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Abstract: The quality of an architectural design of a software system has a great influence on achieving 
non-functional requirements of a system. A regular software development project is often influenced by 
non-functional factors such as the customers' expectations about the performance and reliability of the 
software as well as the reduction of the underlying risk. The evaluation of non-functional parameters of a 
software system at the early stages of design and its development process are often considered as major 
factors in dealing with these issues. Because these evaluations can help us to choose the most proper model 
which is the securest and the most reliable. In this paper, a method is presented to obtain performance 
parameters from Generalized Stochastic Petri Net (GSPN) to be able to analyze the stochastic behaviour of 
the system. The embedded Continuous Time Markov Chain (CTMC) is derived from the GSPN and the 
Markov chain theory is used to obtain the performance parameters. We have designed a case tool to obtain 
some performance parameters that we discuss about them in this paper in addition to a case study. 
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INTRODUCTION 
 
 A PN is an abstract, formal model of information 
flow. The properties, concepts and techniques of PNs 
are being developed for describing and analyzing the 
flow of information and control in systems, particularly 
systems that may exhibit asynchronous and concurrent 
activities. The major use of PNs has been the modeling 
of systems of events in which it is possible for some 
events to occur concurrently but there are constraints on 
the concurrence, precedence, or frequency of these 
occurrences[1]. 
 There are three general characteristics of PNs that 
make  them  interesting  in  capturing  concurrent 
object-oriented behavioural specifications. First, PNs 
allow the modeling of concurrency, synchronization 
and resource sharing behavior of a system. Secondly, 
there are many theoretical results associated with PNs 
for the  analysis  of such  issues as deadlock detection 
and performance analysis. Finally, the integration of 
PNs with object oriented software design architecture 
could provide a means for automating behavioral 
analysis [1-4]. 
 We present a method for obtaining non-functional 
parameters from GSPN. The reason for using GSPN it 

is that, there are some methods for transforming UML 
diagrams to GSPN for example one of them is 
introduced in [5]. 
 Currently the Unified Model Language (UML) 
diagrams are widely used in the field of software design 
as it is easy to use comparing to the alternatives and is 
powerful in describing different aspects of the system. 
However, the semi-formal property of the UML 
diagram cannot satisfy the industry's need in predicting 
the non-functional parameters of the software in the 
early stages of the software life cycle.  
 Since it is not possible to use UML diagrams for 
performance evaluation, they were translated to 
Generalized Stochastic Petri Net (GSPN) [2, 3], a more 
formal model that enables the authors to do the 
performance evaluations. 
 The authors' previous work on AD includes the 
transformation of AD to Colored Petri Net [3, 4], where 
some performance measures could be obtained using 
simulation. The simulation-based measurements seam 
to be more straightforward compared to its alternatives, 
which are analytic methods.  
 We present at first a brief talk about GSPN, then 
we discuss about UML to introduce its fundamentals 
and history. 
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 At the next step, we derive a CTMC from the 
GSPN. Finally, we do a performance evaluation on the 
derived CTMC. Then a case study is introduced which 
is explained by a case tool that we designed it. 
 In this research, analytic methods are used to 
obtain results that are more accurate. Although using 
these kinds of methods induces some computational 
complexities to the calculation of system performance, 
the gained results are more reliable comparing to the 
simulation techniques. Therefore, analytic methods 
remain the only choice for evaluating critical systems. 
However, we should consider that this method is more 
useful in small systems because it is possible to have 
more details.  
 

