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Abstract: In order to investigate the dynamic properties of castellated beams, the excitation intensity of 
dynamic mode shapes for different loading patterns must be considered. Obviously, under a specific 
loading pattern, all of dynamic mode shapes are not excited. In other words, the response of the structure is 
dependent on the exerted loading. In this article, the powerful FEM software, ANSYS is used for
investigation of dynamic properties of castellated beams. At first, a modal analysis is performed on both
plain-webbed and castellated cantilever beams with two different types of lateral bracing and their dynamic 
properties and mode shapes are studied. This analysis shows that the presence of large web openings may 
have a severe penalty on the load carrying capacities of castellated beams under the dynamic gravitational 
loads. Then a white noise dynamic load with an appropriate frequency range is exerted on both plain-
webbed and castellated beams and their various dynamic responses are studied. It can be seen that the 
loading pattern is a very important factor for investigation of dynamic properties of cantilever castellated 
beams.

Key words: Castellated beam • cantilever beam • flexural mode shape • finite elements method • response 
spectrum • white noise • PSD

INTRODUCTION

Modern techniques of fabricating steel members 
allow for welded I-beams to be easily fabricated and it 
is often economical to produce such beams with equal 
flanges and slender unstiffened webs using standard 
hot-rolled beams [1]. Castellated beams are such
structural members, which are made by flame cutting a 
rolled beam along its centerline and then rejoining the 
two halves by welding so that the overall beam depth is 
increased by 50% for improved structural performance 
against bending [2]. Therefore, application of these
structural members may lead to substantial economies 
of material. Basically, the reasons for fabricating
castellated beams are as follows [1]:

Section height will be increased that results in the 
enhancement of moment of inertia, section modulus, 
stiffness and flexural resistance of the section. Also the 
weight of the profile will be decreased which, in turn, 
the weight of the whole structure will be reduced. The 
utilization of the existing profiles is optimized and also
plate girders are not needed. Finally, the passage of 
services through the web openings will be easily
provided.

The presence of large web openings may have a 
severe penalty on the load carrying capacities of
castellated beams, depending on the shapes, the sizes 
and the location of the openings.

The widespread use of castellated beams as
structural members in multistory buildings, commercial 
and industrial buildings and portal frames, has
prompted several investigations into their structural
behavior.

According to the authors’ knowledge, despite the 
considerable volume of research on the structural
behavior of castellated beams and dynamic behavior of 
plain-webbed beams, dynamic behavior of castellated 
steel beams is not considerably investigated.

In this article, dynamic properties of cantilever
castellated beams with two different types of lateral 
restraints are investigated and are compared with the 
dynamic properties of plain-webbed beams with the 
same height and length of 27 cm and 310 cm,
respectively. At first, a modal analysis is performed on 
both plain-webbed and castellated beams and their
dynamic properties and mode shapes are studied. In 
modal analysis of structures, it is necessary to assume 
the number of considered modes. The number of modes
depends on the importance of investigation and the 
required accuracy. Unfortunately, the weight of the
effect of higher modes is not known precisely. So the 
selection of number of modes depends on the
experience of the researcher.

After the modal analysis, a uniform distributed 
white noise dynamic load with appropriate frequency 
range  is  exerted  on  both plain-webbed and castellated 
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beams with two different types of lateral bracing and 
their various dynamic responses are studied. In the case 
of white noise loading, it is not necessary to select the 
number of modes at first. After running the analysis, all 
of the active modes which are proportionate to the 
loading conditions are appeared with their appropriate 
weight of effect. Under the white noise dynamic
loading, various responses of the beams such as
displacement, flexural moment and acceleration are
monitored for different loading frequencies along the 
beams and PSD (power spectral density) diagrams of 
these responses are investigated.

LITERATURE REVIEW

The widespread use of castellated beams has
prompted several investigations into their structural
behavior.

