
World Applied Sciences Journal 29 (Computer Sciences, Engineering and Its Applications): 259-263, 2014
ISSN 1818-4952
© IDOSI Publications, 2014
DOI: 10.5829/idosi.wasj.2014.29.csea.2249

Corresponding Author: K.P.Thooyamani, School of Computing Science, Bharath University, Chennai-73 India.

259

Tracing the Bugs in Dynamic Web Application Using Failure Detection
Algorithmand Explicit-State Model Checking

K.P.Thooyamani, R. Udayakumar and V. Khanaa

Professor School of Computing Science, Bharath University, Chennai-73 India

Abtract: Bugs are errors, failures and malformed web pages that affect the usability of web applications.
The present technique is used to validate the static web pages and not used for validating dynamic web
page.we introduce a technique for dynamic web application.This technique utilizes both failure detection
algorithm and explicit state model checking.This technique test automatically,runs the test capturing logical
constraints on inputs and minimizes the conditions on input to failing test so that resulting bug reports are
small and useful in finding and fixing the underlying faults. We use apollo architecture for finding fault and
validates the output conforms to html specification.

Key words: Markup Language Static Dynamic DART CUTC

INTRODUCTION because Web browsers are designed to tolerate some

Dynamic test generation tools such as DART,CUTE undesirable for several reasons. First and most serious is
application on concrete input values and then creating that browsers’ attempts to compensate for malformed
additional input values by solving symbolic constraints webpages may lead to crashes and security
derived from exercised control-flow paths. To date, such vulnerabilities.2 Second, standard HTML renders faster.3
approaches have not been practical in the domain of Web Third, malformed HTML is less portable across browsers
applications, which pose special challenges due to the and is vulnerable to breaking or looking strange when
dynamism of the programming languages, the use of displayed by browser versions on which it is not tested.
implicit input parameters, their use of persistent state and Fourth, a browser might succeed in displaying only part
their complex patterns of user interaction. This paper of a malformed webpage, while silently discarding
extends dynamic test generation to domain of web important information. Fifth, search engines may have
applications that dynamically create web (HTML) user in trouble indexing malformed pages Web developers widely
the browser. recognize the importance of creating legal HTML. Many

Our goal is to find two kinds of failures in web websites are checked using HTML validators. However,
applications: execution failures that are manifested as HTML validators can only point out problems in HTML
crashes or warnings during program execution and pages and are by themselves incapable of finding faults
HTML failures that occur when the application generates in applications that generate HTML pages. Checking
mal-formed HTML. Execution failures may occur, for dynamic Web applications (i.e., applications that generate
example, when a web application calls an undefined pages during execution) requires checking that the
function or reads a nonexistent file. In such cases, the application creates a valid HTML page on every possible
HTML output contains an error message and execution of execution path. In practice, even professionally developed
the application may be halted, depending on the severity and thoroughly tested applications often contain multiple
of the failure. HTML failures occur when output is faults There are two general approaches to finding faults
generated that is not syntactically well-formed HTML in web applications: static analysis and dynamic analysis
(e.g., when an opening tag is not accompanied by a (testing). In the context of Web applications, static
matching closing tag). HTML failures are generally approaches have limited potential because Web

degree of malformedness in HTML, but they are

World Appl. Sci. J., 29 (Computer Sciences, Engineering and Its Applications): 259-263, 2014

