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Abstract: A non-linear finite element model could be a useful tool in the development of prediction method of
s01l pressure-sinkage behaviour and can be used to mvestigate and analyze the soil compaction. This study
was undertaken to emphasis that the Finite Element Method (FEM) is a proper technique to model soil pressure-
sinkage behaviour. For this purpose, the fimte element method was used to model soil pressure-sinkage
behaviour and a two-dimensional finite element program was developed to perform required numerical
calculations. This program was written in FORTRAN. The soil material was considered as an elastoplastic
material and the Molr-Coulomb elastoplastic material model was adopted with the flow rule of associated
plasticity. In order to deal with material non-linearity, incremental method was adopted to gradually load the
soill and a total Lagrangian formulation was used to allow for the geometric non-linear behaviour in this
study. The FEM model was verified against previously developed models for one circular footing problem and
one strip footing problem and the finite element program was used to predict the pressure-sinkage behaviour
of the footing surfaces. The statistical analysis of the verification confirmed the validity of the fimite element
model and demonstrated the potential use of the FEM in prediction of soil pressure-sinkage behaviour.
However, experimental verification of the model 1s necessary before the method can be recommended for
extensive use.
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INTRODUCTION

Agronomists are concerned about the effects of
heavy tractors and agricultural machines on agricultural
soils due to the possibly of excessive soil compaction that
impedes root growth and hence reduces crop yields
[1]. Obviously, soil compaction under tractors and
farm machinery wheels or tracks i1s of special concemn
because the weight of these machines has been increased
dramatically mn the last few years [2] and these unplements
can create persistent subsoil compaction [3].

One of the most important causes of soil compaction
is the soil response to pressure and sinkage imposed by
wheels and tracks [2]. Therefore, the prediction of soil
sinkage under load 1s very mmportant for determimng the
level of compaction in the soil. Moreover, the ability to
predict soil sinkage can enable agricultural engineers to
till or traffic the soil when it is not in a highly compactable
state or to estimate the damage being done to the soil
structure due to their excessive loading when tillage or
traffic is necessary [4].

Most studies dealing with soil sinkage have been
experimental. One disadvantage of the experimental
procedure 1s that it is difficult time consuming and
expensive. An alternative approach is to develop a
numerical technique that can predict soil pressure-
sinkage behaviour. One such technique that can be
used to predict soil sinkage 1s the Finite Element Method
(FEM). The FEM 13 now firmly accepted as a most
powerful general technique for the numerical solution
of a variety of problems encountered m engineering.
Applications range from the stress analysis of solids
to the solution of acoustical, neutron physics and
fluid mechanics problems [5]. Indeed the FEM is now
established as a general numerical method for the solution
of problems subjected to known boundary and/or mitial
value conditions. The basic concept of the FEM is the
idealization of the contimuum as an assemblage of a
finite number of elements or small segments
interconnected at nodal points. The behaviour of the
loaded 1s then predicted by

approximating the behaviour of the elements. A solution

continuum  when
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of this set of equations constitutes a solution of the finite
element system [6, 7].

For almost last 40 years this method has been touted
as a powerful way to solve soil mechamcs problems
Duncan and Chang [8], Perumpral ez al. [9], Pollock et al.
[10], Raper and Erbach, [4, 11], Bailey et al. [12], Shen and
Kushwaha [13], Arya and Gao [14], Fielke [15], Mouazen
and Nemenyi [16], Defossez and Richard [17], Abu-
Hamdeh and Reeder [2]. Moreover, the FEM offers
significant promise for modeling of soil pressure-sinkage
behaviour. This method can accurately model complex
loading geometries such as tires or tracks and the analysis
can be performed easily on microcomputers. However,
additional work 1s required to refine the FEM before
it can be used to accurately predict soil behaviour and
challenges remain for agricultural engineers seeking to
solve the sinkage problem. These problems stem from the
complex nature of agricultural soils. Agricultural soil
experiences much greater strain than other materials such
as steel or concrete that have typically been modeled by
civil and mechamcal engmeers using the FEM. The
nonlinear nature of agricultural soils is also a complicating
factor because it does not obey linear elastic theory and
it exhibits elastoplastic behaviour [11]. However, recent
advances in development of constitutive relationship and
theory of plasticity can make the FEM a more successful
technique for modeling soil behaviour. Therefore, the
overall objective of this study was to develop a numerical
procedure to predict the soil sinkage. The specific
objectives of the study were to develop a finite element
program capable of predicting soil pressure-sinkage
behaviour and to verify the finite element model by
comparing its results with those of the verified fimte
element models.

