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Abstract: We propose estimation of the regression function r for uniformly mixing processes with 
common probability density function wavelets and some asymptotic properties of the proposed estimator 
are investigated.
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1. INTRODUCTION

Methods of estimation of density and regression 
function are quite common in statistical applications.

Wavelet theory has the potential to provide
statisticians with powerful new techniques for
nonparametric inference. It combines recent advances 
in approximation theory with insights gained from
applied signal analysis. Nonparametric curve estimation 
by wavelets has been treated in numerous articles in 
various setups see, Antoniadis [1], Donoho [2] and 
Hardle [3]. 

The problem of interest is the estimation of
nonparametric regression function based on the
observations (X1,  Y1), (X2,  Y2),…, (Xn, Yn ). There are 
many interesting examples where applications of
regression smoothing methods have yielded analysis 
essentially unobtainable by other techniques. Eubank [4] 
and Muller [5]. In contrast with most existing works 
Antoniadis [6], Delyon [7], Kovac and Silverman [8], 
Vidakovic [9] and Sardy [10], Antoniadis and Fan [11].

In this paper we consider wavelet estimator of 
regression function for uniformly mixing processes
when the random design model is given as the 

i i iY r (X) , i 1,2,3,...,n= + ε = (1.1)

Where (Xi, Yi), i = 1, 2,…,n be identically
distributed as a two-dimensional random vector with
E(Y2)≤∞ and the error δi, conditionally on Xi are 
assumed to be independent with zero expectation and a 
bounded conditional variance. Some asymptotic
properties of propose estimator is investigated.

2. PRELIMINARIES

Let {Xn, n≥1} be a sequence of random variables 
on the probability space (Ω ,ℵ,P). We suppose that Xi

has a bounded and compactly supported marginal
density f(x), with respect to Lebesgue measure, which 
does not depend on i A natural estimator of F(x) is the 
piecewise constant empirical dis tribution function:

n

i
i 1

1F̂(x) I(X x)
n =

= ≤∑

Since f(x) is defined to be derivative of F(x), the 
natural estimator of f(x) for suitably h can be written: 

( ) ( )( )
( )

n
i

h i
i 1

1ˆ ˆ ˆf(x) F x h F x h
2h
1 x X 1K K x , X

nh h n=

= + − −

− = = 
 

∑ ∑
(2.1)

Where K(x) is the kernel function form as:

1
x ( 1,1)K(x) 2

0 otherwise


∈ −= 



The series expansion of function in terms of a set 
of orthogonal basis functions is familiar in statistics.

Let the nested sequence of closed subspaces; …… 
Vj-1⊂Vj⊂Vj+1⊂…, j∈Z, be a multiresolutuon
approximation to L2(R). Define Wj, j∈Z to be
orthogonal complement of Vj in Vj+1.

The term wavelets are used to refer to a set of basis 
functions with very special structure. The special of 
wavelets basis for function f∈L2(R) as scaling function 
ϕ and mother wavelet ψ  such that {ϕ(x-k)}k∈Z forms an 
orthogonal basis for V0 and {ψ(x-k)}k∈Z forms an 
orthonormal basis for W0. Other wavelets in the basis 
are then generated by translation of the scaling function 
and dilations of the mother wavelet by using the
relationships:
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0 0

0

m / 2 m j /2 j
m , k j , k(x) 2 (2 x k), (x) 2 ( 2 x k)ϕ = ϕ − ψ = ψ − (2.2)

Given above Wavelet basis, a function f∈L2(R) can 
be written a formal expansion:

0 0

0

m , k m ,k j,k j,k
k Z j m k Z

f
∞

∈ = ∈

= α ϕ + β ψ∑ ∑∑ (2.3)

Where

0 0j , k j , kf(x) (x)dxα = ϕ∫ , j,k j,kf(x) dxδ = ψ∫

We suppose that both ϕ and ψ have compact
supports included in [0,1] and r− regular multiresolution 
analysis belong to the Holder space Cr+1, r∈N.

