
World Applied Sciences Journal 3 (3): 504-513, 2008
ISSN 1818-4952
© IDOSI Publications, 2008

Corresponding Author: Dr. H. Motameni, Department of Computer Engineering, Islamic Azad University, Sari Branch, Iran
504

Analytic Evaluation on Petri Net by Using Markov Chain Theory
to Achieve Optimized Models

1H. Motameni, 2A. Movaghar, 3M. Siasifar, 3H. Montazeri and 4A. Rezaei

1Department of Computer Engineering, Islamic Azad University, Sari Branch, Iran

2Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
3Department of Computer Engineering, Mazandaran University of Science & Tecnology, Babol, Iran

4 Research office, Islamic Azad University, Sari Branch, Iran

Abstract: The quality of an architectural design of a software system has a great influence on achieving
non-functional requirements of a system. A regular software development project is often influenced by
non-functional factors such as the customers' expectations about the performance and reliability of the
software as well as the reduction of the underlying risk. The evaluation of non-functional parameters of a
software system at the early stages of design and its development process are often considered as major
factors in dealing with these issues. Because these evaluations can help us to choose the most proper model
which is the securest and the most reliable. In this paper, a method is presented to obtain performance
parameters from Generalized Stochastic Petri Net (GSPN) to be able to analyze the stochastic behaviour of
the system. The embedded Continuous Time Markov Chain (CTMC) is derived from the GSPN and the
Markov chain theory is used to obtain the performance parameters. We have designed a case tool to obtain
some performance parameters that we discuss about them in this paper in addition to a case study.

Key words: UML Generalized Stochastic Petri Net (GSPN) Continuous Time Markov Chain (CTMC)

Non-Functional Parameters Markov Reward Models

INTRODUCTION

 A PN is an abstract, formal model of information
flow. The properties, concepts and techniques of PNs
are being developed for describing and analyzing the
flow of information and control in systems, particularly
systems that may exhibit asynchronous and concurrent
activities. The major use of PNs has been the modeling
of systems of events in which it is possible for some
events to occur concurrently but there are constraints on
the concurrence, precedence, or frequency of these
occurrences[1].
 There are three general characteristics of PNs that
make them interesting in capturing concurrent
object-oriented behavioural specifications. First, PNs
allow the modeling of concurrency, synchronization
and resource sharing behavior of a system. Secondly,
there are many theoretical results associated with PNs
for the analysis of such issues as deadlock detection
and performance analysis. Finally, the integration of
PNs with object oriented software design architecture
could provide a means for automating behavioral
analysis [1-4].
 We present a method for obtaining non-functional
parameters from GSPN. The reason for using GSPN it

is that, there are some methods for transforming UML
diagrams to GSPN for example one of them is
introduced in [5].
 Currently the Unified Model Language (UML)
diagrams are widely used in the field of software design
as it is easy to use comparing to the alternatives and is
powerful in describing different aspects of the system.
However, the semi-formal property of the UML
diagram cannot satisfy the industry's need in predicting
the non-functional parameters of the software in the
early stages of the software life cycle.
 Since it is not possible to use UML diagrams for
performance evaluation, they were translated to
Generalized Stochastic Petri Net (GSPN) [2, 3], a more
formal model that enables the authors to do the
performance evaluations.
 The authors' previous work on AD includes the
transformation of AD to Colored Petri Net [3, 4], where
some performance measures could be obtained using
simulation. The simulation-based measurements seam
to be more straightforward compared to its alternatives,
which are analytic methods.
 We present at first a brief talk about GSPN, then
we discuss about UML to introduce its fundamentals
and history.

World Appl. Sci. J., 3 (3): 504-513, 2008

505

 At the next step, we derive a CTMC from the
GSPN. Finally, we do a performance evaluation on the
derived CTMC. Then a case study is introduced which
is explained by a case tool that we designed it.
 In this research, analytic methods are used to
obtain results that are more accurate. Although using
these kinds of methods induces some computational
complexities to the calculation of system performance,
the gained results are more reliable comparing to the
simulation techniques. Therefore, analytic methods
remain the only choice for evaluating critical systems.
However, we should consider that this method is more
useful in small systems because it is possible to have
more details.