RELATED WORK 
 
 Using Stochastic Petri Net (SPN) and its extensions 
have been discussed in several papers [2, 5-8]. 
Merseguer et al. used the derived SPN from the UML 
model to evaluate performance of internet based 
software retrieval systems [7]. Derivation of an 
executable GSPN model from a description of a system 
expressing a set of UML State Machines (SMs) was 
reported in [9]. 
 A group of works is devoted to transforming the 
software model to Coloured Petri Net (CPN), which 
seems to be more related to software properties than the 
other UML extensions [10-15]. 
 In the authors' previous works [4, 16], the UML 
model was transformed to CPN and then analyzed the 
CPN by means of simulation. Trowitzsch et al. have 
transformed the software UML diagrams to SPN 
models  for  performance  evaluation  of  real-time 
systems [5].  
 Most of the previous works discuss about 
transforming the software model to analytical models or 
discuss about evaluating the performance model. In 
other words, none of them provides an integrated 
method, which can start from software model and 
terminate with some derived performance parameters. 
 The method of [9, 17] was used to transform the 
software model to a GSPN for evaluating software 
performance parameters. In our previous work [18, 19] 
by using [2] and transforming software model to GSPN 
some performance parameters are calculated. In this 
paper, we evaluate the performance model in the way 
that leads to gain meaningful parameters of the system 
like reliability, security, performance efficiency and 
availability. 
 

REVIEWING THE GSPN AND UML 
 
GSPN: The basic PN model includes two components: 
places  and  transitions  connected  together  via arcs to  

 
model system behaviour; however, it may be extended 
by introducing the notion of time, leading to timed 
Petri nets for a performance analysis of Petri Nets 
quantitative analysis. A timed PN is called SPN, when 
random variables are used in specifying the time 
behaviour. Whereas, it has been shown that SPNs are, 
under certain conditions, isomorphic to homogeneous 
Markov chains, by analyzing metrics of the Markov 
chain (such as the steady state probability distribution) 
it is possible to investigate the behavior of the 
underlying system being modeled by the PN [20]. 
 GSPN is defined as a PN N=(P, T, W, M0) with its 
transition set T divided into two sub-sets TI and TT, 
defining respectively the set of immediate and timed 
transitions. Immediate transitions are fired immediately 
once they are enabled, whereas, timed transitions are 
fired after a random, exponentially distributed, 
enabling time. Hence, in GSPN N, transitions t TT is 
associated with a (possibly marking-dependent) firing 
rate, r (t) that constitutes the defining parameter of the 
corresponding exponential distribution. 
 The above characterization of immediate and 
timed transitions implies that in a net reachable 
marking, m, where, both, immediate and timed 
transitions are enabled, immediate transitions have 
precedence over the timed ones (since they are 
instantaneous). Furthermore, such a marking m has 
zero duration in the net dynamics and therefore, it is 
characterized as vanishing. On the other hand, a 
marking m in which all enabled transitions are timed 
transitions has duration; therefore, such a marking is 
characterized as tangible.  
 Given a marking m with a set of simultaneously 
enabled immediate transitions, I (m), the modeler must 
provide a probability distribution regulating the firing 
of the transitions in I(m). In the GSPN terminology, this 
probability distribution is characterized as a random 
switch E= {W1, W2, W (m)}. Furthermore, if the set of 
random switches regulating the net behavior are 
marking-dependent, they are characterized as dynamic; 
otherwise, they are static [21]. 
 
UML: UML consists in a set of graphs or charts with 
explanatory comments that can be expressed either in a 
formal way or in natural language. The designer can 
freely choose a subset of diagrams to present the system 
design. Activity diagram is the most important UML 
diagram that is used for presenting actions. An activity 
diagram is a dynamic diagram that shows the activity 
and the event that cause the object to be in the 
particular state. The activity is triggered by one or 
more events and it may result in one or more events 
that may trigger other activity or processes. The 
biggest disadvantage of activity diagrams is that they 
do   not   make explicit which objects  execute which  
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activities and the way that the messaging works 
between them. However, labelling of each activity with 
the responsible object can be performed. Often it is 
useful to draw an activity diagram early in the 
modeling of a process, to help understand the overall 
process [22]. 
 

DERIVING THE EMBEDDED CTMC 
 
 The transformation algorithm is used to translate 
the activity diagram to the GSPN model is the one that 
is explained by Merseguer et al. [2]. The authors have 
constructed a formalism to transform the elements of 
UML behavioral models to GSPN and to integrate the 
outputs together. 
 The stochastic process associated with k-bounded 
GSPN systems with M0, as their home state, can be 
classified as a finite state space, stationary 
(homogeneous), irreducible and continuous-time semi-
Markov process [3]. In the case of GSPNs, the 
Embedded Markov Chain (EMC) can be recognized 
disregarding the concept of time and focusing the 
attention on the set of states of the semi-Markov 
process. 
 The specifications of a GSPN system are sufficient 
for the computation of the transition probabilities of 
such a chain. The CTMC associated with a given GSPN 
system is obtained by applying some simple rules: 
 
 The CTMC state space S = {si} corresponds to the 

reachability set RS (M0) of the PN associated with 
the GSPN (Mi  si). 

