
World Applied Sciences Journal 3 (3): 514-521, 2008
ISSN 1818-4952
© IDOSI Publications, 2008

Corresponding Author: Dr. H. Motameni, Department of Computer Engineering, Islamic Azad University , Sari Branch, Iran

514

Mapping to Convert Activity Diagram in Fuzzy UML to Fuzzy Petri Net

1H. Motameni, 2A. Movaghar, 3I. Daneshfar,3H. Nemat Zadeh and 3J. Bakhshi

1Department of Computer Engineering, Islamic Azad University, Sari Branch, Iran
 2Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

3Department of Computer Engineering, University of Science and Technology of Mazandaran, Babol, Iran

Abstract: UML is known as one of the most common methods in software engineering. since this language is semi
formed, many researches and effort have been performed to transform this language in to formal methods including
Petri nets. Thus, the operation of verification and validation of the qualitative and non functional parameters could be
achieved with more ability. Since the majority of the real world information are uncertain, there fore fuzzy UML
diagram has been extensively used by system analyzer this paper is attempt to transform activity diagrams created in
fuzzy UML into fuzzy Petri net.so that the verification and performance evaluation operation could be performed
formally, rather than exact visual analysis.

Key words: Software engineering • fuzzy UML • fuzzy petri net • fuzzy activity diagrams

INTRODUCTION

Nowadays, UML diagrams are extensively used in
software design. However, the semi-formal
characteristic of this method is a limitation for
verification operations and predicting non-functional
parameters of the software, especially in the first cycle
of the software production. This problem is more
critical for control, critical, reactive and real time
systems. On the other hand, since the majority of the
real world information is uncertain, therefore fuzzy
UML diagrams have been extensively used by system
analyzers. Several researches have been performed to
tackle with the semi-formal problem of UML. Some of
these researches have only used a transformation
algorithm, which transforms the created UML model
into a Petri net as a mathematical and formal model
that, in turn, contains the visual aspect of modeling and
pursues the verification operations with further ability
[1-8]. Some of the researches in this field besides
representing a transformation algorithm (or without
representing an algorithm and only by using the
available Algorithm); evaluate the capability of the
non-operational parameters and commonly qualitative
parameters on the obtained Petri nets of the UML
model created [9-12]. It is obvious that the lack of this
important ability in UML models remains the needs of
the costumer and the market unsatisfied. So, this is the
reason that makes this type of researches important. In
our previous researches [13-17] besides of studying and
presenting transformational patterns for some kinds of
usual UML diagrams, especially state diagrams and

activity diagrams, we presented methods for evaluating
some qualitative parameters. In this paper, due to the
growing process of using UML diagrams in fuzzy
model, we centralized on this kind of diagrams and with
the significant Ability of Petri nets in semi-formal UML
model formalization we present a pattern to transform
fuzzy Activity diagrams to fuzzy Petri nets. First, we
introduce fuzzy Activity diagrams briefly. Then, we
describe the transform algorithm. At the end, as a case
study, we will study the usage of this model for a car
sharer service system.

FUZZY UML

UML is known as one of the most important tools
in extending object oriented systems. This language
makes visual modeling possible so that the system
developers will be able to standardize and make
understandable the ideas and establish more effective
mechanism in relations with other patterns. In a
proposed general pattern [18, 19]. Since the real world
information is mostly uncertain, in many case these
type of information can not be modeled by UML.
Recently, a model named fuzzy Mulches been
introduced [20-22] which has the UML characteristics,
is also able to model uncertain concepts.

Fuzzy activity diagram: Activity diagram is one of the
most important UML diagrams, since it has got
momentous efficiency in designing stage of software
[17]. This diagram helps us to define operations better.
It gives the programmer the ability of implementing

World Appl. Sci. J., 3 (3): 514-521, 2008

515

Fig. 1: Sample activity diagram

efficient classes. This diagram has got its activities,
states and transitions. A simple activity diagram is
shown Fig. 1.

