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Abstract: Change-point problem deals with sudden change in the distribution of a set of given data. 
Change in financial time series is a common event, because many factors for example some news, etc. may 
affect the series and cause change. In this work, we intend to detect the time of change-point, using 
Bayesian methods in Unobserved-ARCH models. We estimate the model and the time of the change-point.
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INTRODUCTION

We focus on a member of a class of models, 
introduced by Harvey et al. [1] viz the Unobserved 
ARCH model, first explicitly presented by Shephard 
[2]. In this model, the ARCH component is observed 
with error, or it may be seen as a latent process.
Fiorentini et al. [3] extensively discuss the need to 
study models in which an ARCH process is used as a 
latent process. In economic applications, for instance, 
common sense suggests that the behavior of economic 
agents may face abrupt changes under the effect of 
economic policy, political events, etc. We consider a 
uniform prior for the "change-point time" and some 
improper priors for other parameters. We estimate the 
model and time of change-point, as well. Normally, our 
inference is based on posterior distribution of
parameters. As the posterior distribution is complex and 
not tractable MCMC methods, particulary Gibbs and 
Metropolis -Hastings algorithms, are used.

The remainder of the paper is organized as follows. 
In Section 2, we present the Unobserved ARCH model 
and some of its theoretical and the change-point time 
problem. In Section 3, we propose a change-point
problem in Unobserved-ARCH model and a method to 
capture the time of the change-point. In Section 4, we 
illustrate this algorithm with a simulation and a real 
data set. In Section 5, we give some concluding
remarks.

THE UNOBSERVED-ARCH MODEL

The Unobserved ARCH model has been presented 
by Shephard [2]. The ARCH components in this model 
are observed with errors. Using the following

hierarchical structure of the conditional densities, the 
model can be written as: 
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Where y1, y2,…yT is a realization of the process under 
study, xt is the Unobserved ARCH component at time t, 
x0 is the initial state or the "history" of the unobserved
components and N(⋅,⋅) is the Normal distribution. To 
obtain ht>0, the parameters α and β are resstricted to be 
positive. The additional restriction 0<β≤1 is imposed so 
that the ARCH component of the model is covariance 
stationary.

Giakoumatos et al. [4] introduced Bayesian
approaches for estimating the model. In this paper, we 
used their method to sample from the joint posterior 
distribution of all the unknown parameters and the
latent variables. The Unobserved-ARCH models,
considering a single change-point, can be generalized in 
the following way: 
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We consider a change-point in the hidden process. 
In this work, also we consider a model with a change-
point in intercept and slope of the hidden process.
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BAYESIAN CHANGE-POINT TIME

The posterior density of the parameters of the
Unobserved-ARCH model with a change-point time
can be extracted via Bayes theorem, by 
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(Throughout the paper the usual square bracket
notation is used for joint, conditional and marginal
densities.) The first four terms in the above product are 
derived from the hierarchical structure in (1) and the 
last term, [α1, α2, β1, β2, σ2, τ,  x0], is the joint prior 
density of α1, α2, β1, β2, σ2, τ and x0. These parameters 
are  assumed  to  be a  priori independent. Improper 
priors are used for α1, α2, β1, β2, σ2 and discrete
uniform prior for τ and a vague Normal density N(0,v) 
for x0, so that the joint prior density takes the form [α1,
α2, β1, β2, σ2, τ, x0]∝(a1a2σ

2)−1 exp {-0.5x0
2/v}. The

same transformation given in [4] for Bayesian inference 
for parameters are used, 
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where g1, g2>0, 0<β1, β2≤1. Regarding the joint
posterior density of the parameters above, the full
conditional distribution is given by:
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where IG(a, b) denotes the Inverse Gamma density with 
mean b/(a-1); the notation |. implies conditioning on all
the remaining parameters.
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Where I(⋅) is the indicator function.
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For t = 1, 2,…, τ, where mt,1 and 2
t,1s  are given by 
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For t = τ+1,2,…,T, where mt,2 and 2
t,2s  are given by: 
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To sample from w0, wt,1 and wt,2 we use
Metropolis -Hastings algorithm [5,6]. The full
conditional  distribution  for  the  "change-point  time", 
τ, is:
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For details the MCMC methods see [7]. 

APPLICATION

In this section, we demonstrate how our method is 
used in practice. We simulate y1, y2,…., y1000 from the 
following model of the form:
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We ran the algorithm for N = 20000 iterations.
Figure 1 gives the approximated posterior density for 
the parameters, which are obtained from simulated
values of full conditionals. Regarding Fig. 1, the
histogram of τ, or the approximate posterior density of 
change-point, it is clear that almost all probability mass 
are distributed from t = 390 to 410 Depending on the 
loss function, the estimate of "change-point time" can 
be computed.

Relative to the squared loss function, the Bayesian 
estimates of the parameters are given in 

Now, we illustrate our proposed methodology
using T = 730 the daily exchange rate of the Germany 
Marc (DEM) with respect to the Greek Drachma. To 
elaborate, let ct be the exchange rate of a currency with 
respect to the Drachma on day t; then data series is 
given by:

t
t

t

c
y = log( ).100

c 1

that represents the daily relative (percentage) change of 
the exchange rate since

Fig. 1: Histograms of parameters, over 20000 iterations
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Fig. 2: DEM/Drachma exchange rates

Fig. 3: Histograms of the posterior sample of the parameters, over 20000 iterations
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Our data set (Fig. 2) consists of 730 observations 
taken in the period 16/6/94--2/5/97. Using our proposed 
algorithm of last Section to capture the time of change 
and estimating the unknown parameters, we obtain a 
sample  from  the  posterior  density  of  the parameters. 

We ran the algorithm for N = 20000 iterations to obtain 
samples from the marginal densities of the parameters 
of interest. 

We present in Fig. 3 the histograms of the posterior 
sample of the parameters of the Unobserved-ARCH
model with a change-point time. As seen in Fig. 3, the 
histogram of the posterior sample of the change-point,
τ, almost all probability mass distributes from t = 170 to 
190. Table 2, presents the Bayesian estimates of the 
parameters and especially change-point time relative to 
the squared loss function.
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Table 1: The Bayes estimates of the parameters along with true values 

Parameters True value Bayesian estimation

α1 0.004 0.0049

α2 0.008 0.0134

β1 0.800 0.7857

β2 0.990 0.8225

σ2 0.010 0.0084

τ 400.000 411.4879

Table 2:The Bayes estimates of the parameters for the daily 
exchange rate of the Germany Mark (DEM) with respect to 

the Greek Drachma

Parameters Bayesian estimation

α1 0.00038

α2 0.02424

β1 0.77172

β2 0.64112

σ2 0.00536

τ 180.423

CONCLUDING REMARKS

Unobserved-ARCH models can describe some
financial time series and change in these models is a 
common event. In this paper, we estimated the model 
and the time of change point. We assumed improper 
priors for unknown parameters and discrete uniform
distribution for the change point.
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