 The transition rate from state si (corresponding to 
marking Mi) to state sj (Mj) is obtained as the sum 
of the firing rates (for timed transitions) or weights 
(for immediate transitions) of the transitions that 
are enabled in Mi and whose firings generate 
marking Mj.  

 
 Based on the simple rules listed above, it is 
possible to devise algorithms for the automatic 
construction of the infinitesimal generator (also called 
the state transition rate matrix) of the isomorphic 
CTMC, starting from the GSPN description. Denoting 
this matrix by U, with wk the firing rate (or weight for 
immediate transitions) of transition Tk and with Ej(Mi) 
the set of transitions whose firings bring the net from 
marking Mi to marking Mj, the components of the 
transition probability matrix would be: 
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The components of the infinitesimal generator are: 
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 The sojourn time is the time spent by the PN 
system in a given marking M. 
 We can observe that the average sojourn time in 
marking Mi is given by the following expression: 
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 Let RS, TRS and VRS indicate the reachability set, 
tangible reachability set and vanishing reachability set 
of the stochastic process the following relation is true 
among these sets: 
 
           )5(== TRSVRSandVRSTRSRS  (5) 
 
 By ordering the markings so that the vanishing 
ones correspond to the first entries of the matrix and the 
tangible ones to the last, the transition probability 
matrix U can be decomposed in the following manner: 
 

                 
C D 0 0

U A B
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 (6) 

 
ANALYZING THE DERIVED CTMC 

 
 The solution of the system of linear matrix 
equations 
 

                                        T

U
1 1

 (7) 

 
 In which  is a row vector representing the steady-
state probability distribution of the EMC, can be 
interpreted in terms of numbers of state-transitions 
performed by the EMC. Indeed, 1/ i is the mean 
recurrence time for state si (marking Mi) measured in 
number of transition firings. 
 Although this method is computationally 
acceptable when the number of vanishing states are 
small (compared with the number of tangible states) but 
it also computes the probability of vanishing markings 
that do not increase the information content of the final 
solution   since   the   time  spent  in  these  markings  is  
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known to be null. Moreover, vanishing markings, by 
enlarging the size of the transition probability matrix U, 
tend to make the computation of the solution more 
expensive and in some cases even impossible to obtain. 
So the model must be reduced by computing the total 
transition probabilities among tangible markings only, 
thus identifying a Reduced EMC (REMC). The 
transition probability matrix of the REMC can thus be 
expressed as: 
 
                                  'U F EH  (8) 
Where 
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The solution of the problem 
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 Gives  that is a row vector representing the 
steady-state probability distribution of the REMC. The 
infinitesimal generator Q´ of the CTMC associated with 
a GSPN can be constructed from the transition 
probability rate matrix U´ of the REMC by dividing 
each of its rows by the mean sojourn time (1/qi) of the 
corresponding tangible marking. To conform to the 
standard definition of the infinitesimal generators, the 
diagonal elements of Q´ are set equal to the negative 
sum of the off diagonal components: 
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 An alternative way of computing the steady-state 
probability distribution over the tangible markings is 
thus that of solving the following system of linear 
matrix equations: 
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 The probability that a given transition Tk E (Mi) 
fires first in marking Mi has the expression: 
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 Using the same argument, it can be observed that 
the average sojourn time in marking Mi is given by the 
following expression: 
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 The steady-state distribution  is the basis for a 
quantitative evaluation of the behaviour of the SPN that 
is expressed in terms of performance indices. These 
results can be computed using a unifying approach in 
which proper index functions (also called reward 
functions) are defined over the markings of the SPN 
and an average reward is derived using the steady-state 
probability distribution of the SPN. Assuming that r 
(M) represents one of such reward functions, the 
average reward can be computed using the following 
weighted sum: 
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 Different interpretations of the reward function can 
be used to compute different performance indices. In 
particular, the following quantities can be computed 
using this approach: 
 