RELATED WORK

 Using Stochastic Petri Net (SPN) and its extensions
have been discussed in several papers [2, 5-8].
Merseguer et al. used the derived SPN from the UML
model to evaluate performance of internet based
software retrieval systems [7]. Derivation of an
executable GSPN model from a description of a system
expressing a set of UML State Machines (SMs) was
reported in [9].
 A group of works is devoted to transforming the
software model to Coloured Petri Net (CPN), which
seems to be more related to software properties than the
other UML extensions [10-15].
 In the authors' previous works [4, 16], the UML
model was transformed to CPN and then analyzed the
CPN by means of simulation. Trowitzsch et al. have
transformed the software UML diagrams to SPN
models for performance evaluation of real-time
systems [5].
 Most of the previous works discuss about
transforming the software model to analytical models or
discuss about evaluating the performance model. In
other words, none of them provides an integrated
method, which can start from software model and
terminate with some derived performance parameters.
 The method of [9, 17] was used to transform the
software model to a GSPN for evaluating software
performance parameters. In our previous work [18, 19]
by using [2] and transforming software model to GSPN
some performance parameters are calculated. In this
paper, we evaluate the performance model in the way
that leads to gain meaningful parameters of the system
like reliability, security, performance efficiency and
availability.

REVIEWING THE GSPN AND UML

GSPN: The basic PN model includes two components:
places and transitions connected together via arcs to

model system behaviour; however, it may be extended
by introducing the notion of time, leading to timed
Petri nets for a performance analysis of Petri Nets
quantitative analysis. A timed PN is called SPN, when
random variables are used in specifying the time
behaviour. Whereas, it has been shown that SPNs are,
under certain conditions, isomorphic to homogeneous
Markov chains, by analyzing metrics of the Markov
chain (such as the steady state probability distribution)
it is possible to investigate the behavior of the
underlying system being modeled by the PN [20].
 GSPN is defined as a PN N=(P, T, W, M0) with its
transition set T divided into two sub-sets TI and TT,
defining respectively the set of immediate and timed
transitions. Immediate transitions are fired immediately
once they are enabled, whereas, timed transitions are
fired after a random, exponentially distributed,
enabling time. Hence, in GSPN N, transitions t TT is
associated with a (possibly marking-dependent) firing
rate, r (t) that constitutes the defining parameter of the
corresponding exponential distribution.
 The above characterization of immediate and
timed transitions implies that in a net reachable
marking, m, where, both, immediate and timed
transitions are enabled, immediate transitions have
precedence over the timed ones (since they are
instantaneous). Furthermore, such a marking m has
zero duration in the net dynamics and therefore, it is
characterized as vanishing. On the other hand, a
marking m in which all enabled transitions are timed
transitions has duration; therefore, such a marking is
characterized as tangible.
 Given a marking m with a set of simultaneously
enabled immediate transitions, I (m), the modeler must
provide a probability distribution regulating the firing
of the transitions in I(m). In the GSPN terminology, this
probability distribution is characterized as a random
switch E= {W1, W2, W (m)}. Furthermore, if the set of
random switches regulating the net behavior are
marking-dependent, they are characterized as dynamic;
otherwise, they are static [21].

UML: UML consists in a set of graphs or charts with
explanatory comments that can be expressed either in a
formal way or in natural language. The designer can
freely choose a subset of diagrams to present the system
design. Activity diagram is the most important UML
diagram that is used for presenting actions. An activity
diagram is a dynamic diagram that shows the activity
and the event that cause the object to be in the
particular state. The activity is triggered by one or
more events and it may result in one or more events
that may trigger other activity or processes. The
biggest disadvantage of activity diagrams is that they
do not make explicit which objects execute which

World Appl. Sci. J., 3 (3): 504-513, 2008

506

activities and the way that the messaging works
between them. However, labelling of each activity with
the responsible object can be performed. Often it is
useful to draw an activity diagram early in the
modeling of a process, to help understand the overall
process [22].

DERIVING THE EMBEDDED CTMC

 The transformation algorithm is used to translate
the activity diagram to the GSPN model is the one that
is explained by Merseguer et al. [2]. The authors have
constructed a formalism to transform the elements of
UML behavioral models to GSPN and to integrate the
outputs together.
 The stochastic process associated with k-bounded
GSPN systems with M0, as their home state, can be
classified as a finite state space, stationary
(homogeneous), irreducible and continuous-time semi-
Markov process [3]. In the case of GSPNs, the
Embedded Markov Chain (EMC) can be recognized
disregarding the concept of time and focusing the
attention on the set of states of the semi-Markov
process.
 The specifications of a GSPN system are sufficient
for the computation of the transition probabilities of
such a chain. The CTMC associated with a given GSPN
system is obtained by applying some simple rules:

 The CTMC state space S = {si} corresponds to the

reachability set RS (M0) of the PN associated with
the GSPN (Mi si).

