
World Applied Sciences Journal 28 (4): 463-472, 2013
ISSN 1818-4952
© IDOSI Publications, 2013
DOI: 10.5829/idosi.wasj.2013.28.04.1468

Corresponding Author: Ahmad Reza Ghapanchi, School of Computer Engineering, Isfahan University, Isfahan, Iran.

463

Performance Analysis of QoS-Based Web Service
Selection Through Integer Programming

Seyed Hossein Siadat, Alexandre Mello Ferreira,1 2

Tala Talaei Khoei and Ahmad Reza Ghapanchi3 4

IT-Management Group, Shahid Beheshti University, Iran1

Politecnico di Milano, Dipartimento di Elettronica e Informazione, Milan, 20133, Italy2

Mashahd Islamic Azad University, Iran3

School of Computer Engineering, Isfahan University, Iran4

Abstract: With the rapid propagation of Web Services and the increase of functionally similar Web Services,
the issue of selecting them based on their quality attributes is becoming very popular among the research
community and practitioners. Quality of Services (QoS) are distinguishing factors for users in selecting Web
Services, when there are multiple Web Services with overlapping or equal functionality. Therefore, a choice
needs to be defined in order to identify which services will be participating in the Web Service composition to
perform a sequence of tasks. This work presents a quality model and a selecting method from a quality
perspective that maximizes the user satisfaction. We use an Integer Programming (IP) technique as a selection
approach for allocating services to tasks. We implement different variants of the selection process and test
execution times for finding the optimum solution for the service selection problem, to capture all the needs of
real scenarios. In particular, we vary a number of parameters namely number of available services, number of
tasks in the service composition and probability for a service to match requirements of a task. The results we
obtain show the benefit of IP when applied to the service selection problem.

Key words: Web service selection Quality of service Quality model Web service composition Integer
programming

INTRODUCTION With the rapid propagation of web services available

The adoption of software-as-a-service model issue of selecting them based on their quality attributes
(SaaS) has exponentially increased in the last years, is becoming very popular among the research community
widespread in a variety of application domains and practitioners. Quality of Services (QoS) are
leading to costs reduction and quality increases. distinguishing factors for users in selecting web services,
In fact, such model is one of the bases of cloud when there are multiple web services with overlapping or
computing paradigm providing on-demand service equal functionality. Therefore, a choice needs to be
applications over a service oriented, dynamic resource defined in order to identify which services will be
provisioning and utility-based models [1]. Essentially, a participating in the Web Service composition considering
service application is made up by compositions of web functional and non-function attributes combined.
services which perform a sequence of tasks and are, Typical non-functional properties include availability,
basically, distributed applications that are published, throughput, cost and response time and they are often
discovered and used through the Web using standard referred to as quality dimensions. First of all, in order to
protocols. reason about QoS properties, there is a need for a quality

and the increase of functionally similar web services, the

World Appl. Sci. J., 28 (4): 463-472, 2013

464

model to define the description of quality from both services and contracts, such as [9, 10]. Dynamic service
provider and requester sides. Second, mechanisms are selection based on user requirement is also presented in
required for selecting the candidate services and literature [11]. However, most of them consider services
`eventually the best service for a specific task from a individually and do not pay a good attention in selecting
quality perspective. In the area of web service Web Services in a composite environment. Besides,
composition, QoS-based web service discovery is the Quality of Service (QoS) aspects mostly have not been
process of matchmaking and selecting functionally considered.
equivalent WSs in a composition fashion [2]. Since many web services can provide a same

The matchmaking phase aims to find out functional functionality for a given task, therefore selecting web
equivalent services through a matching process based on services from a QoS perspective could be a distinguishing
the user functional needs and functional capabilities of factor which is getting a huge interest in the literature.
available services in the system's registry for each A quality model is required for performing the service
sequential task. The result is a group of functional- selection mechanism between service provider and
equivalent candidate web services appropriate for a requester. With this regards, a survey on service quality
specific task, which may differ in their non-functional description is represented in [12]. Different techniques
characteristics. The functional matchmaking is a well- have been used to solve the problem of QoS-based web
known problem which is successful solved by [3] and it is service selection in literature, such as ontology-based
not the focus of this work as better explained in the [13], constraint programming [14] and integer
composition model. programming [2, 15]. Each of which has its own