A simple activity diagram comprises 6 sections:

• Start state
• Different activities
• Events
• Conditions
• Transitions
• Final state

As it is shown start state is depic ted with that
indicates the entry of diagram. The final state is
depicted with . On each activity diagram there is only
and only one start state whereas it may have more than
one final state. Each activity is shown by a rectangle
that has circular corners. These activities show the work
sequence of software.

Each activity has got its events and conditions.
Transition which is depicted with is a moving
from one activity to another or sometimes one state to
an activity or vice versa. Normally a transition occurs
when an activity is done. Conditions which are limited
in bracket control whether an activity can happen or
not. It is important to consider that happening an
activity means the event is done.

According to these explanations, a fuzzy activity
diagram is a graphical model in fuzzy uml which shows
the different levels of a fuzzy object in its real world
life cycle. This diagram uses fuzzy rules for
transforming the state of an object to another state. A
fuzzy rule is shown as below:

<on event list <event threshold>>
if condition list <EC coupling>

 Then action

Fuzzy rules are used to show the real world rules
for an object in which these rules can be active or
deductive. As an example, the above mentioned rule is
an active one. If the on part is omitted, then it becomes
a deductive rule. If in the on part, the threshold is
omitted in active rules, the threshold is assumed to be
an exact matching with a value of 1.

Each section of the activity diagram can be
transformed to a fuzzy activity diagram. Table 1 shows
these transformations, clearly.

Table 1: Transformation of an activity diagram into its fuzzy state
Fuzzy activity diagram Activity diagram
Action of rule activity
[Fuzzy condition] [condition]
Fuzzy event Event

FUZZY PETRI NETS

We introduce the following fuzzy Petri net (FPN)
structure to model fuzzy ruler [23-25]:

S e F(P,P,P,T,T,TRTF,A,I,O,TT,TTF,AEF,PR,PPM, TV) ,
where
1. P is a finite set of fuzzy places. Each place has a

property associated with it, in which
• ps⊂p is a finite set of input places for primitive

events.
• pe⊂p is a finite set of output places for actions

or conclusions.
2. T is a finite set of fuzzy transitions. They use the

values provided by input places and produce values
for output places.

3. TF is a finite set of transition functions, which
perform activities of fuzzy inference.

4. TRTF:T→TF is transition type function, mapping
each transition ∈T to a transition function ∈TF.

5. A⊆(P×T∪T×P) is a finite set of arcs for
connections between places and transitions.
Connections Between the input places and
transitions (P×T) and connections between the
transitions and output places (T×P) are provided by
arcs. In that:
• I:P→T is an input mapping.
• O:T→P is an output mapping.

6. TT is a finite set of fuzzy token (color) types. Each
token has a linguistic value (i.e., low, medium and
high), which is defined with a membership
function.

7. O:T→PLs token type function, mapping each fuzzy
place ∈P to a fuzzy token type ∈TT. A token in a
place is characterized by the property of the place
and a level to which it possesses that property.

8 AEF:Arc→ Expression is arc expression function
mapping each arc to an expression, which carries
the information (token values).

9. PR is a finite set of propositions, corresponding to
either events or conditions or actions/conclusions.

10. PPM:P→PR, is a fuzzy place to proposition
mapping, where | PR| = |P|.

Activity1
event[conditions]

Activity2
event[conditions]

Activity3
event[conditions]

World Appl. Sci. J., 3 (3): 514-521, 2008

516

Fig. 2: Firing a Petri net

Fig. 3: Firing the fuzzy Petri net

11. TV:P→[0,1] is truth values of tokens (µi) assigned
to places. It holds the degree of membership of a
token to a particular place.

