 111 (2): 216-234.