The probability of a particular condition of the 
GSPN: Assuming that condition Y (M) is true only in 
certain markings of the PN, the following reward 
function can be defined [3]: 
 

                    
1 Y M true

r M
0 otherwise  (16) 

  
 The desired probability P{Y} is then computed 
using  equation. The  same  result  can  also  be 
expressed as: 
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Where, A= {Mi  RS (M0): Y (Mi) = true}. 
 
The expected value of the number of tokens in a 
given  place: In  this  case, the  reward  function  r (M) 
is  simply  the  value  of  the  marking  of  that  place 
(say place j): 
 
                     jr M n if M p n  (18) 

 
 Again,  this  is  equivalent  to  identifying  the 
subset  A (j, n)  of  RS  (M0) for  which   the  number  of  
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tokens in place pj is n (A (j, n) = {Mi | RS (M0) Mi 
(pj)=n}) the expected value of the number of tokens in 
pj is given by: 
 
             )(, 19njAPn0npME j  

 
Where, the sum is obviously limited to n values of n  
k, if the place is k bounded. 
 
The mean number of firings per unit of time of a 
given transition: Assume that the firing frequency of 
transition Tj (the throughput of Tj) was wanted to 
compute; observing that a transition may fire only when 
it is enabled, the reward function is assumed the value 
wj in every marking that enables Tj: 
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 The same quantity can also be computed using the 
more traditional approach of identifying the subset Aj of 
RS (M0) in which a given transition Tj is enabled (Aj = 
{Mi  RS (M0): Tj  E (Mi)}). The mean number of 
firings of Tj per unit of time is then given by: 
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 These results show that indeed, Petri nets can be 
used not only as a formalism for describing the 
behavior of distributed/parallel systems and for 
assessing their qualitative properties, but also as a tool 
for computing performance indices that allow the 
efficiency of these systems to be evaluated. As these 
basic parameters are computed, some more meaningful 
information can be derived. For example, a metric for 
comparing the security of different architectures can be 
gained by using the equation: 
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Where St is the data security factor associated to the 
transition t, ft is the firing rate of t, Sp is the data 
security factor associated to the place p, Tp is the 
expected time in which there is a token in place p. This 
is similar to the authors' previous work using 
simulation. Identically  the  reliability can be computed,  

 
but because the reliability is usually related to the 
processes of system, the reliability factor is just usually 
associated to the transitions than the places: 
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Where RLt, stands for the reliability of process t. 
 We can compute some other parameters like those 
computed above for example we could gain a metric for 
comparing the availability of different architectures but 
because availability is usually related to the places of 
the system. Thus, the availability factor is usually 
associated to the places than transitions. We can gain it 
by the equation: 
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 Which Ap is the availability associated to the 
transition t, tp is the expected time in which there is a 
token in place P. 
 This is similar to our previous work using 
simulation. Another parameter that we can gain a 
metric is performance efficiency because performance 
efficiency is usually related to the transitions of the 
system it is associated to the transitions than places and 
we can gain it by the equation: 
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 Where Pt is the performance efficiency that 
associated to the transition t and ft is the firing rate of t. 
 

CASE STUDY 
 
 We have designed and implemented a case tool 
“NFPG”.NFPG has the ability of drawing any kind of 
GSPN and driving the CTMC from the reachability 
graph, which is obtained from drawing GSPN and 
finally calculation the parameters that are mentioned 
above. 
  We have evaluated a real guide robot ‘Jinny’ by 
NFPG as a case study. This case study proposes a 
selection  framework  of  multiple navigation primitives  
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Table 1: Description of two navigations 

Type AutoMove Contour tracking 

Algorithm Shortest path planning with obstacle avoidance A (left, right, center) wall following technique using only laser scan data 

Merits Optimality (shortest path to any points on the maps) Reactive 
  Generality (applicable in any situations) Rise localization reliability 
    Less affected by localization accuracy 

Desirable Generally applicable, but the performance drops in a  An area where there are many static feature like walls or exhibits 
environment narrow or crowded region. 