 The transition rate from state si (corresponding to
marking Mi) to state sj (Mj) is obtained as the sum
of the firing rates (for timed transitions) or weights
(for immediate transitions) of the transitions that
are enabled in Mi and whose firings generate
marking Mj.

 Based on the simple rules listed above, it is
possible to devise algorithms for the automatic
construction of the infinitesimal generator (also called
the state transition rate matrix) of the isomorphic
CTMC, starting from the GSPN description. Denoting
this matrix by U, with wk the firing rate (or weight for
immediate transitions) of transition Tk and with Ej(Mi)
the set of transitions whose firings bring the net from
marking Mi to marking Mj, the components of the
transition probability matrix would be:

)1(=
)(

i

k

ij q

W

u
iMjEkT (1)

The components of the infinitesimal generator are:

)()(2

jiq
jiwMETq

i

kijk
ij

 (2)

)(

)(

3wq
ik MET

ki
 (3)

 The sojourn time is the time spent by the PN
system in a given marking M.
 We can observe that the average sojourn time in
marking Mi is given by the following expression:

 i
i

1SJ
q

 Let RS, TRS and VRS indicate the reachability set,
tangible reachability set and vanishing reachability set
of the stochastic process the following relation is true
among these sets:

)5(== TRSVRSandVRSTRSRS (5)

 By ordering the markings so that the vanishing
ones correspond to the first entries of the matrix and the
tangible ones to the last, the transition probability
matrix U can be decomposed in the following manner:

C D 0 0

U A B
0 0 E F

 (6)

ANALYZING THE DERIVED CTMC

 The solution of the system of linear matrix
equations

 T

U
1 1

 (7)

 In which is a row vector representing the steady-
state probability distribution of the EMC, can be
interpreted in terms of numbers of state-transitions
performed by the EMC. Indeed, 1/ i is the mean
recurrence time for state si (marking Mi) measured in
number of transition firings.
 Although this method is computationally
acceptable when the number of vanishing states are
small (compared with the number of tangible states) but
it also computes the probability of vanishing markings
that do not increase the information content of the final
solution since the time spent in these markings is

World Appl. Sci. J., 3 (3): 504-513, 2008

507

known to be null. Moreover, vanishing markings, by
enlarging the size of the transition probability matrix U,
tend to make the computation of the solution more
expensive and in some cases even impossible to obtain.
So the model must be reduced by computing the total
transition probabilities among tangible markings only,
thus identifying a Reduced EMC (REMC). The
transition probability matrix of the REMC can thus be
expressed as:

 'U F EH (8)
Where

)(9
DCI
DC

H 1

kn
0k

0

 (9)

The solution of the problem

' ' '

' T

U
1 1

 (10)

 Gives that is a row vector representing the
steady-state probability distribution of the REMC. The
infinitesimal generator Q´ of the CTMC associated with
a GSPN can be constructed from the transition
probability rate matrix U´ of the REMC by dividing
each of its rows by the mean sojourn time (1/qi) of the
corresponding tangible marking. To conform to the
standard definition of the infinitesimal generators, the
diagonal elements of Q´ are set equal to the negative
sum of the off diagonal components:

)(

'

'

' 11
jiq

jiu
SJ
1

q

1j
ij

ij
i

ij

 (11)

 An alternative way of computing the steady-state
probability distribution over the tangible markings is
thus that of solving the following system of linear
matrix equations:

'

T

Q 0
1 1

 (12)

 The probability that a given transition Tk E (Mi)
fires first in marking Mi has the expression:

 '

k i k iP{T | M } W / q (13)

 Using the same argument, it can be observed that
the average sojourn time in marking Mi is given by the
following expression:

 '

i iSJ 1 q (14)

 The steady-state distribution is the basis for a
quantitative evaluation of the behaviour of the SPN that
is expressed in terms of performance indices. These
results can be computed using a unifying approach in
which proper index functions (also called reward
functions) are defined over the markings of the SPN
and an average reward is derived using the steady-state
probability distribution of the SPN. Assuming that r
(M) represents one of such reward functions, the
average reward can be computed using the following
weighted sum:

)(15MrR
0i MRSM

ii (15)

 Different interpretations of the reward function can
be used to compute different performance indices. In
particular, the following quantities can be computed
using this approach:

The probability of a particular condition of the
GSPN: Assuming that condition Y (M) is true only in
certain markings of the PN, the following reward
function can be defined [3]:

1 Y M true

r M
0 otherwise (16)

 The desired probability P{Y} is then computed
using equation. The same result can also be
expressed as:

)(' 17YP

AM
i

i

Where, A= {Mi RS (M0): Y (Mi) = true}.

