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Abstract: In this paper, a hybrid heuristic computing technique, stochastic in nature, is used for obtaining an
approximate numerical solution of the Lienard equation. The proposed technique converts the nonlinear
differential equation into an equivalent global error minimization problem. A trial solution is developed using
a fitness function with unknown adaptable parameters. The memetic computation or hybrid genetic algorithms
(HGAs) combining genetic algorithm (GA) with interior point algorithm (IPA), active set algorithm (ASA) and
pattern search (PS) is used to solve the minimization problem and to obtain the unknown adaptable parameters.
The accuracy and efficacy of the proposed technique is illustrated by considering the Lienard’s equation with
two special cases. Comparison of numerical results is made with the exact solution and two important
deterministic standard methods, including variational iteration method (VIM) and differential transform method
(DTM). The comparison of numerical results validate the effectiveness and viability of the suggested technique.
The results obtained by the proposed method are found to be in excellent agreement with the exact solution.

Key words: Lienard equation  Memetic computation  Hybrid genetic algorithms (HGAs)  Interior point
algorithm (IPA)  Active set algorithm (ASA).

INTRODUCTION force and external force respectively). Moreover it is used

Nonlinear problems appearing in many physical when taking different choices of f(u), g(u) and h(x). For
phenomena, engineering and scientific applications are example, the choices f(u) =  (u -1), g(u) = u and h(x) = 0
modeled with nonlinear differential equations. Since most lead (1) to the well-known Van der Pol equation of
of the nonlinear differential equations are difficult to be nonlinear electronic oscillator [1-5]. Some nonlinear
solved using analytical techniques, these problems must evolution equations such as Burgers-KdV equation can
be tackled using approximate analytical and numerical also be transformed to (1) [5]. Therefore the study of (1)
methods. Many approximate analytical and numerical is of great importance.
methods like finite difference method, differential In the general case, it is commonly believed that it is
transform method (DTM),  homotopy  perturbation very difficult to find the exact solution of (1) by usual
method (HPM), adomian decomposition method (ADM), ways [1-5], the following special case was investigated by
variational iteration method (VIM) etc. have been vastly authors in [1-7] and references there in.
used for solving nonlinear differential equations.  In this
paper, we consider the Lienard equation [1-5] (2)

(1) where l, m and n are real coefficients. 

Which is regarded as a generalization of damped Many methods including differential transform
pendulum equation or damped spring-mass system (where method  (DTM)  [1],  variational iteration method (VIM)
f(u), g(u) and h(x) represent the damping force, restoring [2],  variational    homotopy    perturbation      method

as nonlinear models in many physically significant fields
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(VHPM) [3], Adomian decomposition method  (ADM)  [4], MATERIALS AND METHODS
 –expansion method [6] etc. have been utilized for the

exact and numerical solutions of (2). 
In  recent years evolutionary computation (EC) based

techniques have been applied with success to solve
numerous nonlinear ordinary differential equations
(ODEs)  arising  in  engineering  and  science  [8-15].
Khan et al. [9] used PSO based artificial neural network
(ANN) method for solving Wessinger’s equation. Zahoor
et al. [10] used PSO based ANN method for the solution
of fractional  order  Riccati  differential  equation.  Arqub
et al. [11] used genetic algorithm (GA) based technique
for solving linear and nonlinear singular boundary value
problems. Behrang et al. [12] applied PSO based ANN for
solving the nonlinear ODE arising from vertical full cone
embedded in porous media. Only recently, Malik  et  al.
[14-15] successfully employed heuristic computation
technique, based on the hybrid genetic algorithm (HGA)
for solving the Troesch’c problem and the nonlinear
singular boundary value problems (BVPs) arising in
physiology [14-15].

The main goal of this work is to employ the heuristic
computation  based  technique  as an alternative to
existing standard numerical methods for solving the
Lienard  equation  of  the  form  (2).  The  contribution  of
this research  work  is  that  a heuristic computation
based technique is for the first time used for solving
Lienard equation (2) as per our literature survey.
Moreover the proposed technique is stochastic in nature
as compared to the standard methods [1-4, 6] utilized for
solving  this  equation,  which  are  deterministic in
nature.