MATERIALS AND METHODS

Material model development: Two sources of non-
linearity are to be expected when a soil is under external
loads, namely material and geometrical non-linearity
[2, 16, 18]. Material non-linearity can be fully described by
the stress-strain relationship. For an elastoplastic material
behaviour the incremental stress tensor can be related to
the incremental strain tensor as [16]:

do, =C,, de, (1
where:
do, = Incremental stress tensor
C, = Elastoplastic constitutive matrix
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de, = Incremental strain tensor which is the summation
of the incremental elastic strain tensor and

incremental plastic strain tensor as [19]:

de, =def +def 2)
The incremental elastic stramn tensor ds; can be
expressed by Hooke’s law as [14]:
(i+v) v
de; = dO‘U - Edo}kéj (3)
where:
v = Poisson’s ratio

E  =Modulus of elasticity
do,, = Incremental volumetric stress tensor
3, = Kronecker delta
The mcremental plastic strain tensor def can be
expressed by the classical theory of plasticity as [14, 16]:

def = Py (h
O'U
where
dA = Plastic multiplier
F = Yield function

The incremental plastic strain tensor is actually a
vector perpendicular to the tangent of the yield surface.
This definition of the plastic strain is usually designated
as assoclated plasticity [16].

The yield function of the Molr-Coulomb for an
elastoplastic material can be expressed as [19]:

!
] —
F= EJ; sin@+(Jop )4 (cos —

sinBeos@ ) —ccos

V3 (5)
where:
¢ = Soil cohesion
¢ = Angle of soil internal friction
J; = The first invariant of the stress tensor
Jon = The second mvariant of the deviatoric stress
tensor and:
0L *f(—i J;g) P PR ()
3 3 527 6 6

where
Ji;» = the third mvariant of the deviatoric stress tensor
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From Eq. (5) and Eq. (6) it can be concluded that the
Mohr-Coulomb  yield criterion accounts for both
volumetric and shear behaviour.

Finite Element Model Development: The governing
equations of the fimte element method (FEM) can be
obtained by wusing the principle of virtual work
Consider a solid, in which the internal stresses o, the
distributed loads/unit volume 5 and external applied
forces f form an equilibrium field, to undergo an
arbitrary virtual displacement pattern dd* which result
in compatible strains de* and internal displacement &u™*.
Then the principle of virtual work requires that [6]:

j (8T g—6u"Tb ) -84 f=0 (7
02

where:

€ = The domain of interest

Then the normal finite element discretising procedure
leads to the following expressions for the displacement
and strains within any element [19]:

Su' = Nod" ®)
8" = pod” ©)
where:
N = Matrix of the shape function
B = Sum of the geometric linear and geometric non-

linear stram-displacement matrix

Then the element assembly process gives:

j 53T (B c-NTh)aQ -84 f=0 (10)
0

Where, the volume integration over the solid is the
sum of the individual element contributions. Smce this
expression must be true for any arbitrary 84* value:

j BTadQ—f—j NTbdQ =0 (11)
0Q 0Q

For solution of nonlinear problems, Eq. (11) will
not generally be satisfied at any stage of the
computation and:
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w:j BTGdQ—(erJ- N bdQ)%0 (12)
02 0

where:

¥ = The residual force vector

For an elastoplastic situation the material stiffness is
continually varying and instantaneously the incremental
stress-strain relationship 1s given by Eq. (1). For purpose
of evaluating the element tangential stiffness matrix at any
stage, the imncremental form of the Eq. (12) must be
employed Thus, within an increment of load we have:

Ay = jQ B AGdQ —(Af + jQ NTAbdQ) (13)

Substituting for A from Eq. (1) result in:

Al;r:KTdf(AerjQNTAbdQ) a4

where:

K. = Element stiffness matrix associated with the
geometric linear and geometric non-linear strain-
displacement matrix and can be expressed as:

T
Kr= L}B C,,BdL (15)

Finite element program development: A plane-stress,
plane-strain and axisymmetric finite element program [6]
was modified and a finite element program, entitled
PRESSINK, was developed using all the techmques,
models, equations and assumptions previously discussed
to take into account the material
non-linearity of soil.

This program was written in FORTRAN for use ona

and geometrical

personal computer and additional required subroutines
were formulated and assembled to form a working program
for two-dimensional elastoplastic geometrically non-linear
analysis of plane-stress, plane-strain and axisymmetric
problems. A modular approach was adopted for the
program, in that separate subroutines were employed to
perform the various operations required in non-linear
finite element analysis.

In order to deal with material non-linearity and obtain
stress and stramn information at different steps of a
loading process, incremental method was adopted in
this study. In addition, seil usually undergoes large
deformation and strain and as we know the stiffness
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matrix  of an element is dependent upon its
geometric position and the equilibrium equations
must be described by the geometric position after
deformation [19]. To model the geometric non-linear
behaviour by the FEM, a total Lagrangian formulation
was used m the program. The modification of the
strain-displacement matrix and the evaluation of the
straing using a deformation jacobian matrix were the
main changes required to account for geometrically
non-linear effects.

The flow chart of the program 1s self-explanatory and
is presented in Fig. 1 without further comments. Tn this

flow chart:

g'~! = REffective stress in the (r-1)® iteration of non-
=3
linear solution
-
%c - Effective stress in the (T} iteration of non-linear
solution
0, = Equivalent yield stress

Finite element model verification: Footing problems are
one of the most common verification techniques used in
engineering application [4]. Because the intent of the
study was to evaluate the potential use of the fimte
element method for prediction of soil pressure-sinkage
behaviour, it was decided that this goal could be met with
published data.

Verification of the FEM model using a circular footing
problem: Zienkiewicz and Humpheson [20] have given
an application of the finite element method for the
analysis of pressure-sinkage behaviour of soil beneath a
circular footing. They used a two-dimensional fimte
element procedure in their investigation. Details of their
investigation are given [20] and only representative
results are presented here.

The finite element model was firstly verified by using
this circular footing problem. In order to verify the fimte
element model, a two-dimensional FEM mesh was
generated within a rectangle 7.32 m long and 3.66 m wide.
The FEM mesh that was used to model the axisymmetric
geometry of the soil-circular footing system in two-
dimensional view is shown in Fig. 2. The total mumber of
nodal points and elements were 433 and 128, respectively.

The eight-node serendipity quadrilateral elements
were used to represent the soil material. These elements
were chosen as it was claimed that they give a more
accurate answer for larger mesh sizes [15] and also they
use numerical integration to determine their volume and
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Table 1: Soil parameters used for the finite element analysis of the
soil-circular footing system

Parameter Symbol Value

Young’s modulus, MPa E 207.00

Poisson’s ratio, non-dimensional 3 0.30

Cohesion, kPa c 69.00

Angle of internal friction, deg P 20.00

surface area. These eclements are easily numerically
integrated by using Gauss-Legendre rule [5, 7]. For the
elements used 1n this study, Hinton and Owen [5] advised
using 2-point integration, even though PRESSINK
program allowed 2-point or 3-point integration.

Since the problem was symmetric about the vertical
axis AB, only one half of the system was meshed and
considered during the analysis. From Fig. 2 it can be
seen that the left-side boundary line AB was considered
as a reflected boundary and the nodes on the bottom
boundary line BC were constrained in both horizontal
and vertical direction. The nodes on the right-side
boundary line CD were constrained in horizontal direction,
whilst the nodes on the top boundary line AD were
free of any constrams. The circular footing was assumed
to be a rigid body and the loading was distributed evenly
over the centermost five elements at the top of the
finite element mesh.