A token value in place pi ∈ P is denoted by TV (pi)
∈ [0, 1]. If TV (pi) = µi, µi ∈ [0, 1] and PPM (pi) = di.
This states that the degree of the truth of proposition
di is ∈µi. A transition ti is enabled if ∀ pi ∈ I (ti), µi > 0.
If this transition ti is fired, tokens are removed
from input places I (t i) and a token is deposited onto
each of the output places O (t i). Since we provide
parameter passing, the token value of an output
place pk ∈ O (ti) is calculated from that of the input
places I (t i) using the transition function TFi, where
TFi = TRTF (ti). This token’s membership value to
the place pk, (i.e., µk = TV (pk)), is part of the token
and gets calculated within the transition function
TFi, where µk = TFi (I (ti)).

Example. The fuzzy deductive rule (IF di and dj
and dm THEN dk) can be modeled as shown in Fig. 3. In
this example, PPM (pi) = di, PPM (pj) = dj, PPM (pm) =
dm, PPM (pk) = dk, TV (pi) = µi = 0.5, TV (pj) = µj = 0.4
and TV (pm) = µm = 0.6. Since µi > 0, µj > 0 and µm > 0,
transition tn is enabled and fired. Tokens are removed
from I (tn), which are pi, pj, pm and deposited onto O
(tn), which is pk. Suppose that the transition function of
tn, which is TFn = TRTF (tn), is defined as a min
operator. Then the truth value of the output token
(membership degree) is calculated as

k n n i j mTV(P) TF (I(t)) min(, ,) 0.4= = µ µ µ =

TRANSFORMATION ALGORITHM

Before starting the meaning of transformation
Algorithm it is necessary to introduce the meaning of

World Appl. Sci. J., 3 (3): 514-521, 2008

517

Table 2: The events and conditions calculated for the dream activity

Rule Event Condition

R1 e1 is e11 C1

 e1 e11

Fig. 4: Event representation of a R1

 e1 e11 Min (e11) µf

Fig. 5: Calculation of µef

 µs(ri)

 µf(ri) strength

Fig. 6: Calculation of strength for R1

scenario. Scenario is a parameter that can divide the
rules [23]. Only one of the states of this parameter can
be active at a time. The substitution of the scenario is
specified by the user. In the deduction cycle of fuzzy
the strength of event e for rule, r in scenario s is
calculated with formula (1) [23]:

 Strength (e, r, s) = µS(r) * µef(value(ec)) formula (1)

This uses scalar multiplication. Where value (ec) is
the value of the event (fuzzy or crisp) occurs. µef is a
function for the fuzz event ef and µs(r) is like rule r for
the current scenario s. µs(r) is defined as formula (2):
µs(r) = max ([min (max (µ(As, Ar)), max (µ(Cs, Cr))) *
RLV rs / RLV max]) formula (2) in which:

s r i s r i rs maxA S, A R , C S, C R,RLV ,RLV S∈ ∀ ∈ ∈ ∀ ∈ ∈

A comprises an event and condition of a rule and C
includes an action and the result of a rule. AS is the
event and condition of the current scenario rule and Ar
is the event and the condition of RI rules (the rules

which are analyzed). CS is the action and the result of
the current rule and CR is the action and the result of the
rules which are analyzed. RLV rs is the amount of
relation between the meta rule with the current scenario
and RLV max is the maximum amount from the relation
amount.The Fuzzy UML activity diagram created will
be transformed to a fuzzy Petri net according to the step
below:

Step1: First for each activity change in this diagram, its
event and conditions must be found. For each activity
we derive its events and conditions. The events and
conditions calculated for the dream activity is
represented in Table 2.

Step 2: The highest level of division in the rules
concluded is found and will be selected as the scenario.
So, the rules are classified according to the scenario. In
case of no scenario we assume it one. Thereby in our
example we assume we don’t have any scenario so it
will be quantified by one.

Step 3: For each parameter defined in the rule we
create a place where these parameters can't be repeated
{and also can't be a scenario parameter}. Then for
different kinds of state which these parameters can have
in all of the rules we create a place. These places are
joined to the proper places with a transition, as shown
in Fig. 4.