The expected value of the number of tokens in a
given place: In this case, the reward function r (M)
is simply the value of the marking of that place
(say place j):

 jr M n if M p n (18)

 Again, this is equivalent to identifying the
subset A (j, n) of RS (M0) for which the number of

World Appl. Sci. J., 3 (3): 504-513, 2008

508

tokens in place pj is n (A (j, n) = {Mi | RS (M0) Mi
(pj)=n}) the expected value of the number of tokens in
pj is given by:

)(, 19njAPn0npME j

Where, the sum is obviously limited to n values of n
k, if the place is k bounded.

The mean number of firings per unit of time of a
given transition: Assume that the firing frequency of
transition Tj (the throughput of Tj) was wanted to
compute; observing that a transition may fire only when
it is enabled, the reward function is assumed the value
wj in every marking that enables Tj:

)(20
otherwise0

METw
Mr jj

 The same quantity can also be computed using the
more traditional approach of identifying the subset Aj of
RS (M0) in which a given transition Tj is enabled (Aj =
{Mi RS (M0): Tj E (Mi)}). The mean number of
firings of Tj per unit of time is then given by:

)21(=
ji AM

iji wf

 These results show that indeed, Petri nets can be
used not only as a formalism for describing the
behavior of distributed/parallel systems and for
assessing their qualitative properties, but also as a tool
for computing performance indices that allow the
efficiency of these systems to be evaluated. As these
basic parameters are computed, some more meaningful
information can be derived. For example, a metric for
comparing the security of different architectures can be
gained by using the equation:

)(22
2

SJ

TS

f

fS

Security
Pp

p

p
Pp

p

Tt
t

Tt
tt

Net

Where St is the data security factor associated to the
transition t, ft is the firing rate of t, Sp is the data
security factor associated to the place p, Tp is the
expected time in which there is a token in place p. This
is similar to the authors' previous work using
simulation. Identically the reliability can be computed,

but because the reliability is usually related to the
processes of system, the reliability factor is just usually
associated to the transitions than the places:

)(Re 23

f

fRL
liability

Tt
t

Tt
tt

Net

Where RLt, stands for the reliability of process t.
 We can compute some other parameters like those
computed above for example we could gain a metric for
comparing the availability of different architectures but
because availability is usually related to the places of
the system. Thus, the availability factor is usually
associated to the places than transitions. We can gain it
by the equation:

)(
)(

24
SJ

TA

Pp

Pp
pp

NetyAvalibilit

 Which Ap is the availability associated to the
transition t, tp is the expected time in which there is a
token in place P.
 This is similar to our previous work using
simulation. Another parameter that we can gain a
metric is performance efficiency because performance
efficiency is usually related to the transitions of the
system it is associated to the transitions than places and
we can gain it by the equation:

)(
)(

25
f

fP

Tt
t

Tt
tt

NetEfficiencyePerformanc

 Where Pt is the performance efficiency that
associated to the transition t and ft is the firing rate of t.

CASE STUDY

 We have designed and implemented a case tool
“NFPG”.NFPG has the ability of drawing any kind of
GSPN and driving the CTMC from the reachability
graph, which is obtained from drawing GSPN and
finally calculation the parameters that are mentioned
above.
 We have evaluated a real guide robot ‘Jinny’ by
NFPG as a case study. This case study proposes a
selection framework of multiple navigation primitives

World Appl. Sci. J., 3 (3): 504-513, 2008

509

Table 1: Description of two navigations

Type AutoMove Contour tracking

Algorithm Shortest path planning with obstacle avoidance A (left, right, center) wall following technique using only laser scan data

Merits Optimality (shortest path to any points on the maps) Reactive
 Generality (applicable in any situations) Rise localization reliability
 Less affected by localization accuracy

Desirable Generally applicable, but the performance drops in a An area where there are many static feature like walls or exhibits
environment narrow or crowded region.