260

applications are often written in dynamic scripting inputs induce partially overlapping control-flow paths.
languages that enable on-the-fly creation of code and 2) By intersecting these paths, our technique significantly
control in a Web application typically flows via the minimizes the constraints on the inputs.The contributions
generated HTML text (e.g., buttons and menus that of this paper are the following:We adapt the established
require user interaction to execute), rather than solely via technique of dynamic test generation, based on combined
the analyzed code. Both of these issues pose significant concrete and symbolic execution [1, 2] to the domain of
challenges to approaches based on static analysis. Web applications. This involves:
Testing of dynamic Web applications is also challenging
because the input space is large and applications typically Using an HTML verifier as an oracle to find errors in
require multiple user interactions. The state of the practice dynamically generated HTML
in validation for Web-standard compliance of real Web Dynamically discovering possible input parameters
applications involves the use of programs such as HTML Dealing with data types and operations specific
Kit that validate each generated page, but require manual Tracking the use of persistent state and how input
generation of inputs that lead to displaying different flows through it and
pages. We know of no automated tool that automatically Automatically discovering input values based on the
generates inputs that exercise different control-flow paths examination of branch conditions on execution paths.
in a Web application and validates the dynamically
generated HTML pages that the Web application Finding Failures in Web Applications: Our technique for
generates when those executed.This paper presents an finding failures in PHP applications is a variation on an
automated technique for finding failures in HTML- established dynamic test generation technique [1-3],
generating web applications. Our technique is based on sometimes referred to as concolic testing. For expository
dynamic test generation, using combined concrete and purposes, we will present the algorithm in two steps.
symbolic (concolic) execution and constraint solving We First, this section presents a simplified version of the
created a tool, Apollo, that implements our technique in algorithm that does not simulate user inputs or keep
the context of the publicly available interpreter.Apollo track of persistent session state [4-6]. Then, Section 4
first executes the Web application under test with an presents a generalized version of the algorithm that
empty input. During each execution, Apollo program to handles user-input simulation and stateful executions and
record path constraints that reflect how input values illustrates it on a more complex example. The basic idea
affect control flow. Additionally, for each execution, behind the technique is to execute an application on some
Apollo determines whether execution failures or HTML initial input (e.g., an arbitrarily or randomly chosen input)
failures occur (for HTML failures, an HTML validator is and then on additional inputs obtained by solving
used as an oracle). Apollo automatically and iteratively constraints derived from exercised control-flow paths.
creates new inputs using the recorded path constraints to We adapted this technique to Web applications as
create inputs that exercise different control flow. Most follows [7, 8].
previous approaches for concolic execution only detect
“standard errors” such as crashes and assertion failures. Algorithm: Figure 1 shows pseudocode for our algorithm.
Our approach detects such standard errors as well, but The inputs to the algorithm are: a program P, an oracle for
also uses an oracle to detect specification violations in the output O and an initial state of the environment S0 .
the application’s output. Another novelty in our work is The output of the algorithm is a set of bug reports B for
the inference of input parameters, which are not the program P, according to O. Each report consists of a
manifested in the source code. single failure, defined by the error message and the set of

Techniques based on combined concrete and statements that is related to the failure [9, 10]. In addition,
symbolic executions may create multiple inputs expose the the report contains the set of all inputs under which the
same fault. In contrast to previous techniques, to avoid failure was exposed and the set of all path constraints that
overwhelming the developer, our technique automatically lead to the inputs exposing the failure.
identifies the minimal part of the input that is responsible The algorithm uses a queue of configurations.
for triggering the failure. This step is similar in spirit to Each configuration is a pair of a path constraint and
Delta Debugging [3]. However, since Delta Debugging is an input. A path constraint is a conjunction of conditions
a general, black box input minimization technique, it is on the program’s input parameters. The queue is
oblivious to the properties of inputs. In contrast, our initialized with the empty path constraint and the empty
technique is white box: It uses the information that certain input [11].

World Appl. Sci. J., 29 (Computer Sciences, Engineering and Its Applications): 259-263, 2014

261

Fig. 1: The failure detection algorithm. The output of the
algorithm is a set of bug reports.

Path Constraint Minimization: The failure detection
algorithm (Fig. 1) returns bug reports. Each bug report
contains a set of path constraints and a set of inputs
exposing the failure [12, 13]. Previous dynamic test
generation tools presented the whole input to the user
without an indication of the subset of the input
responsible for the failure. As a postmortem phase, our
minimization algorithm attempts to find a shorter path
constraint for a given bug report (Fig. 2). This eliminates
irrelevant constraints and a solution for a shorter path
constraint is often a smaller input.

Figure 2 the path constraint minimization algorithm.
The method intersect returns the set of conjuncts that are
present in all given path constraints and the method
shortest returns the path constraint with fewest
conjuncts.