Web distortion and flexural-torsional buckling of 
the web and flange were studied by Hancock et al. [3]. 
Trahair studied the flexural-torsional buckling of
castellated beams [4, 5]. Web Buckling in Thin Webbed 
Castellated Beams was investigated by Redwood and 
Zaarour [6]. Lateral-torsional buckling of castellated 
beams was studied by Nethercot and Kerdal [7]. Failure 
Mode for Castellated Beams was investigated by
Kerdal and Nethercot [8]. The moment-gradient factor 
in lateral-torsional buckling on inelastic castellated
beams was considered by Mohebkhah [9]. A finite-
element model for the inelastic nonlinear analysis of 
castellated beams that includes the effects of elastic 
lateral restraints at midspan and large lateral deflections 
is developed by Mohebkhah and Showkati [2]. The 
model is used to investigate the effects of central elastic 
lateral restraints attached to the top flange on the
inelastic flexural-torsional strengths of simply
supported castellated beams under pure bending
loading. It is found that a central elastic lateral restraint 
generally increases the inelastic strength of the beam, 
but that the effect of the restraint depends not only on 
the stiffness of the restraint but also on the modified 
slenderness of the beam [2] and a series of six tests on 
full-scale simply supported castellated beams with a 
centrally concentrated load and an effective lateral
brace at the midspan of the compression flange was 
performed by Showkati and Zirakian, mainly with the 
aim of experimentally verifying the web distortion in 
these structural members [1].

MODAL ANALYSIS

Determination of natural frequencies and mode
shapes   of   oscillation   is   the   first   step   in dynamic 

analysis. In this section, using ANSYS 5.4, a modal 
analysis is performed on both castellated and plain-
webbed cantilever beams. The length of the beams is 
310 cm. for each beam two different types of lateral 
restraints are considered. In the first case, lateral
restraints used along the beam, are located only at the 
centerline of the beam and at the top and bottom of the 
web plate of the beam (imperfect bracing). In the
second case, lateral restraints are used at whole nodes 
along the beam (perfect bracing). 

Some mode shapes of castellated beams with
imperfect bracing are presented as examples in Fig. 1-5.
Figure 1 shows the third mode shape of oscillation 
which is the third flexural mode shape. Figure 2 shows 
the fourth mode shape of oscillation which is the axial 
mode. Figure 3 shows the fifth mode shape of
oscillation which is the combination of the first
longitudinal torsional mode and the second web
buckling  mode. Figure 4 shows the sixth mode shape 
of  oscillation  which  is  the  combination of the second 

Fig. 1: 3rd mode shape of castellated beam with
imperfectly lateral bracing

Fig. 2: 4th mode shape of castellated beam with
imperfectly lateral bracing
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Table 1: Natural frequencies of oscillation for plain-webbed beam with imperfectly lateral bracing
Frequency (Hz) Mode No. Frequency (Hz) Mode No. Frequency (Hz) Mode No. Frequency (Hz) Mode No.
20.926 16 17.894 11 14.832 6 1.1477 1
21.651 17 18.517 12 15.587 7 6.4007 2
22.432 18 18.611 13 15.852 8 13.247 3
23.288 19 19.636 14 17.101 9 13.724 4
24.112 20 20.049 15 17.525 10 14.104 5

Table 2: Natural frequencies of oscillation for castellated beam with imperfectly lateral bracing
Frequency (Hz) Mode No. Frequency (Hz) Mode No. Frequency (Hz) Mode No. Frequency (Hz) Mode No.
18.294 16 15.678 11 12.192 6 1.1495 1
19.080 17 15.740 12 13.073 7 5.3327 2
19.947 18 16.851 13 14.286 8 11.675 3
20.839 19 17.359 14 14.388 9 11.716 4
21.766 20 17. 995 15 14.844 10 12.076 5

Fig. 3: 5th mode shape of castellated beam with
imperfectly lateral bracing

Fig. 4: 6th mode shape of castellated beam with
imperfectly lateral bracing

longitudinal torsional mode and the second web
buckling mode. Figure 5 shows the eighth mode shape 
of oscillation which is the combination of the fourth 
longitudinal torsional mode and the second web
buckling mode.

Fig. 5: 8th mode shape of castellated beam with
imperfectly lateral bracing

Natural frequencies of oscillation for plain-webbed
and castellated beams with imperfect bracing are
presented in Table 1 and 2, respectively. Also the
natural frequencies of oscillation for plain-webbed and 
castellated beams with perfect bracing are presented in 
Table 3 and 4, respectively. Frequencies of common 
mode shapes between imperfect and perfect bracing 
cases are compared in Table 5 and 6 for plain-webbed
and castellated beams, respectively. 