Soil parameters used for the non-linear finite element
analysis of the soil-circular footing system, adopted from
the report by Zienkiewicz and Humpheson [20], are shown
in Table 1. For the finite element analysis, appropriate
boundary conditions mformation, material properties
and nodal and elemental data were input as required. The
load application on the finite element model was simulated
in an incremental manner and the total load of 1400 kPa
was applied monotomcally in increments of 280 kPa.

Verification of the FEM model using a strip footing
problem: Siwardane and Desai [21] have given
another application of the finite element method for
the analysis of pressure-sinkage behaviour of soil
beneath a strip footing. They used a three-dimensional
finite element procedure in their investigation. Details of
theirr mnvestigation are given [21] and only representative
results are presented here.

The fimte element model was further verified by using
this strip footing problem. Again, in order to verify the
finite element model, a two-dimensional FEM mesh was
generated within a rectangle 9.0 m long and 4.5 m wide.
Figure 3 shows the FEM mesh that was used to model the
plane-stramn geometry of the soil-strip footing system in
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Fig. 1: Flow chart of the non-linear finite element analysis program
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Table 2:  Soil parameters used for the finite element analysis of the soil-strip

footing system
Parameter Symbol Value
Young’s modulus, MPa E 69.00
Poisson’s ratio, non-dimensional I3} 0.30
Cohesion, kPa & 103.50
Angle of internal friction, deg [ 20.00

two-dimensional view. The total number of nodal points
and elements were 454 and 135, respectively. In this
problem, the eight-node serendipity quadrilateral elements
were used to represent the soil material and the Gauss-
Legendre 2-point integration rule was used.

Since the problem was symmetric about the vertical
axis AB, only one half of the system was meshed
and considered during the analysis. From Fig. 3 it can be
seen that the left-side boundary line AB was considered
as a reflected boundary and the nodes on the bottom
boundary line BC were constrained i both horizontal and
vertical direction. The nodes on the right-side boundary
line CD were constramed in horizontal direction and the
nodes on the top boundary line AD were free of any
constrains. The strip footing was assumed to be a rigid
body and the loading was distributed evenly over the left-
side three elements at the top of the finite element mesh.

Soil parameters used for the non-linear finite element
analysis of soil-strip footing system, adopted from the
report by Sinwardane and Desai [21], are shown in
Table 2. For the finite element analysis, appropriate
boundary conditions information, material properties and
nodal and elemental data were mput as required. The load
application on the finite element model was simulated in
an mceremental manner and the total load of 1900 kPa was
applied monotonically in increments of 380 kPa.

RESULTS AND DISCUSSION

Results of the fimte element analyses mcluded
information on displacement of each nodal point. For each
meremental load, the displacement of each nodal point
was computed. This process was continued until the total
load amount was applied. At this point, the mcremental
loading was stopped to complete the simulation of soil
pressure-sinkage behaviour.

Results of the FEM analysis of the circular footing
problem: Figure 4 shows the predicted soil pressure-
sinkage curve at the center of the footing surface, which
was developed from the results of the finite element
analysis. A maximum soil sinkage value was predicted at
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the footing surface beneath the central axis of the circular
footing for all load increments and additional loadings
yielded larger increments in soil sinkage. These large
values clearly showed that large stram theory could
not be uwsed without the incremental loading approach.
Figure 4 also shows the predicted soil pressure-sinkage
curve at the center of the footing surface, which was
developed from the results obtained previously by
Zienkiewicz and Humpheson [20].
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predicted using the FEM model in compared with
that predicted previously by Siriwardane and
Desai [21]

From comparison of two curves, it could be
concluded that both the analyses gave almost similar
results. A linear regression was also performed to verify
the validity of the FEM model. Fig. 5 shows that the
circular footing sinkage values predicted using the FEM
model and those predicted previously by Zienkiewicz and
Humpheson [20] were plotted against each other and
fitted with a linear equation with zero intercept. The slope
of the line of best fit and its coefficient of determination
were 0.93 and 0.98, respectively.