Table 2: Description of the places and the transition

Place Description

P0(P5) Navigation available (Completion)
P1(P2) Running AutoMove (Contour tracking)
P3(P4) Localization Success (Warning)

Transition Description Firing rate

t0 Start AutoMove (prob. p) -
t1 Start Contour tracking (prob. 1-p) -

t2(t4) Convert to Contour tracking (AutoMove) due to performance estimation 1(2)
t3 Convert to Contour tracking due to localization Warning -

t5(t6) Localization Warning (Success) event fired 3(4)

t7(t8) AutoMove (Contour tracking) completed 5(6)

t9 Initialization 7

for a service robot using Generalized Stochastic Petri
Nets (GSPN’s). Jinny was developed by using a Petri
net (PN) based control architecture, which was
designed for multifunctional service robots.
 Through their experiences, they concluded it is
important for the robot adaptively to select its
navigation primitives according to the conditions
of environments. For example, in general cases, it
is advisable that the robot uses a map-based
navigation [23].
 In general, navigation task is accomplished by the
cooperation of several components such as a localizer
and a path planner. As the related components and
navigation primitives increase, it becomes troublesome
to manage the relationships between them. A major
scope of this paper is to propose a selection framework
of multiple navigation primitives for a service robot.
 In this approach, modeling, analysis and
performance evaluation are carried out based on the
Generalized Stochastic Petri Nets (GSPN’s).Owing to
the formalism; the strategy has following three major
advantages. First, the framework is developed on firm
mathematical foundation. This advantage makes it
possible to set up state equations and other
mathematical models governing the behaviors of a
system. Second, the method supports modular and
incremental designs of navigation framework since

GSPN’s have powerful modeling ability. It can model
concurrency, asynchronous events, logical priority
relations and structural interactions. In addition, several
free or commercialized tools can automate the
transformation from GSPN model to the mathematical
representation. Third, as a graphical tool, GSPN’s can
represent both static and dynamic aspects of a system.
 In this case, study, it is considered two types of
navigation primitives, AutoMove and Contour tracking.
The detailed description of these motions is
summarized in Table 1.
 From this observation, one rule is made for the
primitive selection. It is that if the localizer falls into
the Warning state, Contour tracking is unconditionally
selected. The criterion of this selection problem is
“which primitive leads the robot to a goal faster than
the other with guaranteeing localization safety.”
 The modeling method goes through following
procedure. First, based on a given system description,
navigation primitives and required components are
identified. Primitives are designed as places and the
changes between them are modeled as transitions. Each
component is represented as an independent GSPN’s
model. You can see the resultant GSPN model, which is
drown in NFPG environment in Fig. 1.
 Table 2 describes the physical meaning of places
and transitions of the model. The GSPN model has six

World Appl. Sci. J., 3 (3): 504-513, 2008

510

Fig. 1: Resultant GSPN model which is drown in NFPG environment

Table 3: Description of reachability set of the GSPN
Reachability set of the GSPN
M0 P0 + P3
M1 P1 + P3
M2 P2 + P3
M3 P3 + P5
M4 P1 + P4
M5 P4 + P5
M6 P2 + P4
M7 P0 + P4

Fig. 2: The reachability graph of the GSPN system

Fig. 3: The state transition rate diagram of the Markov

chain associated with the GSPN

places, seven timed transitions (drawn as white bars)
and three immediate transitions (drawn as black bars).
 The initial marking is M0= (1 0 0 1 0 0), which is
denoted as P0P3 in the reachability graph in Fig. 2 by
specifying the places having tokens.
 Figure 3 shows the state transition rate diagram of
the Markov Chain
 The localizer has two internal states, Success and
Warning. In the initial marking, a token is assigned to

World Appl. Sci. J., 3 (3): 504-513, 2008

511

Fig. 4: Reduced embedded Markov chain

Fig. 5: Calculated availability, performance efficiency,

security and reliability

P3, i.e., it is assumed that the localizer initially knows
its position. The Warning event t5 fires when the
localizer fails in estimating robot’s accurate position for
several steps. Two navigation primitives, AutoMove and
Contour tracking, are modeled as P1, P2, respectively.
Initially, the robot selects its motion by a random
switch comprising the transitions t0 and t1 with
corresponding probabilities p and 1-p, respectively. The
transition between them takes place according to the
change of localizer states. The immediate transition t3
means that the robot takes Contour tracking as soon as
the localizer Warning event fires does. The other
transition between two primitives, t2 and t4, are modeled
as timed transitions in order to express that the robot
can change its current navigation primitive during the
localizer Success state, if necessary. One of the most
important modeling issues is how to set the firing rates