The selection phase consists in ranking and advantages and disadvantages is only applicable in
choosing the best service for each task according to certain circumstances. For example, Zeng et al. [2] uses
global and local constraints defined by the user. In more mixed integer programming to calculate optimal web
details, the problem consists in selecting the best service execution plan in compositions when global
available service at runtime among all candidate ones for user constraints are required. In a similar approach,
each task in a composition such that the choice maximizes Ardagna et al. [16] uses the linear programming model to
user satisfaction over maximum and minimum quality include local constraints. However, one main problem of
attributes and, at the same time, do not violate either these approaches and in general linear programming
global constraints or structure limitations [4]. techniques is that they are very useful when the size of

This work presents a quality model and selecting problem is small, whereas they have limited scalability due
method from a quality perspective that eventually to the exponential time complexity.
maximizes the user satisfaction. We use an Integer Therefore, in our approach, we investigate
Programming (IP) technique as a selection approach for performance analysis of IP based web service selection.
allocating services to tasks. The remainder of the paper is While the objective is to maximize the overall quality, we
organized as follows. We start by briefly reviewing related analyze implementation of different selection methods and
work in Section 2 and afterwards define a web service their execution times comparison. In particular, we
composition model and quality model for both elementary compare four different implementations of the service
and composite services in Section 3. In Section 4, we selection problem using different synthetic, yet realistic,
introduce our integer programming approach for the web workloads. We show how the performance changes
service selection problem. The implementation using IP when changing objective function and set of constraints.
tools is explained in Section 5. Section 6 presents the With this regards, we examine the impact of some
evaluation and result and finally Section 7 concludes the parameters on the processing time, namely the number of
paper. services, the number of tasks and the matching

Related Works: Web service selection is one of the
fundamental parts in service oriented architecture both Web Service Composition Model: We now introduce the
from functional and non-functional perspective. There is Web Service Composition Model, which defines the
much previous work on service selection techniques properties of available WSs and the relationships between
policies based on, for example, reputation system [5, 6], WSs and tasks. As already mentioned, such relationships
semantic annotations [7] and multi attribute utility theory are discovered during the matchmaking process and
[8]. The system built to use these policies is often uses a represent the input data for the selection process we
Service Level Agreement (SLA) language to describe their address.

probability.

jdi

/j
i

1,if service i is good candiadte to task j
d

0,otherwise


= 


kqi







≠−
−
−

=
otherwise,1

0, minmax
minmax

max kk
kk

k
i

k

k
i

qq
qq
qq

v







≠−
−
−

=
otherwise,1

0, minmax
minmax

min kk
kk

kk
i

k
i

qq
qq

qq
v

kvi

SiwvqVal
kk

kk
ii ∈∀∴= ∑

= ..1

10

1
..1

≤≤

=∑
=

k
hk

k

w

w

jxi

World Appl. Sci. J., 28 (4): 463-472, 2013

465

In the Web Service Composition Model we have a where is the minimum value for the quality k among all
service composition (the execution plan) with a set of
m tasks. Let us call T the set of all tasks t , j [1..m].j

We then have a set S of n available services, s , i [1..n].i

The matchmaking process binds available services and
tasks by specifying the subset of candidate services that
can be considered good for each task. A service s is goodi

for a task t if it provides all the functionalities required byj

t . To express this relation we introduce a dependencyj

parameter, defined as follows:

(1)

Moreover, each service can safely execute only a
limited number of tasks. This number is not fixed, but
depends from the particular service. We model this aspect
by defining a parameter c for each service s , representingi i

the maximum capacity (in terms of number of tasks) of the
service. In other words, each service s can be allocated toi

c tasks, at most.i

Web Service Quality Model: Since the web service
selection process is based on non-functional
properties of services, we need to define a Web Service
Quality Model for both elementary services and
composite services. We assume that a set of h qualities
(or properties) is defined for each service. Properties may
include (a) price, which is the fee/cost that a service
requester has to pay to the service provider for the
service invocation, (b) execution time, which is the
expected duration in time that a service spends to fulfill a
service request and so forth. Accordingly, we define a
parameter, k [1..h] that specifies the value of the

quality k for service i. This way we are defining a quality
matrix Q, specifying a value for each quality in each
service. The quality matrix needs to be scaled since there
are quality metrics having different types. Using a Simple
Additive Weighting (SAW) the matrix Q will be scaled such
that:

(2)

(3)

available services, while is the maximum value for the
quality k among all available services. Note that Eq. (2)
works with for negative QoS properties (the higher value
the lower quality). An example of this type of quality
could be the price of the web service. Instead, Eq. (3)
works for positive parameters (the higher value the higher
quality). An example of this type of quality could be the
availability of the web service.