According to Table 5, there are only 4 common 
mode shapes between imperfectly and perfectly
laterally braced plain-webbed beams. The other mode
shapes of imperfectly laterally braced plain-webbed
beams which are not presented in Table 5 are
complicated combined mode shapes which have high 
frequencies. According to Table 6, there is 5 common 
mode shapes between imperfectly and perfectly
laterally braced castellated beams.

It can be seen that both the plain-webbed and 
castellated perfectly laterally braced beams are stiffer 
and    have   higher   frequencies   in   comparison   with 
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Table 3: Natural frequencies of oscillation for plain-webbed beam with perfectly lateral bracing
Frequency (Hz) Mode No. Frequency (Hz) Mode No. Frequency (Hz) Mode No. Frequency (Hz) Mode No.
36.389 10 35.717 7 15.940 4 1.1864 1
36.389 11 35.943 8 26.661 5 6.5786 2
37.051 12 35.943 9 35.717 6 13.565 3

Table 4: Natural frequencies of oscillation for castellated beam with perfectly lateral bracing
Frequency (Hz) Mode No. Frequency (Hz) Mode No. Frequency (Hz) Mode No. Frequency (Hz) Mode No.
32.621 10 30.208 7 12.490 4 1.1868 1
32.805 11 31.597 8 18.221 5 5.4464 2
33.849 12 32.534 9 24.412 6 11.867 3

Table 5: Frequencies of common mode shapes between imperfectly and perfectly laterally braced plain-webbed beams
Mode Mode Frequencies of perfectly Frequencies of imperfectly
No. Type laterally braced beam (Hz) laterally braced beam (Hz) Difference (%)
1 First flexural mode 1.1864 1.1477 3.0
2 Second flexural mode 6.5786 6.4007 2.7
3 Axial mode 13.565 13.247 2.0
4 Third flexural mode 15.940 15.587 2.0
5 Fourth flexural mode 26.661 - -

Table 6: Frequencies of common mode shapes between imperfectly and perfectly laterally braced castellated beams
Mode Mode Frequencies of perfectly Frequencies of imperfectly
No. Type laterally braced beam (Hz) laterally braced beam (Hz) Difference (%)
1 First flexural mode 1.1868 1.1495 3.0
2 Second flexural mode 5.446 5.3327 2.0
3 Third flexural mode 11.867 11.675 1.6
4 Axial mode 12.490 12.076 3.0
5 Fourth flexural mode 18.221 17.995 1.2
6 Fifth flexural mode 24.412 - -
7 Sixth flexural mode 30.208 - -

imperfect laterally braced beams . Also the maximum
decrement of frequencies in imperfectly laterally braced 
beams is 3%.

RESPONSE TO RANDOM LOADING

The loads that arise from natural phenomena can 
not adequately be described by sinusoidal or other
periodic functions. The pattern of loading with time 
does not repeat itself at regular intervals. In such cases 
it is necessary to resort to a statistical analysis, in which 
use is made of certain properties of the randomly
varying load. These properties are chosen such that they 
remain constant or stationary over the time period for 
the analysis [10, 11]. The problem is to relate the
response of a structure, x (t) to the random input 
excitation F (t) (Fig. 6). 

The underlying principle of random vibration
analysis  is  the  concept  of  the Fourier   integral and 
the most direct and engineering way of understanding 
this is to first consider the application of the Fourier 
series  to  a  system  of  large  period.  It  is  often  more 

Fig. 6: Input excitation and output response in a
dynamic system

convenient to make use of the complex forms for sine 
and  cosine  and  express the Fourier series in its 
complex equivalent as:

jr t
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−∞
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Thus equation 1 becomes (with the expression for 
coefficient cr written in full)
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If the random process is considered to be periodic 
but of infinite period, the summation is replaced by an 
integral and the Fourier series, equation 3 becomes:
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Defining the term in parenthesis by 
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Then
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The near symmetry of equations 5 and 6 has led to 
the terminology of referring to them as the Fourier
transform pair and it should be noted that the Fourier 
integral equation 5, enables a time varying quantity, 
F(t), to be expressed in its frequency components,
F(jω), whereas equation 6 is an inverse transform, from 
the frequency domain, F(jω), to the time domain, F(t).