= { 1,…, 7}. In order to perform the evaluation of
GSPN designs, it is necessary to obtain an embedded
Markov chain (EMC).
 Figure 4 shows the EMC induced from the
rechability graph of Fig. 2, which is derived from
GSPN model of Fig. 1 and Ap, tp, ft and Pt are as
follow:

1 3 5 1 5 3

2 2 3 6 6 3

7 7 7 3 3

4 4 7 7

4 6 4 6

0
0

Q .P .(1 P) 0
0 0
0 0

Fig. 6: The infinitesimal generator of the Markov chain

000

000

00
1..

00

00

64

6

64

4

74

7

74

4

73

3

73

7

73

7

632

3

632

6

632

2

531

3

531

5

531

1

' PP
U

Fig. 7: The reduced embedded Markov chain matrixin

ft = {ft0,…,ft9} = {0, 0, 0.001, 0, 1000, 0.0117,

0.0166, 0.0142, 0.0071,1000}
Pt = {Pt0,…,Pt9} = {0.008, 0.018, 0.458, 0.489, 0.599,

0.435, 0.685, 0.752, 0.833, 0.501}
Ap = {Ap0, Ap5} = {0.136, 0.454, 0.496, 0.355, 0.272,

0.145}
tp = {tp0,…,tp5} = {0.004, 0.116, 0.108, 0.135,

0.127, 0.005}
Sp = {Sp0,…,Sp5 } = {0.3, 0.7, 0.4, 0.5, 0.5, 0.2}
St = {St0,…,St9} = {0.53, 0.55, 0.5, 0.42, 0.56, 0.72,

0.68, 0.82, 0.83, 0.63}
RLt = {RLt0,…,RLt9} = {0.35, 0.33, 0.31, 0.52, 0.27,

0.7, 0.63, 0.71, 0.73, 0.52}

 Using Equations (22), (23), (24) and (25), it is
obtained: Security = 0.327, Reliability = 0.511,
Availability = 0.027 and Performance Efficiency =
0.463, which is shown in Fig. 5.
 The Infinitesimal Generator of the Markov Chain is
shown in Fig. 6. The Reduced Embedded Markov
Chain Matrix is shown in Fig. 7.

CONCLUSION AND FUTURE WORKS

 In this paper, we presented a method to derive non-
functional parameters from Generalized Stochastic Petri
Net. These parameters can be a good guidance for
selecting sufficient software model between
recommended software models, to achieve a model
with a high security, reliability, efficiency and
availability. We use GSPN because it is a formal model
and there are many methods for transforming UML

World Appl. Sci. J., 3 (3): 504-513, 2008

512

(which is using for modeling the system widely). There
are some key activities to achieve this goal: Driving the
CTMC from GSPN; which is described in this paper
extensively, analyzing the CTMC then obtaining the
non-functional parameters. Finally, by designing and
implementing NFPG we could calculate some of these
parameters we used NFPG to calculate the parameters
of a guide robot. One area for future research is to
obtain other parameters [22-24].

REFERENCES

1. Robert, G., I.V. Pettit and Hassan Gomaa, 2000.

Validation of Dynamic Behavior in UML Using
Colored Petri Nets. UML 2000 Dynamic Behavior
Workshop, York, England.

2. Merseguer, J., J.P. L´opezGrao and J. Campos,
2004. From UML Activity Diagrams to Stochastic
Petri Nets: Application to Software Performance
Engineering. ACM, WOSP 04.

3. Ajmone Marsan, M., 1995. Modeling with
Generalized Stochastic Petri Nets. John Wiley
Series in Parallel Computing-Chichester.

4. Motameni, H., A. Movaghar and M. Mozafari,
2005. Evaluating UML State Diagrams Using
Colored Petri Net. Proc. of SYNASC'05, Romania.

5. Trowittzsch, A., Zimmermann and G. Hommel,
2005. Toward Quantitative Analysis of Real-Time
UML using Stochastic Petri Nets. IPDPS.

6. Bernardi, S., S. Donatelli and J. Merseguer, 2002.
From UML Sequence Diagrams and State Charts to
Analysable Petri Net Models. ACM Proc. Int’l
Workshop Software and Performance, pp: 35-45.