In the proposed method the nonlinear ODE is
converted  into  an  equivalent  minimization    problem.
The method employs the hybridization approach of
genetic  algorithm  (GA)  with three local search
algorithms such  as  interior  point  algorithm  (IPA),
pattern  search  (PS)  and  active  set  algorithm   (ASA)
for the minimization of the fitness function. The three
hybrid genetic algorithm (HGA) schemes used in this
work are called here as GA-IPA (GA hybridized with IPA),
GA-PS (GA hybridized with PS) and GA-ASA (GA
hybridized with ASA). The effectiveness and viability of
the  proposed  method  are illustrated by solving
Lienard’s equation with two special cases. The
comparisons of our results are made with the exact
solutions and the standard numerical methods including
DTM [1] and VIM [2].

Brief Introduction of Hybrid Genetic Algorithms
(HGAs): In past few decades evolutionary algorithms
(EAs) have received remarkably great attention and these
techniques have been massively used for solving diverse
optimization problems due to their simplicity and
robustness [16]. Genetic algorithm (GA) invented by John
Holland in 1960s is one of the most popular and widely
used global search method in EAs. In GA a population of
individuals called chromosome represents a candidate
solution to the given problem. A problem exclusive fitness
function is used to compute the fitness of each individual
in a population. The algorithm evolves populations
towards the global best solution over the successive
generations employing selection and genetic operators of
crossover and mutation [17]. 

Hybrid genetic algorithms (HGAs) s) have been
investigated by many authors [16, 18]. It has been proved
that HGAs can improve the performance and quality of
the solution [16, 18]. A Hybrid genetic algorithm (HGA)
combines GA with local search algorithms such as interior
point algorithm (IPA), active set algorithm (ASA) etc. 

In this work, we have utilized HGAs combining GA
with IPA (GA-IPA), ASA (GA-ASA) and PS (GA-PS). GA
has been used as global optimizer, which finds global
optimal chromosome, while IPA, ASA and PS have been
utilized for the local search fine-tuning. The procedural
steps of the HGA approach are given as follows, while the
parameter settings for the implementation of these
algorithms for Lienard equation are given in Table 1 and
Table 2.

Algorithm: Hybrid Genetic Algorithm (HGA)

Step 1: (Population Initialization)

A population of N individuals or chromosomes (C ,1

C , …,C ) is generated using random number2 N

generator. Each chromosome consists of M number
of genes, which represent the number of unknown
adaptable parameters to be optimized.

Step 2: (Fitness Evaluation)

The fitness of each individual or chromosome in the
current population is determined using a problem
exclusive fitness function. 
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Table 1: Parameter Settings of GA and IPA 
GA IPA
------------------------------------------------------------------------------ ---------------------------------------------------------------------------------------------
Parameters Settings Parameters Settings
Population size [120 120] Start point best chromosome from GA
Chromosome size 30 Maximum iterations 1000
Selection function Stochastic uniform Maximum function evaluations 200000
Mutation function Adaptive feasible Function tolerance 1e-15
Crossover function Heuristic Nonlinear constraint tolerance 1e-15
Function tolerance 1e-15 Derivative type Central differences
Nonlinear constraint tolerance 1e-15 Hessian BFGS
No. of generations 1000 Subproblem algorithm ldl factorization
Bounds -15, +15 Bounds -15, +15

Table 2: Parameter Settings of PS and ASA
PS ASA
------------------------------------------------------------------------------------- ----------------------------------------------------------------------------------------------
Parameters Settings Parameters Settings
Start point Best  chromosome from GA Start point Best chromosome from GA
Poll method GPS positive basis 2N Maximum iterations 400
Maximum iterations 3000 Maximum function evaluations 200000
Maximum function evaluation 200000 Function tolerance 1e-15
Function tolerance 1e-15 Nonlinear constraint tolerance 1e-15
Nonlinear constraint tolerance 1e-15 SQP constraint tolerance 1e-6
Bounds -15, +15 Bounds -15, +15

Step 3: (Stoppage Criterion) Interior Point Algorithm (IPA) is a local search

The algorithm stops, if a certain number of cycles has
reached or fitness reaches a certain value. If the
stoppage criterion is satisfied then go to step 6 for
local search fine-tuning, else continue and repeat
steps 2 to 5. 

Step 4: (Reproduction)

The chromosomes from the current population are
chosen on the basis of their fitness which acts as
parents for new generation. These parents produce
children (offsprings) with a probability to their
fitness through crossover operation.

Step 5: (Mutation)

Mutation operation introduces random alterations in
the genes to maintain the genetic diversity to find a
good solution. 