Consider the density which has the same form as 
(2.3). As for general orthogonal series estimator,
Daubechies [11], density estimator can be writhen as:

0 0

0

0

0

m , k m ,k j,k j,k
k Z j m k Z

m j,k j,k
k Zj m

ˆ ˆˆf (x) (x)

ˆf
∈ ≥ ∈

∈≥

= α ϕ + β ψ

= + β ψ

∑ ∑∑

∑∑P
(2.4)

Where the obvious coefficient estimator can be 
written:

0 0 0

n

m , k m ,k m ,k i
i 1

1ˆ E[ (X)] ( X )
n =

α = ϕ = ϕ∑
n

j,k j,k j,k i
i 1

1ˆ E[ (X)] ( X )
n =

β = ψ = ψ∑ (2.5)

The projection of f in L2(R) on to the space 
0mV in

equation (2.4) is a special case of a kernel density
estimator with kernel,

0 0 0

0 0 0
0 0

m ,k m , k m ,k
k Z
m m m

m , k m ,k
k Z

K (x,y) (x) (y)

2 (2 x k) (2 y k)
∈

∈

= ϕ ϕ

= ϕ − ϕ −

∑

∑

In terms of this kernel, this can be expressed as:

n n
i

h i
i 1 i 1

1 1 x Xf̂(x) K (x ,X) K( , )
n nh h h= =

= =∑ ∑ (2.6)

Where 0mh 2¯= and the orthogonal projection
kernels are 0 0 0

0 0

m m m
m , k m ,kK (x,y) 2 K (2 x,2 y)=  It is easy to 

see that K0(x,y) = K0(x+k, y+k) for K∈z
Obviously, K0 is not a convolution kernel, but the 

regularity of ϕ and ψ implies that is bounded above by 
convolution  kernel,  that is |K0(x,y)≤c(x-y)|,  where c is 
some positive, bounded integrable function satisfying 
moment    condition   [12].  In  particular,  the  bounded

0x,y m
1Supp K (x,y) O
h

 =  
 

is often needed. Obviously we cannot estimate an 
infinite set of βj,k from the finite sample, so it is usually
assumed that f belong to a class of function with certain 
regularity. The corresponding norm of the sequence of 
βj,k is finite and therefore βj,k must be zero. The
resulting density estimate is:

0 0

0

0

J 1

m , k m ,k j,k j , k
k Z j m k Z

J 1

J j,k j,k
j m k Z

f̂ (x) (x)

f (x)

−

∈ = ∈

−

= ∈

= α ϕ + β ψ

= + β ψ

∑ ∑∑

∑∑



P
(2.7)

Then thes e empirical Coefficients are calculated 
for resolution level m0 up to some large value j, which 
is chosen that PJf approximates very well.

3. MAIN RESULT

One of the basic approaches to nonparametric 
regression  is  to  consider  unknown function r
expanded as a generalized Fourier series and then to 
estimate  the  generalized  Fourier  coefficients  from 
the data. The original nonparametric problem is thus 
transformed to a parametric problem, although the
potential  number  of parameters is finite. An
appropriate  choice  of basis of the expansion is
therefore a key point in relation to the efficiency of 
such an approach. A good basis should be parsimonious 
in the sense that a large set of possible response
functions can be approximated well with only a few
terms  of  the  generalized  Fourier  expansion
employed. Wavelet series allow a parsimonious
expansion for a wide variety of functions, including 
inhomogeneous  cases. It is therefore natural to
consider applying the generalized Fourier series
approach by using a wavelet series. The field of
nonparametric  regression  has  developed to fit a curve 
to data with out assuming any particular parametric 
structure on the underlying function r. Techniques in 
nonparametric  regression  each  come with their own
sets  of  assumptions, typically regarding the
smoothness of r, such as specifying that r has at least 
one continues derivative.