7. Merseguer, J., J. Campos and E. Mena, 2001.
Performance Analysis of Internet Based Software
Retrieval Systems using Petri Nets. ACM.

8. King, P. and R. Pooley, 1999. Using UML to
derive Stochastic Petri Net Models. UKPEW.

9. Merseguer, J., S. Bernardi, J. Campos and S.
Donatelli, 2002. A Compositional Semantics for
UML State Machines Aimed at Performance
Evaluation. Silva, M., A. Giua and J.M. Colom
(Eds.). Proc. of the 6th Int. Workshop on Discrete
Event Systems (WODES'02), Zaragoza, Spain,
pp: 295-302.

10. Elkoutbi, M. and R.K. Keller, 1998. Modeling
Interactive Systems with Hierarchical Colored Petri
Nets. Advanced Simulation Technologies Conf.,
Boston, MA, pp: 432-437.

11. Eshuis, R., 2002. Semantics and Verification of
UML Activity Diagrams for Workflow Modeling.
Ph.D. Thesis, University of Twente.

12. Fukuzawa, K. and Saeki, 2002. Evaluating

Software Architecture by Colored Petri Net. Dept.
of Computer Science, Tokyo Institute of
Technology, Okayama 2-12-1, Meguro-uk, Tokyo,
Japan, pp: 152-8552.

13. Pettit, R.G. and H. Gomaa, 2000 Validation of
Dynamic Behavior in UML Using Colored Petri
Nets. UML'00.

14. Shin, M., A. Levis and L. Wagenhals, 2003.
Transformation of UML-Based System Model into
CPN Model for Validating System Behavior. Proc.
of Compositional Verification of UML Models,
Workshop of the UML'03 Conference, California,
USA.

15. Faul, M.B., Verifiable Modeling Techniques Using
a Colored Petri Net Graphical Language.
Technology Review Journal, Spring/Summer.

16. Motameni, H., A. Movaghar and B. Kardel, 2005.
Verifying and Evaluating UML Activity Diagram
by Converting to CPN. Proc. of SYNASC'05.

17. Motameni, H., M. Zandakbari and A. Movaghar,
2006. Deriving Performance Parameters from the
Activity Diagram Using GSPN and Markov.
ICCSA 2006 Proceedings of 4th International
Conference on Computer Science and Its
Applications, San Ddiego, California.

18. Motameni, H., H. Montazeri, M. Siasifar, A.
Movaghar and M. Zandakbari, 2006. Mapping
State Diagram To Petri Net: An Approach To Use
Markov Theory For Analyzing Non-Functional
Parameters. CISSE’06 Proceedings of 2nd IEEE
International Conferences on Computer,
Information and Systems Sciences and
Engineering, Bridgeport, USA.

19. Motameni, H., H. Montazeri, M. Siasifar, A.
Movaghar and M. Zandakbari, 2006. Using
Markov Theory for Deriving Non-Functional
Parameters on Transformed Petri Net from State
Diagram. SEC(R) 2006 Proceedings of
International Conference on software engineering
conference (Russia), Moscow, Russia.

20. Rana, O.F. and M.S. Shields, 2000. Performance
Analysis of Java Using Petri Nets. LNCS 1823:
High Performance Computing and Networking, pp:
657-667. 8th International Conference, HPCN
Europe, 2000, Amsterdam, The Netherlands, May
2000, Proceedings/M. Bubak, H. Afsarmanesh, R.
Williams, B. Hertzberger (Eds.), Springer Verlag.

21. Object Management Group, UMLTM Profile for
Schedulability, Performance and Time
Specification, OMG document, Version 1.1,
January 2005.

World Appl. Sci. J., 3 (3): 504-513, 2008

513

22. Kim, G., W. Chung and M. Kim, 2005. A

Selection Framework of Multiple Navigation
Primitives Using Generalized Stochastic Petri
Nets. Poceedings of the IEEE International
Conference on Robotics and Automation
(ICRA), Barcelona, Spain.

23. Nihal, Y. Ö., 2007. On the Numbers of the Form
 n = x2 + Ny2, World Applied Sciences Journal 2
 (1): 45-48.
24. Erçetin, S. S., Çetin, B. and N. Potas, 2007 ,
 Multi-Dimensional Organizational Intelligence
 Scale (Muldimorins) , World Applied Sciences
 Journal 2 (3): 151-157.