Step 6: (Local Search Fine-Tuning)

The optimal chromosome found by GA is taken over
by IPA, ASA and PS for fine- tuning and
improvement.

algorithm  that  reaches and optimal solution by
computing iterates that lie in the feasible interior region.
The algorithm applies a direct step also called Newton
step or a conjugate gradient step to solve a system of
Karush-Kuhn-Tucker (KKT) equations at each iteration
[19-20].

Active Set Algorithm (ASA) is an iterative method
that solves constrained optimization problems by
searching solutions in the feasible sets. The main
objective of the algorithm is to estimate the active set at
the solution of the problem. Generally these methods work
in two separate phases such as feasibility phase and
optimality phase. In the feasibility phase the method
attempts to find a feasible point for the constraints while
the objective function is ignored. In the optimality phase
the method preserves the feasibility while it attempts to
find an optimal point [21].

Pattern Search (PS) belongs to the direct search
optimization methods that explore a series of points that
may reach to the optimal point. The algorithm initiates the
search by creating a mesh from a set of points, around the
current point. The algorithm looks for a point in the mesh
that gives improvement in the objective function value. If
the PS algorithm discovers such a point in the mesh that
point turns into the current point in the next step. This
process continues until the optimal value of the objective
function is achieved by the algorithm [22-23]. 



( ) ( )
1

k

i i i
i

u x b x c
=

= +∑

( ) ( )
1

k

i i i i
i

u x b b x c
=

′ ′= +∑

( ) ( )2

1

k

i i i i
i

u x b b x c
=

′′ ′′= +∑

( ) 1
1 xx

e−
=

+

1 2j = +

( ) ( )20 , 0
2

l l lu u
m lm

m

− −= = −
−

( )
( )( )2 1l tanh -lx

u x
m

− +
=

( ) ( ) ( )
2

3
1

0

1 4
1

k

i i i
i

u x u x u x
k =

 ′′= − + + ∑

( ) ( )

2

2
1 20 0
2 2

l l lu u
m lm

m

     − −  = = + = −     −       

1 2j = +

World Appl. Sci. J., 28 (5): 636-643, 2013

639

Methodology for Lienard Equation: We may assume that proposed technique, comparisons of the results are made
the approximate numerical solution u(x) and its first and with the exact solution and two standard numerical
second derivatives u´(x) and u (x)  of Lienard equation methods including DTM [1] and VIM [2].
can be represented by a linear combination of some basis
functions as follows. Example 1: We consider the Lienard equation (2), with m

(3) conditions [1-2]

(4) (8)

(5) The exact solution of (2) with initial conditions (8) is

where a , b  and c  are real valued unknown adaptable (9)i i i

parameters, k is the number of basis functions and is
taken as the log sigmoid function which is given by

To obtain the approximate numerical solution of (2)
(6) with given initial conditions (8), we construct a trial

The values of unknown adaptable parameters ( )
existing in (3) - (5) are determined by formulating a trial (10)
solution of the given problem using a fitness function
given by

(7) (11)

where j is the cycle index.

The fitness function given by (7) consists of the sum where u(x), u (x) and u (x) are given by (3) - (5)
of two parts. The first part represents the mean square respectively.
error ( ) of the given ODE without initial conditions and1

the second part represents the mean square error ( ) Therefore the fitness function   is given by2

associated with the initial conditions. 
The fitness function contains unknown adaptable (12)

parameters (a ,b  and c  ). The optimal values of unknowni i i

adaptable parameters are achieved by performing the The fitness function given by (12) is subject to
minimization of the fitness function using the heuristic minimization for achieving the unknown adaptable
search algorithms described above. Consequently the parameters. The minimization is performed using heuristic
approximate numerical solution u(x) of the given problem algorithms GA, PS, IPA, ASA and three hybrid genetic
is achieved. algorithm (HGA) schemes such as GA-IPA, GA-ASA and

RESULTS AND DISCUSSION in this work.

In this section the proposed heuristic technique is of the algorithms are given in Table 1 and Table 2. The
employed to the Lienard equation (2) with two special number of basis functions is taken equal to 10. The length
cases. To prove viability and effectiveness of the of  chromosome  i.e.  the  number of unknown adaptable

= 4, n = -3 and l = -1 subject to the following initial

given by (9) [1-2].