Definition 3.1: Let {Xn, n≥1} be a stochastic process 
defined on the (Ω ,ℵ,P) and m

kN  denote the σ-algebra
generated by the events {Xk∈Ak,…,Xm∈Am}. The
process {Xn, n≥1} is said to satisfy the uniform mixing 
condition if
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m
1 m sm A , P ( A ) 0 , B

|P(AB) P(A)P(B)|
sup sup (s) 0

P(A)∞
+∈ > ∈

−
= φ →

N N

as s and (0) 1→∞ φ =

Uniformly mixing, also called φ-mixing.
Know we consider random design mode (1.1), in 

which (Xi, Yi ) are independent and distributed as (x, Y). 
For this model Antoniadis et al. [1], suggest the
estimator:

( )

( )

n
1

i h i
i 1

i n
1

h i
i 1

n¯ Yk x,X ĝ
r̂(x ) = =

f̂n¯ k x,X

=

=

∑

∑
(3.1)

We want to find bias and variance of f̂ and ĝ for
uniformly mixing processes by the following theorems 
and using these results for finding the convergence rate 
of our proposed estimator r̂ .

Theorem 3.1: [13]. Assume that the density f belongs 
to the Holder space Cm+α, 0≤α≤1  and the wavelet-
kernel K(x, y) satisfies the localization property:

mK(x,y)(y x) dy c
+∞ +α

−∞
− ≤∫

for some positive c. Let j→∞ and n2−j→∞  as n→∞,
then for fixed x:

(m) j mj j(m )
m

1
f̂(x) f(x) f (x)b ( 2 x ) 2 O(2 )

m!
− − + α−

− = +E

where
m m

mb x K(x,y)y dy
+∞

−∞
= − ∫

Theorem 3.2: Let the process {Xn, n≥1} be φ-mixing
and X, Y be measurable random variables with respect 
to m

1N and m s
∞
+N  and ||X||p<∞,||Y||q<∞, for p,q<∞, then

1
p

p qCov(X,Y) 2[ (s)] X Y≤ φ

for any
1 1

p,q 1 , 1
p q

> + =

Proof: Suppose that X and Y represented by finite
sums as 

jj X A
j

X I ∈= α∑

ii Y A
i

Y I ∈= β∑

Where Aj and Bi are disjoint events in m
1N and m s

∞
+N .

By using Holder inequality we can write:

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

{ } ( ) ( ) ( )( ) ( ) ( )

q
p

j i j i j i j i j j i i j i
i j i j j i

1
q q11 1
pP pP q

j j i i j i j j j j i i j i
j i j j i

1
P qp

j i i j i i j i
j i i

Cov(X,Y) P A B P A P B P A P B A P B

P A P B A P B P A [ P A ] P A P B A P B

E X P A P B A P B P B A P B

   = α β − α β = α β −   

 
        = α β − ≤ α β −        
  

 ≤ β − × −  

∑∑ ∑∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ { } { } ( ) ( )

1
q 1

1 1 1
pp qp p q

i j ij
i

2 E X E Y max P B A P B
 
   ≤ −   

  
 

∑

(3.2)

Denoting the summation
i
∑  over positive and negative terms , ¯+∑ ∑ , then we have:

( ) ( ) ( ) ( ){ } ( ) ( ){ }

( )

i j i i j i i j i
i i i

i j i i j i
i i i i

P B A P B P B A P B P B A P B

P B A P B P B A P B 2 s

+ −

+ + − −

− = − + −

          = − + − ≤ φ          
          

∑ ∑ ∑

   
(3.3)

By substituting (3.3 in (3.2), the theorem is proved. 

Theorem 3.3: Let {Xn, n≥1} be stochastic process defined on the (Ω ,ℵ,P), with density function f(x) such as 
satisfying the following condition:
1) {Xn, n≥1} be a φ-mixing.

2)
1
2

s

(s) Kφ ≤ < ∞∑
3) f∈C1, f and f’ (the first derivative off), be uniformly bounded, then for fixed x,
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( )( ) ( )C x 1ˆVar f x f x V O
nh h n

   = +      
Where

( ) ( ) ( )2V x k x,y dy k x,x
+∞

−∞
= =∫

Proof

( ) ( ) ( ){ } ( ) ( )( )
n n n 1 n

h i h i h i h j2 2
i i 1 i 1 j i 1

1 1 2ˆVarf x Var K x,X Var K x,X Cov K x,X ,K x,X
n n n

−

= = = = +

 = = + = + 
 
∑ ∑ ∑∑


I II  (3.4)

Know we obtain upper bound for (I) and (II).