 After this scaling phase, we are able to define
an overall quality value/score for each web service.
The overall score depends from the values and from a

weight w assigned to each quality. The weight reflectsk

the relevance of the quality from the user's perspective.
Accordingly, we define the score of each service as
follows.

(4)

The weights need to satisfy the following properties,
defining a convex combination of w coefficients:

(5)

As a final remark, we observe that the price of a
service usually has an important role in the selection
process. Indeed, sometimes there exists a maximum
budget that we can pay for the composition, which is fixed
and independent from the other quality dimensions.

 For this reason, not only we embed the cost of a
service inside the qVal parameter, but we also reserve a
set of parameters f , representing the price of each service.i

These parameters will be used to generate constraints on
the maximum budget for the composition, when required.

Problem Formulation: Defining a quality model, we are
proposing an integer programming approach for selecting
the best candidate service among available ones. The
selecting criterion is the maximization of the total quality
of a service while satisfying the capacity constraints
defined for each service. In this Section, we provide a
precise formulation of the problem in terms of IP. We make
use of the parameters defined so far, while explicitly
introducing decision variables, objective function and
constraints. In the web service selection problem we
defined, we need to assign a service to each task.
Accordingly we introduce a set of variables defined as

follows:





=
se0, otherwi

 task jssigned toice i is a1, if serv
x j

i

∑
=

∈∀=
ni

j
i Tjx

..1

:1

TjSidx j
i

j
i ∈∀∈∀≤ ,:

∑
=

∈∀≤
mj

i
j

i Sicx
..1

:

Bxf
mj

j
i

ni
i ≤∑∑
== ..1..1

∑∑
== mj

j
i

ni
i xqVal

..1..1

max

TjxqValK
ni

j
ii ∈∀≤ ∑

−
:

..1

World Appl. Sci. J., 28 (4): 463-472, 2013

466

Implementation: In this section we describe how the
(6)

We then introduce the following constraints. First, we
need to select only a single service for each task.

(7)
We then need a set of constraints to specify that a

service can be assigned to a task only if it is good for the
task.

(8)

 Additionally, we must ensure that the number of
tasks allocated to a service does not exceed the capacity
of the service.

(9)

 Finally, if we have a limited maximum budget for the
composition, says B, we need to include a budget
constraint.

(10)

 The objective function tries to maximize the overall
quality of the selection process and is defined as follows:

(11)

 Notice that the given objective function selects
services for each task by only looking at the overall
quality of the assignment. While this is reasonable for
many scenarios, still it does not offer any guarantee on
the quality reserved to single tasks, which could be useful
in particular applications.

Therefore, we may provide an alternative definition of
the objective function that aims to maximize the minimum
quality associated to a single task in the service
composition. To do so, we need to introduce an additional
variable, say K, with the following constraint.

(12)

Given these premises, the objective function
becomes:

Web Service Selection problem has been implemented
using IP tools. Since we wanted to test the overall time
needed to find the optimum selection of services under
different conditions, we provide four different
implementations:

Quality Maximization Problem: the goal is to maximize
the overall service quality, while satisfying the capacity
constraints.

Minimum Quality Maximization Problem: the goal is to
maximize the minimum quality for a single task, while
satisfying the capacity constraints.

Quality Maximization Problem with Budget: like the
Quality Maximization Problem, but we also have a
maximum budget.

Minimum Quality Maximization Problem with Budget:
like the Minimum Quality Maximization Problem, but we
also have a maximum budget.

With these four cases, we cover all the needs coming
from real applications. In particular, we can use
formulations i. and iii. when the quality of the overall
composition is the most important aspect in the selection
process. This is probably the most frequent case, since
the composite quality coming from all tasks directly
influences the utility of the service from the users'
perspective. Formulation i. does not include a budget
constraint: this is reasonable in various scenarios, in
which services have identical, or at least similar, costs and
the overall budget for the composition is very high, so
that we may be interested only in maximizing the quality.
When this is not true, for example because services with
a high quality have a very high cost, we can use
formulation iii.