Step 3: For each rule we provide a transition and then
the events of each rule should be conducted to the
provided transition, the function of this transition
should be MIN. this function calculates µef for each
rule. This aspect is shown in Fig. 5.

Step 4: To calculate the strength of each event
on the specified rule in an active scenario, first
we have to calculate value of µs(r) using the formula
(2). For each rule we create a transition which
one of its inputs is a place which is initialized
by the value µs(ri) and the other input of the
transition is the previous output of the transition
that is µef and its output is another place that
comprises the event strength as an amount. This
aspect is shown in Fig. 6.

 C1.T C1 Min

 . . .

 C1.F Fuzzy amount strength fuzzy amount

Fig. 7: Condition representation of a R1

World Appl. Sci. J., 3 (3): 514-521, 2008

518

 e2 e22 Min (e22)

 the amount is exerted to another activity

 OR

 the amount is exerted to the final state

Fig. 8: Final state representation for example

 Rule 1.1

 Rule #1 Rule #1

 Rule 1.2
 Rule #1 = Rule 1.1 OR Rule 1.2

Fig. 9: Representation of OR Logic for a certain Rule

Step 5: We create a place for the condition of each rule
and we valuate each condition with the fuzzy values
calculated. This aspect is shown in Fig. 7.

Step 6: The result of this step which is a strength fuzzy
amount will be exerted to the next activity or next state
(final state for example).this aspect is shown in Fig. 8.

Sometimes we encounter OR logic, we solve this
problem with the presented Fig. 9.

CASE STUDY

In this case study we are going to analyze a car
sharer service system (Fig. 10)

The general activity diagram which yet has not
fuzzy aspects is shown in Fig. 11:

Now gradually we are going transform each
activity into fuzzy activity, now let’s see how we can
transform the first ordinary activity into fuzzy activity.
The software should be able to match potential member
requirements with all Car Match services in a particular
geographic area. If the customer is not able to provide
the requirements, it will sent out. This aspect is
shown by an invalid exception in the transformation
algorithm. It is obvious that a class is needed here when
programming. The event and conditions of the first
activity are derived as Fig. 12:

Fig. 10: Representation of user system transaction

Fig. 11: Normal activity diagram

The registration form comprises some information
that should be fulfilled by the customer, so these events
and conditions are deduced by the designer (Fig. 13):

This stage is to some extent general so by dividing
it, a new form of activity diagram will be derived, this
rule comprises two parts because it has got two ways.
This aspect is shown in Fig. 14. And in algorithm of
transforming it is easy to implement it by using OR
logic. The following rules and their events and
conditions are deduced by the software designer:

World Appl. Sci. J., 3 (3): 514-521, 2008

519

Rule #1
Event: registration form will be given to the customer

Conditions: If the desired car is available
If the proposed money is enough
If the proposed period of time is valid

If the area is authorized
Action: the process of registration continues
[going to the next stage] ELSE invalid exception

Rule #2
Event: fee form will be given to the customer
Condition: if the registration form has been

Completed by the customer successfully
Action: the process of registration continues
[going to the next stage] ELSE invalid exception

process
payment

Update cash
balance

Clear debt

Rule #4
Event: final state will be started
Conditions: If the services are enabled for the member

If the member is notified
If the member details is added to the member list

If confirmation of payment is received
Action: exit

Fig. 12: First activity with its Fuzzy rule

Fig. 13: Second activity with its Fuzzy rule

 Rule #3 =Rule #3.1 + Rule# 3.2

 [Cash payment]

 [Credit card payment]

Fig. 14: Third activity with its rules

Fig. 15: Final activity with its Fuzzy rule

Rule #3.1
Event: clear debt process will be started

Condition: if the amount is paid by a credit card
Action: the process of registration continues
[going to the next stage] ELSE invalid exception

