
World Applied Sciences Journal 3 (2): 330-335, 2008
ISSN 1818-4952
© IDOSI Publications, 2008

Corresponding Author: Dr. Hossein Shirgahi, Department of Computer, Islamic Azad University, Jouybar Branch, P.O. Box:
47715-195, Jouybar, Iran

330

A New Approach of Query Optimization with Join of N Relations
1H.Shirgahi, 2H. Motameni, 3A.H. Gandomi and 4P. Valipour

1Department of Computer, Islamic Azad University, Jouybar branch, Jouybar, Iran
2Department of Computer, Islamic Azad University, Sari branch, Sari 48164-194, Iran

3Department of Civil Engineering, Tafresh University, Tafresh, Iran
4Department of Engineering, Islamic Azad University, Jouybar branch, Jouybar, Iran

Abstract: An important subject in integration of information in the large scale is to select Topic with a
view to ranking from multiple sources so that transfer cost is become minimum. For this purpose in
relations join, the suitable size of relations inputs for getting Top K must be determined. We are presenting
in this article, according to the quantity k that is determined in query, a dynamic algorithm for determining
input size of N relations in rank aware Queries in the from of hierarchical description that in this case we
can efficiently answer to the queries with join of N relations for getting Top K. we implemented suggested
algorithm and it is observed according to the gotten results that the amount of sent information by pruned
records extraordinarily will be decreased in comparison with traditional algorithm and also the time of
query processing extraordinarily will be decreased.

Key words: Join of N relations • query optimization • relational database • rank aware query • Top K

INTRODUCTION

Appearing applied programs, which are connected
with queries rank is asked efficient support of queries
rank in Database management systems in the real
world. Supports of queries rank make Database systems
able to answer efficiently to the Information Retrieval
systems advantages and Database. Database systems
with powerful integrity and compatibility assurance
provide data management. On the other hand,
Information Retrieval systems provide mechanisms for
efficient retrieval and fuzzy ranking that is desirable for
the user. An important subject in this connection is
determining the suitable size of inputs in relation N for
answering to the rank aware query so that in this
manner Top K is gotten. It is vital in information
integration with large scale to select Top K rank aware
from multiple sources and it has also basic role for
minimizing transfer cost because as the size of relations
become smaller, transfer cost become less. For
answering to a query with Top K the traditional
solution is to do the join on N relations firstly and then
sort the answers according to ranking function and
select Top K. this algorithm with a view to
implementation is very simple but in fact for getting
Top K most of the tuples are not important and
they have not any role in the ultimate answer, these
extra tuples must be pruned according to correct
strategy. Efficient algorithms have been presented
for answering to ranking queries in middleware
environment [1], in [2] an efficient algorithm has

been presented for processing queries with Top K
on available database in web in company with
increasing parallel making and minimizing the time of
answer query. The other algorithm that is used for
answering to the ranking queries is estimating input
sizes by means of statistical relations, monotony
hypothesis and random variables [3, 4]. The other new
innovation is making ranking laws in relational
databases [5]. The other solution in this connection is
improving the join and using the ripple join that
minimize the time in order to get estimation with
relatively acceptable precision for query results. The
main idea of ripple join is join algorithm aware the
suggested rank for supporting join queries with Top K
relational database [6]. But there are the other
methods for answering to the queries with Top K,
which are getting Top K by changing query
optimisation theorem to the aware searches [7].

An algorithm also has been presented for pruning
inputs for supporting Top K in queries with two
relations join [8]. We in this article have expanded this
algorithm and have presented an algorithm for
supporting Top K in queries with N relation join.

MOTIVATIONS

When we have a rank aware query that it's aim is
getting Top K, we don't need to all records of table,
according to the value K some of the records in
relations that have little score, have not any role in the
ultimate result, They should be pruned and we should

World Appl. Sci. J., 3 (2): 330-335, 2008

331

not waste time for computing and information transfer
on these records.