Even if less frequent, the case in which we are
interested in maximizing the minimum quality
reserved to a single task is still important. Some times
there are critical tasks involved into the composition
that need minimum quality guarantees. In this case, we
want to be sure that single tasks do not pay too much in
the maximization problem, so we may safely achieve a
lower quality for the composition, to guarantee minimum
values for single tasks. Also in this case we provide two
different implementations, one without the budget
constraint (ii.) and one with the additional budget
constraint (iv.).

Sif
Sic
SiqVal

i

i

i

∈∀≤≤
∈∀≤≤
∈∀≤≤

:101
:101
:101

jdi

World Appl. Sci. J., 28 (4): 463-472, 2013

467

To describe and solve the problems mentioned, we small role. For each of them we imposed fixed upper and
used GLPK (GNU Linear Programming Kit) which is an
open source and free set of libraries developed to solve
mainly linear programming (LP) and mixed integer
programming (MIP) [17]. GLPK can be called directly
inside C/C++ programs, as a stand-alone solver.
However, it also offers a program definition language,
called GMPL, which is a subset of the well-known AMPL
[18]. In the following, we make use of the GMPL syntax to
describe the implementations of the Web Service
Selection problem.

Testing Scenarios: In order to test the performance of our
approach, we created a generator of synthetic workloads
using Python [19]. This allowed us to test the execution
time for finding the optimum solution for the Service
Selection Problem, while varying a number of parameters.
More in particular, we focused on the following parameter:

Number of available services;
Number of tasks in the service composition;
Probability for a service to match the requirements of
a task.

The number of available services and the number of
tasks in the service composition greatly influence the
dimension of the problem and more in particular the
number of involved variables and constraints.
Accordingly, we expect to experience better results with
small numbers. It is worth mentioning that in realistic
scenarios it is highly probable to have a small number of
tasks involved in the composition [20], while it is possible
for the number of available services to be significantly
higher, especially in an open world, in which services
belonging to the most disparate administrative domains
can be combined together. As a consequence we are
interested in studying how the problem scales when the
number of services increases.

The matching probability is another key aspect in the
problem: indeed, it determines the number of good
services for each task. The higher is the matching
probability, the larger is the number of feasible solutions
for the problem. As we said, realistic scenarios involve a
large number of heterogeneous services: as a
consequence, the matching probability for single tasks is
not very high. Generally speaking, we can say that it will
never exceed a value of 10%. We tested our problem with
three different values of matching probability: 1%, 5% and
10%. All other parameters involved in the problem pay a

lower bound and then let our workload generator select
them randomly from a uniform distribution within the
given bounds. Minimum and maximum bounds for
parameters are shown below.

(13)

For implementing (ii.) and (iv.) that make use of
budget constraints, we computed the maximum budget B
as follows:

B = 4m (14)

In other words, the budget is equal to the number of
tasks in the problem multiplied by 4, which is smaller than
the average price of services (to guarantee that the
constraints is actually used) but high enough to allow for
feasible solutions.

Constrains: After discussing how the parameters of the
testing scenarios have been generated, we now introduce
the set of constraints as written in GMPL/GLPK. The first
line guarantees that only one service is selected for each
task. The second one states that a service is selected for
a task only if it is good for it (using the parameter, as

described in the previous Section). The third line
introduces a capacity constraint for each service, using
the set of parameters c . Finally the last line introducesi

budget constraints: this constraint is used only for
implementing (ii) and (iv.).

Quality Maximization Problems: The implementation of
the objective function for the Quality Maximization
Problems (problems (i.) and (iii.) above) is translated into
GMPL/GLPK as follows.

∑∑
== mj

j
i

ni
i xp

..1..1







−−





= ∑∑∑∑

==== mj

j
i

ni
i

mj

j
i

ni
i xfBxpz

..1..1..1..1







−−= ∑∑

== mj

j
i

ni
i xfB

d
dz

..1..1

World Appl. Sci. J., 28 (4): 463-472, 2013

468

By applying the lagrangean relaxation we relax a

Minimum Quality Maximization Problems: The single value, or a vector. In our case, we apply lagrangean
implementation of the objective function for the Minimum relaxation to implementation (iii.) (which is the most
Quality Maximization Problems (problems (ii.) and (iv.) common for real scenarios) and we relax the constraint on
above) is translated into GMPL/GLPK as follows. budget. As a consequence the new objective function