Root of Mean Squared Errors (RMSE) and Mean
Relative Percentage Deviation (MRPD) were used to
check the discrepancies between the predicted results
using the FEM model and those predicted previously by
Zienkiewicz and Humpheson [20]. The amounts of RMSE
and MRPD were 1.10 mm and 5%, respectively and
regarding the statistical analysis, the validity of the FEM
model was confirmed.

More likely reason for such negligible discrepancies
between the predicted results using the non-linear
geometric and material FEM model and those predicted
previously by Zienkiewicz and Humpheson [20] probably
stem from the fact that for thus problem, the deformations
in the soil are governed predominantly by the material
non-linearity rather than by geometric and material non-
linearity.

Results of the FEM analysis of the strip footing problem:
Figure 6 shows the predicted soil pressure-sinkage curve
at the axis of symmetry of the footing surface that was
developed from the results of the FEM analysis. Again, a
maximum soil sinkage value was predicted at the footing
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Fig. 7: Strip footing sinkage values predicted using the
FEM model and strip footing sinkage values
predicted previously by Siriwardane and Desai
[21] are plotted against each other and fitted with

a linear equation with zero intercept

surface beneath the axis of symmetry of the strip footing
for all load increments and additional loadings yielded
larger ncrements in soil sinkage. These large values again
confirmed using of large strain theory in conjunction with
the incremental loading approach. Figure 6 also shows
the soil pressure-sinkage curve at the axis of symmetry of
the footing surface that was developed from the results
obtained previously by Siriwardane and Desai [21]. From
comparison of two curves, it could be concluded that
both analyses generally represent similar curves, but the
sinkage values predicted by the FEM model are relatively
greater than those predicted previously by Siriwardane
and Desai [21].

As before, a linear regression was performed to verify
the validity of the FEM model. Figure 7 shows that the
strip footing sinkage values predicted using the FEM
model and those predicted previously by Siriwardane and
Desai [21] were plotted against each other and fitted with
a linear equation with zero intercept. The slope of the line
of best fit and its coefficient of determination were 1.11
and 0.83, respectively.

Agam, RMSE and MRPD were used to check the
discrepancies between the predicted results using the
FEM model and those predicted previously by
Siriwardane and Desai [21]. The amounts of RMSE and
MRPD were 47.0 mm and 35%, respectively.

Likely reason for such discrepancies between the
predicted results using the non-linear geometric and
material FEM model and those predicted previously by
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Siriwardane and Desai [21] probably stem from our
modeling due to the geometric non-linearity assumption
and can be due to the fact that for this problem, the soil
deformations are governed by material and geometrical
non-linearity and to reasonably predict soil pressure-
sinkage behaviour m soil problems, both material and
geometrical non-linearity should be taken into accoumnt
over the entire soil volume being modeled With respect
to this fact, the statistical analysis confirmed the validity
of the FEM model again and demonstrated the potential
use of the FEM in prediction of soil pressure-sinkage
behaviour. However, experimental wverification of the
model 18 necessary before the model can be recommended
for extensive use.

CONCLUSIONS

The fimite element analysis of soil pressure-sinkage
behaviour has led to the following conclusions:

¢  The Finite Element Method proved to be a proper

tool in prediction of soil pressure-sinkage behaviour.
¢ Likely reason for discrepancies

predicted results using the geometric and material
and those predicted
previously by other FEM models probably stem from
our modeling due to the geometric non-linearity

between the

non-linear FEM model

assumption and can be due to the fact that soil
deformations are governed predominantly by material
and geometrical non-linearity

* To reasonably predict pressure-sinkage
behaviour using the FEM models, both material and
geometrical non-linearity should be taken into
account for the entire soil volume being modeled.

¢ The statistical analysis of the verification confirmed
the validity of the FEM model and demonstrated the
potential use of the FEM in prediction of the soil

so1l

pressure-sinkage behaviour. However, experimental
verification of the model 13 necessary before the
model can be recommended for extensive use.
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