 
Table 2: Description of the places and the transition 

Place Description 

P0(P5) Navigation available (Completion)   
P1(P2) Running AutoMove (Contour tracking)   
P3(P4) Localization Success (Warning)   

Transition Description Firing rate 

t0 Start AutoMove (prob. p) - 
t1 Start Contour tracking (prob. 1-p) - 

t2(t4) Convert to Contour tracking (AutoMove) due to performance estimation 1( 2) 
t3 Convert to Contour tracking due to localization Warning - 

t5(t6) Localization Warning (Success) event fired 3( 4) 

t7(t8) AutoMove (Contour tracking) completed 5( 6) 

t9 Initialization 7 

 
for a service robot using Generalized Stochastic Petri 
Nets (GSPN’s). Jinny was developed by using a Petri 
net (PN) based control architecture, which was 
designed for multifunctional service robots. 
 Through their experiences, they concluded it is 
important for the robot adaptively to select its 
navigation   primitives   according   to  the  conditions  
of  environments.  For  example,  in  general  cases,  it 
is  advisable  that  the  robot  uses  a  map-based 
navigation [23]. 
 In general, navigation task is accomplished by the 
cooperation of several components such as a localizer 
and a path planner. As the related components and 
navigation primitives increase, it becomes troublesome 
to manage the relationships between them. A major 
scope of this paper is to propose a selection framework 
of multiple navigation primitives for a service robot. 
 In this approach, modeling, analysis and 
performance evaluation are carried out based on the 
Generalized Stochastic Petri Nets (GSPN’s).Owing to 
the formalism; the strategy has following three major 
advantages. First, the framework is developed on firm 
mathematical foundation. This advantage makes it 
possible to set up state equations and other 
mathematical models governing the behaviors of a 
system. Second, the method supports modular and 
incremental designs of navigation framework since 

GSPN’s have powerful modeling ability. It can model 
concurrency, asynchronous events, logical priority 
relations and structural interactions. In addition, several 
free or commercialized tools can automate the 
transformation from GSPN model to the mathematical 
representation. Third, as a graphical tool, GSPN’s can 
represent both static and dynamic aspects of a system. 
 In this case, study, it is considered two types of 
navigation primitives, AutoMove and Contour tracking. 
The detailed description of these motions is 
summarized in Table 1. 
 From this observation, one rule is made for the 
primitive selection. It is that if the localizer falls into 
the Warning state, Contour tracking is unconditionally 
selected. The criterion of this selection problem is 
“which primitive leads the robot to a goal faster than 
the other with guaranteeing localization safety.” 
 The modeling method goes through following 
procedure. First, based on a given system description, 
navigation primitives and required components are 
identified. Primitives are designed as places and the 
changes between them are modeled as transitions. Each 
component is represented as an independent GSPN’s 
model. You can see the resultant GSPN model, which is 
drown in NFPG environment in Fig. 1. 
 Table 2 describes the physical meaning of places 
and  transitions  of the model. The GSPN model has six  



World Appl. Sci. J., 3 (3): 504-513, 2008 

510 
 

 

 
 
Fig. 1: Resultant GSPN model which is drown in NFPG environment 
 
Table 3: Description of reachability set of the GSPN 
Reachability set of the GSPN 
M0 P0 +    P3  
M1  P1 +   P3 
M2   P2 +  P3 
M3    P3 +   P5  
M4  P1 +    P4  
M5     P4 +  P5  
M6   P2 +   P4  
M7 P0 +     P4  
 

 
 
Fig. 2: The reachability graph of the GSPN system 

 
 
Fig. 3: The state transition rate diagram of the Markov 

chain associated with the GSPN 
 
places, seven timed transitions (drawn as white bars) 
and three immediate transitions (drawn as black bars).  
 The initial marking is M0= (1 0 0 1 0 0), which is 
denoted as P0P3 in the reachability graph in Fig. 2 by 
specifying the places having tokens. 
 Figure 3 shows the state transition rate diagram of 
the Markov Chain 
 The localizer has two internal states, Success and 
Warning. In  the  initial  marking, a token is assigned to  
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Fig. 4: Reduced embedded Markov chain 
 