Rule #3.2
Events: cash balance will be updated,
clear debt process will be started
Condition: if the amount is paid in cash
Action: the process of registration continues
 [going to the next stage] ELSE invalid exception

World Appl. Sci. J., 3 (3): 514-521, 2008

520

e1 e11 Min(e11) µ
f
(r1)

s
µ (r1)

strength1

c1

c1.f
c2.t

c2.f

c1.t

c2

c3.t c3

c3.f
c4.t

c4

c4.f

Min

fuzzy amount

strength fuzzy amount

e2 e21 Min (e21,fuzzy amount)

entry of rule 2

entry of rule 1

µ
f
(r2)

µ
s
(r2) strength2 c1.t c1

c1.f

Min

fuzzy amount

strength fuzzy amount

entry of
rule 3

e3 e31

e32

Min (e32,e31,,fuzzy
amount)

µ
f(r3a)

µs(r3a)

strength3a c1.t c1

c1.f

e3 e33 Min

µf
(r3b)

µs (r3b)
c1.t c1

c1.f

Min

strength fuzzy amount
Min

strength fuzzy amount

e4 e41 Min (e41)

µf (r4)

s
µ (r4)

strength4

entry of rule 4

c1.t c1

c1.f
c2.t

c2.f

c2

c3
c3.t

c3.f
c4

c4.t

c4.f

Min

fuzzy amount strength fuzzy amount

entry of final state

Fig. 16: Fuzzy Petri net for activity diagram in fuzzy UML

And at last the final activity will be done if its event
occurs (Fig. 15):

The entire mapping is provided in Fig. 16:

CONCLUSION

In this paper we propose a method to transform
activity diagram in fuzzy UML into fuzzy Petri net.
Since activity diagram plays an important role in
making and analyzing software by transforming it to
Petri net which is a graphical and formal
tool and adding fuzzy aspect, we will be able to
analyze and sometimes debug the whole software

better. By this approach following the work
sequence of the software and sometimes the life cycle
of an object in the software will be easier and through
it some non-functional parameters of the software
will be derivable [21,26].

FUTURE WORK

In our future work we will transform some other
important UML diagrams to fuzzy Petri net such as
sequence diagram and we will discuss some facts
and aspects about them and we will pose new
challenges on them.

World Appl. Sci. J., 3 (3): 514-521, 2008

521

REFERENCES

1. Faul M.B., 2004. Verifiable Modeling Techniques
Using a Colored Petri Net Graphical Language.
Technology Review Journal, spring/summer.

2. Shin, M., A. Levis and L. Wagenhals, 2003.
Transformation of UML-Based System Model into
CPN Model for Validating System Behavior. In
Proc. of Compositional Verification of UML
Models, Workshop of the UML'03 Conference,
California USA, Oct. 21

3. Bernardi, S. S. Donatelli and J. Merseguer, 2002.
From UML Sequence Diagrams and Statecharts
to Analysable Petri Net Models. ACM Proc.
Int’l Workshop Software and Performance,
pp: 35-45.

4. Eshuis, R., 2002. Semantics and Verification of
UML Activity Diagrams for Workflow Modelling.
Ph.D Thesis, University of Twente.

5. Pettit, R.G. and H. Gomaa, 2002. Validation of
dynamic behavior in UML using colored Petri nets’
UML. (2000 , Zaragoza, Spain, pp: 295-302.

6. Saldhana, J. and S.m. Shatz, 2000. UML Diagrams
to Object Petri Net Models: An Approach for
Modeling and Analysis. Proc. of the Int. Conf. on
Software Eng. and Knowledge Eng. (SEKE),
Chicago10-103.

7. Elkoutbi, M. and Rodulf K. Keller, 1998. Modeling
Interactive Systems with Hierarchical Colored Petri
Nets. 1998 Advanced Simulation Technologies
Conf., Boston, MA, pp: 432-437.