Firstly we present a definition of rank aware query.
In rank aware query, query define on M attribute A1
‘A2 ‘…‘AN and relation N in the form of R1 ‘R ‘…‘RN
that each Ai (i=1:M) belonge to one relation Rj (j=1:N).
Each of the attributes have special domain in
comparison with their kind. According to the query, a
series of attributes of these relations are applied for
projection, aseries of attributes of these relations are
used for restriction and join. In the rank aware queries
there is a part for ranking that some of relations
attributes are presented in the form of a ranking relation
which is called ranking function. Ranking function f is
formed in the form of attribute M' that is M' <=M. a
theory that we have for ranking function f is this:
ranking function changes in comparison with all
relations are monotonic. In addition to this, the number
of suitable answers in rank aware queries is determined
too that is just Top K. A sample of a rank aware query
is presented in example 1.

Example 1: a family wants to buy a house near a
school and their aim is to decrease their general costs.
Consider a simple ranking function that is estimating
total price of house and five years tuition cost of the
school. The search must be done in two relations of
house and school in the database, according to the
following query.

SELECT *
FROM House, School
WHERE (DISTANCE (House.Location, School.Location)<d)
ORDER BY (House.Price + 5*School.Tuition)
Top 10

The family only needs at the most to ten results in
stead of all result so that the family among these ten
results can make a decision. The old method is to do the
join on two relations and then get all of the answers and
at the end sort them according to the ranking function
and select the first ten results, but the cost become too
much when the relation are big and the number of
answers are too many. But traditional method for big K
is less costly, that we'll analyze methods for different K
in the part of implementation and experiments. We'll
explain the main idea for pruning inputs for supporting
Top K on queries with join of relation N in part 3. Well
present algorithm stages in the part 4. We'll explain
implementation method and we'll present their
experiments and results on same sample queries in the
part 5. Conclusion and ultimate suggestions are
presented in the part 6.

MAIN IDEA

Pruning inputs for supporting Top K in queries
with join of N relations, input parameters in company

with relation N is in the form of R1 ‘R2’‘…’N that each
Ri (i=1:N) containing some attributes for joining with
other relation that is presented in this form
Ri.Join_Feilds[j] (j=1:N-1). Also there is also a ranking
function f with monotonic increase that is conformable
with equation 1.

1 1 2 2

N N

f(R .Rank_Feilds[l], R .Rank_Feilds[l]
, , R .Rank_Feilds[l])…

(1)

More over there is K for the number of suitable
answers there is for relations, also attributes for
projection and restriction in this manner:
Ri.Projection_Feilds[j'], Ri.Restriction_Feilds[j"] which
are applied in the general algorithm. Firstly we present
the idea for two relations and then expand it for N
relations. Suppose there is tow relations R1 and R2 that
are arranged according to their ranking attributes in
decreasing manner.

We get the first record of R1 at first and compare it
with R2 records one by one from the outset to the finish
from the join condition view point, then record the
number of times and digit of last record of R2 that was
join condition of two relations, we continue this until
the counter value become equal with K, if the first
record R1 has less number of join, we will continue this
for the second record R1 with records R2, these
operations will be continued until the counter value
become equal with K, at the end we record the digit of
least record of R2 that was join condition between two
relations. If records of R1 ends but the number of
records that was the join condition between two
relations become less than K it means that the ultimate
answer, which is gotten from join of two relations, is
less than K. we also do these stages in the same way for
R2 and record the results. Figure 1 shows these
explanations.

Firstly we must consider a strategy for joining N
relations to get input size for N relations. We can
change each join of an N to binary join of N-1,

Fig. 1: Specify Input size for achieve top K

World Appl. Sci. J., 3 (2): 330-335, 2008

332

Fig. 2: Types join tree

Fig. 3: Specify input sizes in top-down way

therefore join in a query with N relations will be done
in the form of hierarchy. The important fact is

The order of join action between relations, it means
that which relations must be joined firstly so that the
number of operations become minimum, for this
purpose join tree must be made. The must important
point for determining suitable input size is determining
suitable place for each relation in the join tree. Figure 2
shows structure kinds of join tree.