Notice in particular how the maximization of the objective function in the GMPL/GLPK language is shown
minimum quality requires the introduction of a new in line two of the above algorithm. The idea in the
constraint, which is used to define the variable k to be lagrangean relaxation is to start solving the problem for a
maximized. given value of . This problem should be easier, since it

Lagrangean Relaxation: Besides testing the problem with compute the derivative of z w.r.t. and see if we should
different implementations and different input parameters, decrease or increase it to move near its maximum value.
we also tried to manually apply the Lagrangean Relaxation Notice that in our case the parameter is a single number,
[21] to our problem, in order to solve it iteratively and so we can compute the derivative of z in a simple way, by
compare the benefits of the method. In particular, we were looking at the objective function. In particular, the value
interested in two aspects: on one hand we wanted to test of the derivative of z is:
the absolute speed of this algorithm; on the other hand,
we wanted to understand if stopping the algorithm after
a number of iterations could bring good approximations (17)
with a reduced computation time. The implementation of
the Lagrangean Relaxation in GMPL/GLPK is shown Since GMPL is less expressive than AMPL and does
below. not allow expressing iterations, we implemented a script in

iteration and to determine the new value of .

In the first line we define a new parameter p for each generator.i

service i S. This is defined as p = q - q , where q isi max i max

the maximum value of quality among all available services. Methodology: To evaluate the performance of our
In other words, parameter p is the reverse of the quality implementation, we run each test multiple times, usingi

parameter q : the lower is p the better is the selection of different seeds to compute the random values. After eachi i

service i. We used this conversion from q to p to run, we computed the 95% confidence interval and we
transform our problem into a minimization problem. continued until the interval became smaller than 1% w.r.t.
Accordingly, the new objective function for our problem the value of the measure. This approach is used to
should become: guarantee that the results do not depend from the

(15) using an Intel Core2Duo laptop running at 2.53GHz with

constraint (remove it) and use it as a negative
weighted contribution in the objective function.
The weight of the contribution is called and can be a

becomes:

(16)

where the second part represents the contribution of the
budget constraint weighted by . The translation of this

has fewer constraints. After finding a result, we can

Python to compute the value of the derivative of z at each

Evaluation: In this Section, we present the results we
obtained using the implementations of the problem
described in the previous section and our workload

particular workload generated. All results are obtained

4GB of main memory.

World Appl. Sci. J., 28 (4): 463-472, 2013

469

RESULTS

We first discuss the results we obtained with the
implementations of the Quality Maximization and
Minimum Quality Maximization with budget constraints.
They represent the most complete problems, involving
both constraints on the capacity of services and
constraints on the price of services. As said in the
previous Section, we are mainly interested in studying
how the execution time of our implementation changes Fig. 1: Quality Maximization Problem
while varying the number of available services. To test
this aspect we fixed the number of tasks to 100. Notice
that this is a very high number, which is highly
improbable to be found in realistic scenarios. In a sense,
we are using it since it represents a sort of upper bound
for real applications.

Fig. 1 and Fig. 2 show the results we obtained when
considering the Quality Maximization and the Minimum
Quality Maximization problems, respectively. In each
graph, we plot the execution time with a different number Fig. 2: Minimum Quality Maximization Problem
of available services. Notice that we also changed the
probability of matching, using three values: 1%, 5% and
10%. By looking Fig. 1 and Fig. 2 some interesting
aspects emerge. First of all, we notice that the
execution time is very small; they never exceed 4
seconds. These values are particularly good if you
consider that the quality of services changes rarely.
Accordingly, we do not need to compute the selection
process again and again, but we can safely use
discovered values for long time to execute the task, at Fig. 3: Quality Maximization Problem - Cost Budge
least until new services are discovered, or existing ones Constraint
change their properties.

Second, we can observe that the time needed for the Cost of the Budget Constraint: After presenting the
computation grows almost linearly with the number of performance we obtained with the Service Selection
services. This result is of primary importance: indeed, it problem including the budget constraint, we remove it to
allows our implementation to scale with the number of study if it presents a high impact on the performance of
services. This is good, since the number of available the solver. Fig. 3 and Fig. 4 show the results we obtained
services will probably continue to grow in the future. when considering the Quality Maximization and the
Third, we notice that the matching probability has Minimum Quality Maximization problems, respectively.
only a marginal impact on the performance of the solver. By looking Fig. 3 and Fig. 4 we observe that the
In particular, increasing the matching probability from 1% budget constraint does not influence the performance
to 10% increases the execution time by at most 1 second. significantly. More in particular, in both cases, we
Fourth, the performance of the Quality Maximization observe a maximum decrease of execution time that is
problem and those of the Minimum Quality Maximization under 10%.
problem are almost identical, with the second one
performing only a little worse, probably because of the Worst Case: Increasing the Number of Tasks: While we
increased number of variables and constraints it needs to are interested in using the IP implementation only for a
manage. limited number of tasks (as said, 100 tasks is an upper