 
 
Fig. 5: Calculated availability, performance efficiency, 

security and reliability 
 
P3, i.e., it is assumed that the localizer initially knows 
its position. The Warning event t5 fires when the 
localizer fails in estimating robot’s accurate position for 
several steps. Two navigation primitives, AutoMove and 
Contour tracking, are modeled as P1, P2, respectively. 
Initially, the robot selects its motion by a random 
switch comprising the transitions t0 and t1 with 
corresponding probabilities p and 1-p, respectively. The 
transition between them takes place according to the 
change of localizer states. The immediate transition t3 
means that the robot takes Contour tracking as soon as 
the localizer Warning event fires does. The other 
transition between two primitives, t2 and t4, are modeled 
as timed transitions in order to express that the robot 
can change its current navigation primitive during the 
localizer Success state, if necessary. One of the most 
important modeling issues is how to set the firing rates 

= { 1,…, 7}. In order to perform the evaluation of 
GSPN designs, it is necessary to obtain an embedded 
Markov chain (EMC). 
 Figure 4 shows the EMC induced from the 
rechability graph of Fig. 2, which is derived from 
GSPN model of Fig. 1 and Ap, tp, ft and Pt are as 
follow: 

 
1 3 5 1 5 3

2 2 3 6 6 3

7 7 7 3 3

4 4 7 7

4 6 4 6

0
0

Q .P .(1 P) 0
0 0
0 0

 

 
Fig. 6: The infinitesimal generator of the Markov chain 
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Fig. 7: The reduced embedded Markov chain matrixin 
 
ft = {ft0,…,ft9} = {0, 0, 0.001, 0, 1000, 0.0117, 

0.0166, 0.0142, 0.0071,1000} 
Pt = {Pt0,…,Pt9} = {0.008, 0.018, 0.458, 0.489, 0.599, 

0.435, 0.685, 0.752, 0.833, 0.501} 
Ap = {Ap0, Ap5} = {0.136, 0.454, 0.496, 0.355, 0.272, 

0.145} 
tp = {tp0,…,tp5}   =   {0.004, 0.116, 0.108, 0.135, 

0.127, 0.005} 
Sp = {Sp0,…,Sp5 } = {0.3, 0.7, 0.4, 0.5, 0.5, 0.2} 
St = {St0,…,St9} = {0.53, 0.55, 0.5, 0.42, 0.56, 0.72, 

0.68, 0.82, 0.83, 0.63} 
RLt = {RLt0,…,RLt9} = {0.35, 0.33, 0.31, 0.52, 0.27, 

0.7, 0.63, 0.71, 0.73, 0.52} 
 
 Using Equations (22), (23), (24) and (25), it is 
obtained:   Security = 0.327,   Reliability = 0.511, 
Availability = 0.027 and Performance Efficiency = 
0.463, which is shown in Fig. 5. 
 The Infinitesimal Generator of the Markov Chain is 
shown in Fig. 6. The Reduced Embedded Markov 
Chain Matrix is shown in Fig. 7. 
 

CONCLUSION AND FUTURE WORKS 
 
 In this paper, we presented a method to derive non-
functional parameters from Generalized Stochastic Petri 
Net. These parameters can be a good guidance for 
selecting sufficient software model between 
recommended software models, to achieve a model 
with a high security, reliability, efficiency and 
availability. We use GSPN because it is a formal model 
and  there  are  many  methods  for  transforming  UML  
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(which is using for modeling the system widely). There 
are some key activities to achieve this goal: Driving the 
CTMC from GSPN; which is described in this paper 
extensively, analyzing the CTMC then obtaining the 
non-functional parameters. Finally, by designing and 
implementing NFPG we could calculate some of these 
parameters we used NFPG to calculate the parameters 
of a guide robot. One area for future research is to 
obtain other parameters [22-24]. 
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