solution using the fitness function as follows

GA-PS. For the implementation Matlab has been utilized

The parameter settings used for the implementation
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Table 3: Optimal values of unknown adaptable parameters achieved by HGAs
GA-IPA GA-ASA GA-PS
-------------------------------------------- ------------------------------------------------- -------------------------------------------------

i a b c a b c a b ci i i i i i i i i

1 1.4765 1.6435 0.0319 -1.1873 -0.9927 4.3567 1.5718 1.4311 0.5615
2 -0.4076 0.1844 0.7842 0.0532 2.8125 1.3375 -0.4871 -0.3624 0.8345
3 0.0571 1.8190 0.8479 3.3774 0.0092 -2.8024 -0.5389 1.2069 1.7976
4 -0.8915 1.6377 -0.3568 -2.3967 -1.4546 -0.3605 -0.1163 2.0438 -1.3707
5 -0.1359 -0.0050 0.6930 -1.9747 -0.2414 1.5959 -0.0205 0.2205 0.3142
6 -0.8117 0.4175 0.4188 0.4933 -0.7706 2.8568 -0.9034 0.4790 0.5725
7 -0.0811 0.5103 0.6673 -2.7251 1.2393 -1.7020 -0.1764 0.4371 0.2237
8 1.3478 0.2121 0.5170 -2.0717 1.5492 3.2516 1.6670 -0.0544 0.5038
9 0.5038 1.0990 0.7797 2.6098 -1.4604 3.9947 0.3111 0.7741 0.7144
10 0.0126 -0.3347 0.5364 3.0735 2.0118 3.1644 -0.0605 -0.1227 -0.0943

Table 4: Comparison of numerical results of example 1 between exact and proposed heuristic computation technique
x Exact GA IPA ASA PS GA-IPA GA-ASA GA-PS
0.0 0.70710678 0.70708157 0.70710049 0.70709981 0.70689442 0.70709992 0.7070993 0.70709729
0.1 0.74150792 0.74148195 0.74150168 0.74150062 0.74125573 0.74150067 0.74149966 0.74149750
0.2 0.77374909 0.77371815 0.77374349 0.77374154 0.77345350 0.77374120 0.77373869 0.77373622
0.3 0.80352741 0.80348785 0.80352226 0.80351966 0.80319280 0.80351891 0.80351477 0.80351196
0.4 0.83064703 0.83059890 0.83064195 0.83063915 0.83027477 0.83063819 0.8306333 0.83063026
0.5 0.85501964 0.85496522 0.85501464 0.85501169 0.85460429 0.85501066 0.85500567 0.85500252
0.6 0.87665545 0.87659658 0.87665085 0.87664739 0.87619110 0.87664623 0.87664089 0.87663761
0.7 0.89564719 0.89558353 0.89564323 0.89563887 0.89513198 0.89563743 0.89563087 0.89562736
0.8 0.91215042 0.91207956 0.91214703 0.91214169 0.91158491 0.91213991 0.91213155 0.91212773
0.9 0.92636328 0.92628212 0.92636013 0.92635410 0.92574466 0.92635202 0.92634223 0.92633803
1.0 0.9385079 0.93841447 0.93850472 0.93849825 0.93782349 0.93849589 0.93848536 0.93848068

parameters (a ,b  and c  )are chosen equal to 30. The technique yields the solution of the Lienard equation (2)i i i

values of these unknown adaptable parameters are with initial conditions (8)  with the remarkably greater
restricted between -15 and + 15. This was observed by accuracy. Moreover it is established from the comparison
several simulations that by using the parameter settings that the absolute errors relative to the exact solutions
as prescribed in Tables 1 and 2, we get better results. obtained from the proposed technique are significantly

The algorithms are executed according to the smaller as compared to the standard methods DTM [1]
prescribed settings. The optimal values of the unknown and VIM [2]. Furthermore the better performances of
adaptable parameters are achieved. In Table 3 we provide hybrid genetic algorithms (HGAs) are quite evident from
the optimal values of a , b  and c  achieved using three Table 5.i i i

HGA schemes including GA-IPA, GA-ASA and GA-PS,
while we have omitted here the values achieved using Example 2: We consider the Lienard equation (2), with
other heuristic schemes (GA, IPA, ASA and PS). subject to the following initial conditions [1-2]

The approximate numerical solution u(x) of the
Lienard equation (2) with initial conditions given by (8) is (13)
consequently achieved by using the values of a , b  andi i

c  in (3). The numerical results achieved by the proposedi

heuristic technique are presented in Table 4 and compared
with the exact solution. 