World Appl. Sci. J., 28 (4): 463-472, 2013

470

Fig. 4: Minimum Quality Maximization Problem - Cost of
Budge Constraint

Fig. 5: Quality Maximization Problem - Increasing the
number of Tasks

Fig. 6: Quality Maximization Problem - Lagrangean
Relaxation

bound for realistic scenarios), we also want to test the
limit of this approach. To do so, we changed the way
workloads were generated and we did some experiments
with a number of tasks constantly equal to the number of
available service. Figure 5 shows the results we obtained
with the Quality Maximization problem.

As we can easily see, in this case the computation
cost increases significantly with the number of services.
Indeed, by making the number of services and the number
of tasks grow at the same time, we are increasing the
number of constraints at a quadratic speed. However,
what we experience here is an increase in the computation
time that is exponential. This means that, in its general
form, the Service Selection problem is not easy. However,
it is solvable almost in real-time in all realistic scenarios.

Lagrangean Relaxation: Finally, we tested the
performance of the implementation that makes use of the
lagrangean relaxation. Fig. 6 shows the results we
obtained. The graph shows the results with a maximum
number of 25 iterations, which allow for a high precision
in the detection of the maximum value of . In many
executions, the minimum value is actually achieved, while
in others the limitation on the number of iterations is
reached before arriving to the minimum. In any case we
reached the optimum value for the objective function,
which means that we always arrived to an approximation
on the value of that is sufficient to compute the correct
value for the objective function.

In general, what we observe is that the execution time
when using the lagrangean relaxation becomes much
higher. Indeed, as we have seen before, the budget
constraint that we are removing in the lagrangean
relaxation does not make the problem much easier to
solve. This means that, by applying lagrangean relaxation,
we are only solving the problem without the budget
constraint many times and we are paying the price of the
iterations plus the additional cost of changing the value
of and loading the problem with the new values in the
objective function. This can easily explain the results we
got.

On the other hand, we were interested in
lagrangean relaxation to see if it was possible to find a
good sub-optimal solution with a reduced execution time.
This could be useful in scenarios involving frequent
service reconfigurations: in these scenarios, it could be
necessary to perform service selection repeatedly and
consequently a good approximation of the optimum
selection could be the right choice. However, also in this
case, the lagrangean relaxation does not seem to be the
right answer. Indeed, while we observe that, a good
approximation (less than 1% of difference in the objective
function) is reached in a limited number of iterations
(usually less than 10); the processing time is still much
higher than those of the normal execution are.

As a final remark, we noticed that most of the
execution time was spent to find an integer solution, after
an optimum solution had been found with the relaxation
of integrality constraints. Accordingly, we can say that,
if execution time has an important role, we can give an
approximation (without offering guarantees on its
distance from the optimum) by stopping the algorithm
soon after a solution for the LP problem has been found
and using some heuristics to move from the given
solution to a feasible one with all integral variables.

World Appl. Sci. J., 28 (4): 463-472, 2013

471

CONCLUSION 4. Ferreira, A.M., K. Kritikos and B. Pernici, 2009.

In this paper we have presented a quality model for Proceedings of the 7th International Joint Conference
services and a linear programming approach to the service on Service-Oriented Computing, pp: 99-114.
selection problem. The service selection problem consists 5. Maximilien, E.M. and M.P. Singh, 2004. Toward
in assigning services to a set of tasks according to their Automatic Web Services Trust and Selection.
quality. The objective is to maximize the overall quality. Proceedings of the 2nd International Conference on