We can get the best state by means to bushy tree
but its state space is too wide and its making is time
consuming. In this article we have used left deep tree
because it has less state space for making. Suggested
idea for N relations is as explains below: we determine
the size of input in return for both of relations Ri and Rj
for them, we put those two relations that have the least
input size as two relations on the top level, the theory of
join Ri result with Rj lead to least input size and their
Input size become orderly K' and K". Then among them
we put that relation which has more input size on the
right hand on the top level and the other relation on left
hand on the top level and make the size of new K equal
to min (K', K"), now we compare the other relation N-2
with left hand relation on the top level and output size
of new K. for other next stages, each stage select a
element which has the least input size as left hand
element of level i and output size is equal to input size
of this relation for lower level, this operation will be
continued to the lowest level. Figure 3 shows a sample
of this operation. Algorithm structure and stages will be
explained in the next part.

Algorithm stages

1. At first we do the Restriction according to
Restriction_feilds each of relations R1, R2,…, RN
on them and relations volume optimize greatly.

2. If information and queries are in Distributed
systems or computer networks, It is better to
optimize them in the manner of volume for
transferring information and It seem necessary to
prune the extra attributes which have not any role
in query by means of projection. We must select all
of the requisite attributes for each of the relations
and prune the rest of attributes for projection
implementation. Requisite attributes after stage1
operation are projection_feilds, join_feilds,
Rank_feilds which are single for each of the
relations that they are considered and the rest fields
are pruned.

3. Relations have been optimized approximately
from the line and column viewpoint, in this stage
each of the relations become ordered in
decreasing manner according to Rank_Feilds
and a part of Ranking function that in single
manner relates to them.

4. We in return for each Ri and Rj (i=1:N, j=1:N,
i<>j) get their input size by means of function
prepare_Input_size(Ri,Rj,K) and put in two
dimensional array. Details of Function
prepare_Input_size are presented in Fig. 4.

5. We get least value in arrays INPS [i,j] by function
Min_Item(INPS,RN,CN)and then put relation RRN
on the top level on left hand and K selects as its
output size, then put relation RCN on the top level
on right hand and K selects as its output size
and INPS[j,i] selects as its input size. Output size
for other stages of other relationN-2 changes to
INPS [i,j]. Details of function Min_Item are
presented in Fig. 5.

6. For preparing left Deep Tree we operate to form
top-down, in this manner that we get the relation of
left hand of considered level by procedure
prepare_Left_Deep_Tree(R, K, TN) and put the
relation of left hand of topper stage as relation of
right hand of considered level and put the result
of join left hand relation and right hand relation
of considered level as relation of left hand of
topper stage. We continue these to the lowest level
in the form of hierarchical description. Details
of procedure prepare_Left_Deep_Tree are
presented in Fig. 6.

7. After ending the stage 6, we determine input and
output sizes for all of the relations. In this
stage we prune extra records according to
relations input size.

World Appl. Sci. J., 3 (2): 330-335, 2008

333

Fig. 4: Details of function prepare_Input_size

Fig. 5: Details of function Min_Item

8. Because relations optimized enough, we do the join
between tables and gets the value of topper k
according to the Ranking function f that hand been
determined in query. It this state the number of last
answers maybe more that K, in this state we select
answer k with more Ranking volume and prune the
rest. But in some queries maybe there is nit answer
k that we at most number of possible answers. In
this state suggested approach cost become more
than traditional approach, even for big ks suggested
approach computing cost sometimes become more
than traditional approach. We should consider
some plans for optimization approach.

If two relations are found in stage four that number
of records of they which can join together become less
thank don’t continue this approach any more and do the
traditional approach system that is more optimized from
the cost viewpoint, but operations of stage one to three

Fig. 6: Details of function Prepare_Left_Deep_Tree

are efficient for both of traditional and suggested
approaches. When two tables haven't join condition
together, we must multiply them together Cartesian that
in this manner if we consider two relation output size
K, their input size will consider K.

IMPLEMENTATIONS AND EXPERIMENTS

We have implemented that approach by means of
software Delphi7, SQL server 2000. This system has
been consist of these parts and facilities:

• A part for determining database to determine
considered database

• You can add a query to the system.
• We design a decomposer that it can get the query

and check it and identify and get the query
different relations and parts which consist of
restriction, projection, join and its conditions,
ranking and Top K.

• Implementation of algorithm stages is done on
input queries according to the part 4.

• We present the query ultimate results at the end.