If the frequency is expressed in Hertz instead of 
radius/sec in equations 5 and 6, such that ω = 2πf, the 
asymmetry caused by the 1/2π term is removed and the
equations possess even more symmetry, differing only 
by the sign in the exponential term

j2 ftF(jf) F(t)e dt
+∞

− π

−∞

= ∫ (7)

j2 ftF(t) F(jf)e df
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π
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From equation 8 it may be shown that 

2
2

0

F (t)dt 2 F(jf) df
+∞ ∞
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=∫ ∫ (9)

SFF(f) Which is known as the spectral density 
(sometimes called, although aptly, power spectral
density) is defined as below:

2

FF
2F( j f )

S (f )
T

= (10)

For a single degree of freedom system, using the 
Duhamel (or Convolution) integral technique, it can be 
shown that (Fig. 7) [11, 12].

2
XX FFS (f) H(jf) S ( f )= (11)

Where H (jf) is given as below

2
2 2

1
H(jf)

(K M(2 f)) (C.2 f )
=

− π + π
(12)

COMPUTER MODELLING AND ANALYSIS

In this article, ANSYS 5.4, powerful FEM
software, is used for computer modelling and analysis 
of the beams. ANSYS 5.4 presents various types of 
elements for structural modelling. Shell 63 which is 
used for modelling of shell and flexural members is 
selected here in order to create the model. It has three 
transitional and three rotational degrees of freedom in 
each node [13]. Modulus of elasticity of steel is 2.1×106

kgf/cm2. Poison’s ratio is 0.3. Damping ratio is 0.02 
and weight per volume is 7800 kgf/m3. Also MATLAB 
is used for drawing the PSD diagrams of various
responses of the beams [14].

THE RESPONSE OF STRUCTURE 
TO WHITE NOISE EXCITATION

The processes which are activated in a narrow
range of frequencies are called narrow banded
processes  and  which  are  activated in a broad range of

Fig. 7: Schematic representation of spectral technique
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frequencies are called broad banded processes [15].
White noise is a broad banded forcing function which 
its range of frequency is 0 to ∞ and its spectral density 
has a constant value at all frequencies. It denotes a 
totally random process. Practically, a forcing function 
which has a constant spectral density in an adequately 
broad range of frequencies can be called white noise.

Using white noise as an input force is very useful 
in order to analyze the dynamic systems because all of 
the effective mode shapes of oscillation can be
activated under the white noise excitation. Also since 
the spectral density of white noise has a constant value 
at all frequencies, the importance and effectiveness of 
various modes can be determined.

It must be noted that loading pattern has a
considerable effect on the excited modes. In other
words, in  order to excite certain modes of oscillation in
a specific structure, white noise must be exerted in a 
suitable pattern on the structure [16]. Since the analysis 
is performed in frequency domain, it is better to show 
the responses by PSD diagrams.

In this article, some uniform distributed white
noise dynamic loads with different loading patterns and 
appropriate frequency range are exerted on both plain-
webbed and castellated beams with two different types 
of lateral bracing (imperfectly and perfectly lateral
restraints) and their various dynamic responses are 
studied. Under the white noise dynamic loading,
various responses of the beams such as displacement, 
flexural moment and acceleration are monitored for
different loading frequencies along the beams and PSD 
diagrams of these responses are investigated.

PSD OF RESPONSES FOR IMPERFECTLY 
LATERALLY BRACED BEAMS

In this section, a uniform downward distributed 
white  noise  dynamic  load   is exerted  on   both  plain-

Fig. 8: PSD of vertical displacement for plain-webbed
beam with imperfectly lateral bracing

Fig. 9: PSD of vertical displacement for castellated
beam with imperfectly lateral bracing

Fig. 10: PSD of flexural moment for plain-webbed
beam with imperfectly lateral bracing

Fig. 11: PSD of flexural moment for castellated beam
with imperfectly lateral bracing

webbed and castellated imperfectly laterally braced
beams and their various dynamic responses are studied.