The absolute errors by the proposed heuristic
technique have been calculated relative to the exact
solution and presented in Table 5. For the effectiveness
and the accuracy of the proposed heuristic technique
comparisons are made with two standard numerical
methods including DTM [1] and VIM [2]. Comparison of
the absolute errors reveals that the proposed heuristic

where  and 

The exact solution of (2) with initial conditions (13) is
given by (14) [1-2]

(14)
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To apply the proposed heuristic technique for the The algorithms are executed according to the
approximate numerical solution of (2) with given initial
conditions (13), we construct a trial solution using the
fitness function described in example 1, given by

(15)

(16)

where u(x), u (x) and u  (x) are given by (3) - (5)
respectively.

Therefore the fitness function   is given by

(17)

The minimization of (17) is performed using heuristic
algorithms GA, PS, IPA, ASA and three hybrid genetic
algorithm (HGA) schemes such as GA-IPA, GA-ASA and
GA-PS.

prescribed settings in Table 1 and Table 2. The optimal
values of the unknown adaptable parameters are
achieved. The optimal values of a , b  and c  achievedi i i

using three HGA schemes including GA-IPA, GA-ASA
and GA-PS are provided in Table 6. 

The approximate numerical solution   of the Lienard
equation (2) with initial conditions given by (13) is
consequently achieved by using the values of a , b  andi i

c   in (3). The numerical results achieved by the proposedi

heuristic technique are presented in Table 7 and compared
with the exact solution. 

In Table 8 we present the absolute errors for example
2 by the proposed heuristic technique. Comparisons of
results are carried with standard numerical methods
including DTM [1] and VIM [2]. It is evident from the
comparison of the absolute errors in Table 8 that the
proposed heuristic technique provides the approximate
solution of the Lienard equation (2) with initial conditions
(13)  with the significantly greater accuracy. The
comparison  shows  that  the  proposed  technique  gives

Table 5: Comparison of absolute errors for example 1 between proposed heuristic computation technique and standard numerical methods given in [1-2]

Proposed Heuristic Technique Standard Methods
-------------------------------------------------------------------------------------------------------------------------------------- ----------------------------------

x GA IPA ASA PS GA-IPA GA-ASA GA-PS DTM[1] VIM[2]

0.1 2.60E-05 6.24E-06 7.30E-06 2.52E-04 7.25E-06 8.26E-06 1.04E-05 2.26E-06 8.83E-07
0.2 3.09E-05 5.60E-06 7.55E-06 2.96E-04 7.89E-06 1.04E-05 1.29E-05 2.52E-06 1.29E-05
0.3 3.96E-05 5.15E-06 7.75E-06 3.35E-04 8.50E-06 1.26E-05 1.55E-05 1.44E-05 5.61E-05
0.4 4.81E-05 5.08E-06 7.88E-06 3.72E-04 8.84E-06 1.37E-05 1.68E-05 6.18E-05 1.37E-04
0.5 5.44E-05 5.00E-06 7.95E-06 4.15E-04 8.98E-06 1.40E-05 1.71E-05 2.21E-04 2.10E-04
0.6 5.89E-05 4.60E-06 8.06E-06 4.64E-04 9.22E-06 1.46E-05 1.78E-05 6.52E-04 1.24E-04
0.7 6.37E-05 3.96E-06 8.32E-06 5.15E-04 9.76E-06 1.63E-05 1.98E-05 1.64E-03 4.46E-04
0.8 7.09E-05 3.39E-06 8.73E-06 5.66E-04 1.05E-05 1.89E-05 2.27E-05 3.65E-03 2.06E-03
0.9 8.12E-05 3.15E-06 9.18E-06 6.19E-04 1.13E-05 2.10E-05 2.52E-05 7.35E-03 5.63E-03
1.0 9.34E-05 3.18E-06 9.65E-06 6.84E-04 1.20E-05 2.25E-05 2.72E-05 1.37E-02 1.24E-02

Table 6: Optimal values of unknown adaptable parameters achieved by HGAs

GA-IPA GA-ASA GA-PS
-------------------------------------------- ------------------------------------------------- -------------------------------------------------