We implement this system on some sample query
and for different Ks and compare its results with
traditional system. Database that is considered for the
sample is a database that has been designed for

World Appl. Sci. J., 3 (2): 330-335, 2008

334

Fig. 7: Two sample queries

Fig. 8: Comparison of time cost for traditional and
suggested systems

information maintenance of a generator system. This
contains theses three relations:

• Suppliers relation(s):It contains information about
potential and actually suppliers. Its attributes are:
Supplier number (S#), Supplier name (Name),
Supplier city(City), Supplier degree(Degree),
Supplier credit(Credit).

• Products relation (p): It contains information about
products which can produce. Its attributes are:
Product number (P#), Product name (Name),
Product keeping city(City), Product
degree(Degree), Product color(Color), Product
weight(Weight).

• Productions relation (SP): It contains information
about productions. Its attributes are: Supplier
number (S#), Product number (P#), quantity
(QTY).

We prepare relations information by designing a
random producer program that relation of P and S is
nearly 4000 record and SP relation is approximately
10000 record. We consider two queries of Fig. 7 as

Fig. 9: Comparison relations volume after use
algorithm with primary relations volume

sample and implement them for different Ks in
traditional and suggested approaches and then analyze
the results.

Figure 8 shows the comparison of time cost for
traditional and suggested systems. We have used
simulation approaches for getting instructions
implementation cost, in this manner that we get the
number of applied instructions in implementing the
query in the program and multiply it to the approximate
cost average of each instruction. Moreover we compute
records retrieval cost by product of the number of
retrieved records in average of retrieval time of a record
that is gotten by stored procedures in SQL server 2000,
time cost equals to sum of these two time. Figure 9
shows all the relations volume after algorithm
implementation on inputs size in comparison with
volume of relations primary state for different Ks. We
also analyze the accuracy of information which is
gotten by means of this approach, In all of the analyzed
queries and for different Ks, the answers of this
approach is100% equal to answers that is gotten by
means of traditional approaches.

CONCLUSION AND SUGGESTIONS

The presented approach in big databases that has
high information volume and their aim is implementing
Rank aware Queries with small Ks amount is suitable
and efficient. It is also efficient for systems that their
aim is information integration from some systems
proportionate to their requisite queries and relations
because it optimizes information volume of relations
proportionate to query and determination of requisite
input size of relations. this approach makes time cost
less from 40 to 50% for small Ks and also makes
requisite volume of relation less for transferring from
half of the primary volume. We can expand this
approach for distributed databases and take advantages
from this approach in those systems. The other

World Appl. Sci. J., 3 (2): 330-335, 2008

335

operation that we can implement for improving and
optimizing the results is to implement the suggested
approach as a complement for an approach that is
presented in [7] and implement the search by means of
changing optimization to aware searches, instead of join
cost of N relations, on a graph that is gotten of
relations.

REFERENCES

1. Fagin, R. and A. Lotem, 2001. Optimal
Aggregation Algorithms for Middleware. In
Proceedings of PODS 2001, Santa Barbara, USA.

2. Marian, A. and N. Bruno, 2004. Evaluating
Top-K Queries over Web Accessible Databases.
ACM Transactions on Database Systems, 29 (2):
319-362.

3. Ilyas, I.F. and W.G. Aref, 2006. Adaptive Rank
aware Query Optimization in Relational Databases.
ACM Transactions on Database Systems.

4. Ilyas, I.F. and R. Shah, 2004. Rank-aware query
optimisation. SIGMOD 2004, June 13-18, Paris,
France.

5. Ilyas, I.F. and C. Li, 2005. Ranksql: Query algebra
and optimization for relational top-k queries.
SIGMOD 2005, June 14-16, Baltimore, Maryland,
USA.

6. Ilyas, I.F. and W.G. Aref, 2003. Supporting Top-k
Join Queries in Relational Databases. Proceedings
of the 29th VLDB Conference, Berlin, Germany.

7. Zhang, Z. and S. Hwang, 2006. Boolean+Ranking:
Querying a Database by KConstrained
Optimization. SIGMOD 2006, June 27.29, 2006,
Chicago, Illinois, USA.

8. Liu Jie and Liang Feng, 2006. A Pruning-based
Approach for Supporting Top-K Join Queries.
ACM, Edinburgh, Scotland.