PSD of vertical displacement: PSD of vertical
displacement for plain-webbed and castellated beams 
are presented in Fig. 8 and 9, respectively. It can be 
seen that only the first mode is excited and the values of 
PSD in castellated beam are higher than the values in 
plain-webbed beams.
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Fig. 12: PSD of acceleration for plain-webbed beam
with imperfectly lateral bracing

Fig. 13: PSD of acceleration for castellated beam with 
imperfectly lateral bracing

Fig. 14: PSD of vertical displacement for plain-webbed
beam with perfectly lateral bracing

Fig. 15: PSD of vertical displacement for castellated 
beam with perfectly lateral bracing

Fig. 16: PSD of flexural moment for plain-webbed
beam with perfectly lateral bracing

Fig. 17: PSD of flexural moment for castellated beam
with perfectly lateral bracing
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Fig. 18: PSD of acceleration for plain-webbed beam
with perfectly lateral bracing

Fig. 19: PSD of acceleration for castellated beam with 
perfectly lateral bracing

PSD  of  flexural  moment: PSD of flexural moment 
for plain-webbed and  castellated  beams  are presented 
in Fig.  10  and  11, respectively. It can be seen that 
only  the  second  mode  is  excited and the values of 
PSD in castellated beam are higher than the values in 
plain-webbed beams. Also some breaks are observed at 
the location of openings. So PSD of flexural moment 
can be used in order to identify the location of defects 
such as cracks in a structural member.

PSD  of   acceleration: PSD  of acceleration  for
plain-webbed and castellated beams are presented in 
Fig. 12 and 13, respectively. The first mode is excited 
and Moreover, the higher modes can be observed in 
both beams. The influence of the 1st, 2nd and 3rd modes 
can be clearly observed in both beams. Also the 4th

mode is excited in castellated beam. Since the applied 
load is downward so the frequencies related to torsional 
and axial deformation and web buckling are not
observed in the PSD of acceleration response [17]. 

PSD OF RESPONSES FOR PERFECTLY 
LATERALLY BRACED BEAMS

In this section, a uniform downward distributed 
white noise dynamic load is exerted on both plain-
webbed and castellated perfectly laterally braced beams 
and their various dynamic responses are studied.

PSD of vertical displacement: PSD of vertical
displacement for plain-webbed and castellated beams 
are presented in Fig. 14 and 15, respectively. It can be 
seen that only the first mode is excited and the values of 
PSD in castellated beam are higher than the values in 
plain-webbed beams.

PSD of flexural moment: PSD of flexural moment for 
plain-webbed and castellated beams are presented in 
Fig. 16 and 17, respectively. It can be seen that only the 
second mode is excited and the values of PSD in 
castellated beam are higher than the values in plain-
webbed beams. Also some breaks are observed at the 
location of openings.

PSD of acceleration: PSD of acceleration for plain-
webbed and castellated beams are shown in Fig. 18 and 
19, respectively. Activity of the 1st, 2nd, 3rd, 4th and 5th

modes is clear in both beams and, moreover, the 6th and 
7th modes are excited in castellated beam. 

It can be seen that both odd and even modes are 
observed in PSD of acceleration. It must be noted that 
even modes were not observed in simply supported 
beams [18]. 

CONCLUSIONS

1. The frequency of flexural, axial and torsional
modes of oscillation in cantilever castellated beam 
with imperfectly lateral bracing are always less 
than frequencies of these modes in plain-webbed
beam. So the flexibility of castellated beam is
higher than the flexibility of plain-webbed beam
with the same height.

2. Both the plain-webbed and castellated perfectly
laterally  braced  beams  are  stiffer  and have 
higher frequencies in comparison with imperfect 
laterally braced beams. Also the maximum
decrement of frequencies in imperfectly laterally 
braced beams is 3%.

3. According to PSD of vertical displacement it can 
be seen that only the first mode is excited and the 
values of PSD in castellated beam are higher than 
the values in plain-webbed beams and according to 
PSD  of  flexural  moment  it  can be seen that only
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the second mode is excited and the values of PSD 
in castellated beam are higher than the values in 
plain-webbed beams.

4. Some breaks are observed at the location of
openings in PSD of flexural moment. So PSD of 
flexural moment can be used in order to identify 
the location of defects such as cracks in a structural 
member.

5. Contribution of higher modes in PSD of
acceleration response is clearer than their
contribution in PSD of vertical displacement and 
flexural moment.

6. Since the applied load is downward so the
frequencies related to torsional and axial
deformation and web buckling are not observed in 
the PSD of acceleration response.
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