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( )( )

2
2 2
h h

2
2 2 2
h h h

2
2 2
h h

1 1
K x,y f y dy K x,y f y dy

n n
1 1 1

f x K x,y dy K x,y f y f x dy K x , y f y dy
n n n
1 x 1 1

f x V( ) K x,y f y f x dy K x,y f y dy
nh h n n

∞ ∞

−∞ −∞

∞ ∞ ∞

−∞ −∞ −∞

∞ ∞

−∞ −∞

= −

= + − −

= + − −

∫ ∫

∫ ∫ ∫

∫ ∫

I

Below, we show that the second and the third terms in last equality are order of 1/n.

( ) ( ) ( )( ) ( )

( ) ( ) ( )

2 2
h x 2

1
x s,t R

1 1 1 x yk x,y f y f x dy sup f x k , y xdy
n n h h h

1 x x
sup f x sup k s,t k ,t t O n

n h h

∞ ∞

−∞ −∞

∞ −
∈ −∞

 ′− ≤ −  

  ′≤ − =    

∫ ∫

∫

By the uniform bounded ness of f(x), it is easy to see that

( ) ( )( )  2

h
1 1

k x , y f y dy O( )
n n

∞

−∞
=∫ Thus, ( ) ( )1c xf x V O n

nh h
− ≤ +  

I (3.5)

To complete the proof it is enough to prove

( )c xf x V
nh h

 =   
II

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )
n 1 n n n

h i h j h h s h 1 h s2 2
i 1 j i 1 l 1 l 1

2 2 2Cov k x,X , k x,X n 1 C o v k x,X ,k x,X Cov k x,X , k x,X
n n n

−

= = + = =

= = − ≤∑ ∑ ∑ ∑II (3.6)

Know by using theorem (3.2) we can write:

( ) ( )( )
1 1

22 2
h 1 h s h 1 h s h2 2 2

1 1
2 22 2

h 1 h h22

1 1
22 2
h

Cov k x,X , k x,X 2 (s 1) K (x,X K (x,X 2 (s 1) K (x,Y

1 x Y2 (s 1) K (x,X K (x,Y)f(Y)dY 2 (s 1) f K ( , )dY
h h h

1 x 1 x
2 (s 1) f K ( ,t)dt 2 (s 1) V( ) f

h h h h

+∞ +∞

−∞ −∞

+∞

−∞

≤ φ − = φ −

≤ φ − ≤ φ −

= φ − = φ −

∫ ∫

∫

(3.7)

By substituting (3.7) in (3.6) we have:

1
1n n2
2

s 1 s 1

2 (s 1) x c x cK x C xV( ) f V( ) (s 1) V( ) V( )
n h h nh h nh h nh h= =

φ −≤ = φ − ≤ ≤∑ ∑II (3.8)



World Appl. Sci. J., 3 (3): 441-447, 2008

445

Substituting (3.8) and (3.5) in (3.4), complete the proof.

Theorem 3.4:[1] Assume that the g(x) belong to the 
Holder space Cm+α, 0≤α≤1 and the wavelet-kernel K(x, 
y) satisfies the localization property:

mK(x,y)(y x) dy C
+∞ + α

−∞
− ≤∫

for some positive C. Let j→∞ and n2j→∞, as n→∞.
Then for fixed x, 

(m) j mj j(m )
m

1ˆEg(x) g(x) g (x)b (2 x ) 2 O(2 )
m!

− − + α− = − +

Theorem 3.5: Let {Xn,  n≥1} be stochastic process 
defined on the (Ω ,ℵ,P), with density function f(x) and 
regression function r(x) such that f(x) and r(x) locally 
bounded. Suppose that the process is φ-mixing and

1
2

s

(s) Kφ ≤ < ∞∑

Then 1 xˆVar[g(x)] O( ) V( )
nh h

= +  where 0mh 2−= .