8. Bernardinello, L. and F. De Cindio, 1992. A
Survey of Basic Net Models and Modular Net
Classes. LNCS, Springer-Verlag, 609: 609.

9. Balsamo, S. et al., 2004. Model-Based
Performance Prediction in Software Development:
A Survey. IEEE Transactions on Software
Engineering, 30 (5): 295.

10. Merseguer, J., J.P. L´opezGrao and J. Campos,
2004. From UML Activity Diagrams To Stochastic
Petri Nets:Application To Software Performance
Engineering. ACM, WOSP 04 January 1416, 2004.

11. Fukuzawa, K. et al., 2002. Evaluating Software
Architecture by Colored Petri Net. Dept. of
Computer Sience, Tokyo Institute of Technology
Ookayama 2-12-1, Meguro, UK, Tokyo 152-8552
Japan 2002

12. Merseguer, J., S. Bernardi, J. Campos and S.
Donatelli, 2002. A Compositional Semantics for
UML State Machines Aimed at Performance
Evaluation. Silva, M., A. Giua and J.M Colom
(Eds.). Proc. of the th Intl. Workshop on Discrete
Event Systems) WODES'02), Zaragoza, Spain,
pp: 295-302.

13. Motameni, H. et al., 2006. Mapping State Diagram
to Petri Net: An Approach Tousemarkov Theory
For Analyzingnon-Functional Parameters. IEEE,
International Conferenceon Computer, Information
and System Science, December 4_14 2006,
University of Bridgport, USA (presented).

14. Motameni, H. et al., 2006. Using Markov Theory
For Deriving Non-Functional Parameters On
Transformed Petri Net From Activity Diagram.
Proc of software engineering conference (Russia),
16-17 November 2006, Moscow, Russi,
(Presented).

15. Motameni, H., M. Zandakbari and Movaghar,
2006. Deriving performance parameters from the
activity diagram using gspn and markov chain.
ICCSA 2006 Proceeding of 4th International
Conference on Computer Science and Its
Aapplications, San Ddiego,California.

16. Motameni, H. et al., Evaluating UML State
Diagrams Using Colored Petri Net" SYNASC'05.

17. Motameni, H. et al., 2005. Verifying and
Evaluating UML Activity Diagram by Converting
to CPN. Proc. of SYNASC'05, Romania, Sep 2005,
(presented).

18. Object Management Group, UMLTM Profile for
Schedulability, Performance and Time
Specification, OMG Document, Version 1.1,
January 2005.

19. Rumbuaugh, J., M. Blaha, W. Premerlani, F. Eddy
and W. Lorensen, 1991. Object-Oreinted Modeling
and Design. Prentice hall, Englewood Cliffs, NJ,
USA.

20. Wang, lu, 2005. Fuzzy UML. Seminararbeit,
Sommersemester.

21. Zongmin, Ma., 2005. Fuzzy Information Modeling
With the Uml. Idea.

22. Ma, Z.M., 2004. Extending UML For Fuzzy
Information Modeling In Object_Oriented
Database. Theories and Practices, Idea Group
Publishing.

23. Burcin Bostan-Korpeoglu and Adnan Yazici, 2006.
A Fuzzy Petri Net Model For Intelligent
Database, Data and Knowledge Engineering
(2006), Elsevier.

24. Nihal, Y. Ö., 2007. On the Numbers of the Form
n = x2 + Ny2, World Applied Sciences Journal,
2(1): 45-48.

25. Erçetin, S.S., Çetin, B. and N. Potas, 2007. Multi-
Dimensional Organizational Intelligence Scale
(Muldimorins), World Applied Sciences Journal,
2(3): 151-157.

26. Hayati, M., Karami, B. and M. Abbasi, 2007.
Numerical Simulation of Fuzzy Nonlinear
Equations by Feedforward Neural Networks.
World Applied Sciences Journal, 2 (3): 229-234.