We compared four different implementations of the Service Oriented Computing, pp: 212-221.
service selection problem using different synthetic, yet 6. Vu, L.H., M. Hauswirth and R. Meersman, 2005.
realistic, workloads. We showed how the performance, in QoS-based Service Selection and Ranking with Trust
terms of execution time needed to find the optimum and Reputation Management. On the Move to
solution, changed when changing the objective function Meaningful Internet Systems: CoopIS, DOA and
and the set of constraints. We also studied the impact of ODBASE, pp: 37-45.
some parameters on the processing time, namely the 7. Sirin, E., B. Parsia and J. Hendler, 2004. Filtering and
number of services, the number of tasks and the matching Selecting Semantic Web Services with Interactive
probability. Finally, we tried to apply a lagrangean Composition Techniques. IEEE Intelligent Systems,
relaxation methodology, to obtain good approximations 19(4): 42-49.
with a reduced processing time. However, we observe 8. Seo, Y.J., H.Y. Jeong and Y.J. Song, 2005. A Study on
how the methodology does not apply to the problem and Web Services Selection Method Based on the
we discussed possible reasons for that. Negotiation through Quality Broker: A MAUT based

As a conclusion, we obtained interesting results, Approach. Proceedings of the first International
which are very good for almost all realistic scenarios. Conference on Embedded Software and Systems,
Indeed, with a number of tasks equal to 100, we could find pp: 65-73.
the optimum assignment in few seconds (or event 9. Skene, J., D.D. Lamanna and W. Emmerich, 2004.
fractions of seconds). While we show how the problem Precise Service Level Agreements. Proceedings of
does not scale in the most general case, this approach 26th International Conference on Software
showed its benefits in all the scenarios needed by real Engineering, pp: 179-188.
applications. 10. Ludwig, H., A. Keller, A. Dan, R.P. King and

ACKNOWLEDGEMENT (WSLA) Language Specification. Document WSLA-

This work was partially supported by the Industrial 11. Casati, F. and M.C. Shan, 2001. Dynamic and
Strategic technology development program (10040142, adaptive composition of e-service. Information
Development of a qualitative customer feedback analysis System, 26(3): 143-163.
and evaluation method for effective performance 12. Benbernou, S., I. Brandic, C. Cappiello, M. Carro,
management in B2C Industry) funded by the Ministry of M. Comuzzi, A. Kertesz, K. Kritikos, M. Parkin and
Knowledge Economy (MKE, Korea). B. Pernici, 2010. Modeling and negotiating service

REFERENCES the Future Internet, pp: 157-208.

1. Zhang, Q., L. Cheng and R. Boutaba, 2010. Cloud 2006. Semantic WS-agreement partner selection.
computing: state-of-the-art and research challenges. Proceedings of the 15th International Conference on
Internet Services and Applications, 1: 7-18. World Wide Web, pp: 697-706.

2. Zeng, L., B. Benatallah, M. Dumas, J. Kalagnanam 14. Cortes, A.R., O.M. Diaz, A.D. Toro and M. Toro,
and Q.Z. Sheng, 2003. Quality driven web services 2005. Improving the automatic procurement of web
composition. Proceedings of the 12 International services using constraint programming. Cooperativeth

Conference on World Wide Web, pp: 411-421. Information Systems, 14(4): 439-468.
3. Plebani, P. and B. Pernici, 2009. URBE: Web Service 15. Kritikos, K. and D. Plexousakis, 2009. Mixed-integer

Retrieval Based on Similarity Evaluation. IEEE programming for QoS-based web service
Transactions on Knowledge and Data Engineering, matchmaking. IEEE Transaction on Service
21(11): 1629-1642. Computing, 2(2): 122-139.

Energy-aware design of service-based applications.

R. Franck, 2003. Web Service Level Agreement

2003/01/28, IBM Corporation, pp: 1-110.

quality. Service research challenges and solutions for

13. Oldham, N., K. Verma, A. Sheth and F. Hakimpour,

World Appl. Sci. J., 28 (4): 463-472, 2013

472

16. Ardagna, D. and B. Pernici, 2007. Adaptive Service 19. Python, 2011. Python Official Web Site.
Composition in Flexible Processes. IEEE Transaction http://www.python.org/. Visited June 2011.
on Software Engineering, 33: 369-384. 20. Papazoglou, M.P., P. Traverso, S. Dustdar and

17. GNU. 2001. GNU Linear Programming Kit Web Site. F. Leymann, 2003. Service-oriented computting.
http://www.gnu.org/software/glpk/. Visited June Communications of the ACM, 46: 25-28.
2011. 21. Geoffrion, A.M., 1974. Lagrangean relaxation for

18. AMPL. 2011. AMPL Official Web Site. integer programming. Approaches to Integer
http://www.ampl.com/. Visited June 2011. Programing, 2: 82-114.