Proof

( ) ( )

( )

n

i h i
i

n

i h i2
i 1

n 1 n

i h i j h j2
i 1 j i 1

1ˆVarg x Var YK x,X
n

1
Var Var{YK x,X }

n
2

Cov(YK (x,X) ,YK ( x , X )
n

=

=

−

= = +

 =  
 

=

+

= +

∑

∑

∑∑



I II

(3.9)

Know we want to obtain upper bound for (I) and
(II). By Antoniadis [14], we have 

K
nh

≤I (3.10)

Next, we can write 

n 1 n

i h i j h j2
i 1 j i 1

n

h 1 j h l
l 1

2
Cov(YK (x,X) ,YK ( x , X )

n

2 Cov(YK ( x,X ) ,YK ( x , X )
n

−

= = +

=

=

≤

∑∑

∑

II

Where Cov{(Yi, Yj)|Xi, Xj}} denoting the
conditional covariance of Yi ,  Yj given Xi, Xj, this will 
be locally bounded by assumption. Because of Uniform 

mixing stochastic process, we know that remains
uniform mixing process, therefore by theorem (3.2) we 
have

c x
V( )

nh h
≤II (3.11)

Hence, equation (3.10) and (3.11) complete the 
proof. The following theorem allows the convergence 
rate of estimator r̂(x) .

Theorem 3.6: Under conditions theorem (3.3), we have: 

( )( ) ( ) ( )( )
0

0

j j
j m 2 2ˆ ˆbias x O 2 O ,Var x O

n n
−    

γ = + γ ≤   
  



Proof: Using Rosenblatt's expansion [15], we have

( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )( ) ( ) ( )

2

22

ˆ ˆˆ ˆg x Eg x f x Ef xˆEgˆ x ˆ ˆ ˆEf Ef x Ef x

ˆ ˆˆ ˆO g x Eg x O f x Ef x

− −
γ = + −

 
 

  +  −  + −     

By using theorem (3.1), (3.2), (3.3) ,(3.5)and[11] it 
follows that:

( ) ( )( ) ( )( )
0jˆ ˆEg Eg 2ˆˆ ˆE x O Varg x O Varf x Oˆ ˆ nEf Ef

 
γ = + + ≤ +  

 

Now, by using Equation (2.7) of Rosenblatt [15], 
we have

( ) ( ) ( )
( )

( ) ( )
( ) ( )

( ) ( )( ) ( ) ( )
22

ˆˆEg x g x Ef x f xˆEg x xˆ f x f xEf

ˆˆO g x Eg x O f x Ef x

− −
= γ + − γ

    + − + −     

so

( ) ( )0j mˆEg x O 2ˆEf
−≤ γ +

Then we get 

( )( ) ( )
0

0

j
j m 2ˆbias x O 2 O

n
−  

γ = +  
 

For variance of r̂(x)  we have:

( )( ) ( )
( )

( )
( )

( )

( ) ( )( ) ( ) ( )

2

2 4

44

ˆEg xˆVarg x ˆˆVar x Varf x
ˆ ˆEf x Ef x

ˆˆO E g x Eg x O E f x Ef x

  γ ≤ +
   
   

  + − + −       
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Fig. 1:

Fig. 2:

Assuming that f(x)>0 for all x and using the results 
on the asymptotic bias and variance of ĝ  and f̂ we
conclude that

( )( )
j2ˆVar x O

n
 

γ ≤  
 



Now we present an example and verify the
performance of our wavelet estimators.

Example: Suppose that regression function r(x) as
following:

( ) 2

1
3x 0 x

3
1 2 11x x x x
3 3 9

2
3(1 x) x 1

3

 ≤ <

≤ < γ = − +



− ≤ <

By perturbing r(x) with εi neighborhood noise with 
zero mean and using MAPLE9, we produce the data set 

(n)
DataX  from AR(1) model Xt = 0.95Xt-1+εi for n=128 and 

ε=0.02.
Figure 1 is the graph of the regression function r(x) 

and Fig. 2 is the graph of estimated r̂(x).  As we see, 
r̂(x),  and the convergence rate for bias and variance of 
our proposed estimator is very well. 
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