Combined Concrete and Symbolic Execution with
Explicit-state Model Checking: Apollo implements a form
of explicit-state software model checking. Apollo
systematically explores the state space of the system, i.e.,
the program under test. The algorithm in Section 3 always
restarts the execution from the same initial state and
discards the state reached at the end of each execution.

Fig. 2: The path constraint minimization algorithm.

Thus, the algorithm reaches only one-level deep into
the application, where each level corresponds to a cycle
of: a script that generates an HTML form that the user
interacts with to invoke the next script. In contrast, the
algorithm presented in this section remembers and
restores the state between executions of scripts. This
technique, known as state matching, is widely known in
model checking [7] and implemented in tools such as
SPIN [13] and JavaPath-Finder [21]. To our knowledge, we
are the first to implement state matching in the context of
Web applications.

Figure 3 the failure detection algorithm: the output of
algorithm is set of bug reports; each reports a failure and
the set of tests exposing that failure.

Implementation: We created a tool called Apollo that
implements our technique for my application. Apollo
consists of three major components, Executor, Bug Finder
and Input Generator illu-strated in Fig. 4. This section first
provides a high-level overview of the components and
then discusses the pragmatics of the implementation.

The inputs to Apollo are the program under test and
an initial value for the environment. The initial
environment usually consists of a database populated
with some values and usersupplied information about
username/password pairs to be used for database
authentication.

The Executor is responsible for executing a script
with a given input in a given state. The executor contains
two subcomponents:

The Shadow Interpreter is interpreter that we
have modified to propagate and record path constraints
and positional information associated with output.
This positional information is used to determine which
failures are likely to be symptoms of the same fault.

World Appl. Sci. J., 29 (Computer Sciences, Engineering and Its Applications): 259-263, 2014

262

Fig. 3: The failure detection algorithm: the output of algorithm is set of bug reports; each reports a failure and the set
of tests exposing that failure.

The State Manager restores the given state The Value Generator generates values for parameters
of the environment (database, session and cookies) that are not otherwise constrained, using a combination
before the execution and stores the new environment of random value generation and constant values mined
after the execution. The Bug Finder uses an oracle to from the program source code[14].
find HTML failures, stores all bug reports and finds
the minimal conditions on the input parameters for Executor: The shadow interpreter performs the regular
each bug report. The Bug Finder has the following (concrete) program execution using the concrete values
subcomponents: and simultaneously performs symbolic

The Oracle finds HTML failures in the output of the Bug finder: The bug finder is in charge of transforming
program. the results of the executed inputs into bug reports.
The Bug Report Repository stores all bug reports Below is a detailed description of the components of the
found during executions. bug finder.Bug report repository. This repository stores
The Input Minimizer finds, for a given bug report,the the bug reports found in all executions [15-17].
smallest path constraint on the input parameters that A failure is uniquely defined by the following set of
results in inputs inducing the same failure as in the characteristics: the type of the failure (execution failure or
report. HTML failure), the corresponding message message

The Input Generator implements the algorithm validator message for HTML failure
described in Fig. 4. The Input Generator contains the
following subcomponents: Input Generato: Apollo’s approach to the above

The UI Option Analyzer analyzes the HTML output challenges is to simulate user interaction by analyzing the
of each execution to convert the interactive user options dynamically created HTML output and tracking the
into new inputs to execute. symbolic parameters through the environment:

The Symbolic Driver generates new path constraints
from the constraints found during execution [13]. Apollo automatically extracts the available user

The Constraint Solver computes an assignment of options from the HTML output so that it collects all
values to input parameters that satisfies a given path HTML forms in the page and their components, e.g.,
constraint. buttons and text areas, through which the user can

(error/warning message for execution failures and

World Appl. Sci. J., 29 (Computer Sciences, Engineering and Its Applications): 259-263, 2014