i a b c a b c a b ci i i i i i i i i

1 1.2149 -0.3727 -2.8408 1.2149 -0.3727 -2.8408 1.4406 0.1609 -2.6743
2 1.3944 2.1279 0.8475 1.3944 2.1279 0.8475 1.1331 1.9884 1.16
3 -0.2826 2.3517 -0.4081 -0.2826 2.3517 -0.4081 0.0527 -3.5244 0.507
4 -0.3524 1.2247 -0.4775 -0.3524 1.2247 -0.4775 -0.3858 1.289 -0.2388
5 0.1226 1.9992 -1.0056 0.1226 1.9992 -1.0056 0.4586 1.7161 -1.077
6 -0.9897 1.6812 -0.5169 -0.9897 1.6812 -0.5169 -0.8535 2.0503 -1.0667
7 0.0182 3.8165 -0.087 0.0182 3.8165 -0.087 0.0841 3.3504 0.4037
8 0.2249 -0.7396 2.2311 0.2249 -0.7396 2.2311 0.0445 -1.2291 2.6335
9 2.3882 -0.0617 -1.9094 2.3882 -0.0617 -1.9094 2.5068 -0.1073 -2.1426
10 -1.4067 -0.067 -1.1636 -1.4067 -0.067 -1.1636 -1.6696 0.3519 -1.0648
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Table 7: Comparison of numerical results of example 2 between exact and proposed heuristic computation technique
x Exact GA IPA ASA PS GA-IPA GA-ASA GA-PS
0.0 0.64358868 0.64360617 0.64362394 0.64357366 0.64348008 0.64357999 0.64357999 0.64360959
0.1 0.63983909 0.63986344 0.6398824 0.63982271 0.63973451 0.63983065 0.63983065 0.63985751
0.2 0.62883007 0.62883763 0.62888322 0.62880788 0.62874109 0.62882255 0.62882255 0.62883941
0.3 0.61124131 0.61124014 0.61129975 0.61121583 0.61118077 0.61123551 0.61123551 0.61124073
0.4 0.58808625 0.58809884 0.58814998 0.58806418 0.58805891 0.58808261 0.58808261 0.58808171
0.5 0.56056993 0.56059993 0.56063482 0.56055453 0.56057095 0.56056877 0.56056877 0.56056493
0.6 0.52994636 0.52997467 0.53000645 0.52993526 0.52996741 0.52994800 0.52994800 0.52993642
0.7 0.49740243 0.4974092 0.49745516 0.49739153 0.49743961 0.49740702 0.49740702 0.49738027
0.8 0.463981 0.46396764 0.4640277 0.46396966 0.46403852 0.46398843 0.46398843 0.46394651
0.9 0.43054277 0.43053227 0.43058554 0.43053530 0.43062939 0.43055292 0.43055292 0.43050625
1.0 0.3977589 0.3977683 0.39779717 0.39775980 0.39787793 0.39777179 0.39777179 0.39773005

Table 8: Comparison of absolute errors for example 2 between proposed heuristic computation technique and standard numerical methods given in [1-2] 
Proposed Heuristic Computation Technique Standard Method
------------------------------------------------------------------------------------------------------------------------------------- ----------------------------------

x GA IPA ASA PS GA-IPA GA-ASA GA-PS DTM[1] VIM[2]
0.1 2.43E-05 4.33E-05 1.64E-05 1.05E-04 8.44E-06 8.44E-06 1.84E-05 4.07E-06 2.04E-05
0.2 7.56E-06 5.31E-05 2.22E-05 8.90E-05 7.52E-06 7.52E-06 9.34E-06 3.70E-06 3.22E-04
0.3 1.17E-06 5.84E-05 2.55E-05 6.05E-05 5.80E-06 5.80E-06 5.80E-07 7.18E-06 1.58E-03
0.4 1.26E-05 6.37E-05 2.21E-05 2.73E-05 3.64E-06 3.64E-06 4.54E-06 4.50E-05 4.82E-03
0.5 3.00E-05 6.49E-05 1.54E-05 1.02E-06 1.16E-06 1.16E-06 5.00E-06 2.47E-04 1.12E-02
0.6 2.83E-05 6.01E-05 1.11E-05 2.11E-05 1.64E-06 1.64E-06 9.94E-06 9.99E-04 2.21E-02
0.7 6.77E-06 5.27E-05 1.09E-05 3.72E-05 4.59E-06 4.59E-06 2.22E-05 3.22E-03 3.85E-02
0.8 1.34E-05 4.67E-05 1.13E-05 5.75E-05 7.43E-06 7.43E-06 3.45E-05 8.74E-03 6.17E-02
0.9 1.05E-05 4.28E-05 7.47E-06 8.66E-05 1.01E-05 1.01E-05 3.65E-05 2.08E-02 9.23E-02
1.0 9.40E-06 3.83E-05 9.00E-07 1.19E-04 1.29E-05 1.29E-05 2.89E-05 4.49E-02 1.31E-01
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