263

provide input. Any default values for such elements 6. Cadar, C. and D.R. Engler, 2005. “Execution Generated
are also collected. Test Cases: How to Make Systems Code Crash
Apollo collects static HTdocuments that can be Itself,” Proc. Int’l SPIN Workshop Model Checking
called from the dynamic HTML output, i.e., Apollo of Software, pp. 2-23, 2005.
gather all href attributes in the HTML document. 7. Cadar, C., V. Ganesh, P.M. Pawlowski, D.L. Dill and
Apollo performs a cursory analysis of JavaScript D.R. Engler, 2006. “EXE: Automatically Generating
code to find other syntactic references, for instance, Inputs of Death,” Proc. Conf.Computer and Comm.
a window.open call with a static url as a parameter. Security, pp. 322-335.
Since additional code on the client side (for 8. Clause, J. and A. Orso, 2009. “Penumbra:
instance,JavaScript) might be executed when a Automatically IdentifyingFailure-Relevant Inputs
button is pressed, this approach might induce false Using Dynamic Tainting,” Proc. Int’lSymp. Software
positive bug reports. In our experiments, this Testing and Analysis.
limitation produced no false positive bug reports. 9. Cleve, H. and A. Zeller, 2005. “Locating Causes of

CONCLUSIONS pp: 342-351.
10. Cleve, H. and A. Zeller, 2005. “Locating Causes of

We have presented a technique for finding faults in Program Failures” Proc. Int’l Conf. Software Eng.,
Web applications that is based on combined concrete and pp: 342-351.
symbolic execution. The work is novel in several 11. Csallner, C., N. Tillmann and Y. Smaragdakis, 2008.
respects.First, the technique not only detects runtime “DySy: DynamicSymbolic Execution for Invariant
errors but also uses an HTML validator as an oracle to Inference,” Proc. Int’l Conf. Software Eng.,
determine situations where malformed HTML is pp. 281-290.
created.second we perform an automated analysis to 12. Dean, D. and D. Wagner, 2001. “Intrusion Detection
minimize the size of failure-inducing inputs. via Static Analysis,”Proc. Symp. Research in Security

and Privacy, pp: 156-169.
REFERENCES 13. Demartini, C., R. Iosif and R. Sisto, “A Deadlock

1. Anand, S., P. Godefroid and N. Tillmann, 2008. Software-Practice and Experience, 29(7): 577-603.
“Demand-Driven Compositional Symbolic 14. Emmi, M., R. Majumdar and K. Sen, 2007. “Dynamic
Execution,” Proc. Int’l Conf. Tools and Algorithms Test InputGeneration for Database Applications,”
for the Construction and Analysis of Systems, Proc. Int’l Symp. Software Testing and Analysis,
pp: 367-381. pp: 151-162.

2. Artzi, S., A. Kiezun, J. Dolby, F. Tip, D. Dig, 15. Godefroid, P., 2007. “Compositional Dynamic Test
A. Paradkar and M.D. Ernst, 2008. “Finding Bugs in Generation,” Proc.Ann. Symp. Principles of
Dynamic Web Applications,” Proc. Int’lSymp. Programming Languages, pp: 47-54.
Software Testing and Analysis, pp: 261-272. 16. Godefroid, P., A. Kie_zun and M.Y. Levin, 2008.

3. Benedikt, M., J. Freire and P. Godefroid, 2002. “Grammar-BasedWhitebox Fuzzing,” Proc. ACM
“VeriWeb: Automatically Testing Dynamic Web SIGPLAN Conf. ProgrammingLanguage Design and
Sites,” Proc. Int’l Conf. World Wide Web. Implementation, pp: 206-215.

4. Brumley, D., J. Caballero, Z. Liang, J. Newsome and 17. Godefroid, P., N. Klarlund and K. Sen, 2005. “DART:
D. Song, 2007. “Towards Automatic Discovery of Directed Automated Random Testing,” Proc. ACM
Deviations in Binary Implementations with SIGPLAN Conf. Programming Language Design and
Applications to Error Detection and Fingerprint Implementation, pp: 213-223.
Generation,” Proc. 16th USENIX Security Symp.

5. Cadar, C., D. Dunbar and D.R. Engler, 2008. “Klee:
Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs,”
Proc. USENIX Symp. Operating Systems Design and
Implementation, pp: 209-224.

Program Failures,”Proc. Int’l Conf. Software Eng.,

Detection Toolfor Concurrent Java Programs,”

