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Abstract: In this paper, a hybrid method is applied to recover parameters and motion of camera from a set of
silhouettes of an object taken under circular motion. Camera parameters can be obtained by maximizing the total
coherence between all silhouettes. Two optimization methods, the Powell optimizer (PO) and the Genetic
algorithms (GA), are applied to maximize the silhouette coherence and their performances are compared for
several experiments. To take advantage of the strengths of the two methods, we developed a hybrid method
that combines the genetic algorithm and the Powell optimizer to improve the performances in term of
convergence speed and accuracy. The recovered parameters are used for 3D image-based modeling to obtain
high fidelity 3D reconstruction.
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INTRODUCTION These methods would therefore be not applicable to

Acquiring 3D information from images has always correspondences, silhouettes also offer important clues
been a hot research topic in 3D computer vision and for determining both motion and shape. It is especially the
recently, it has attracted more and more interest because case when the object being viewed is composed of non
of its potential applications such as computer games, textured smooth surfaces like pottery and sculptures. For
augmented  reality  and  cultural  heritage   preservation. this kind of object, silhouettes are the most predominant
In 3D computer vision, it is necessary to know the and stable image feature.
relationship between the 3D object coordinates and the Silhouette-based approaches generally exploit
image coordinates. This transformation is determined in epipolar tangents [4, 5], to locate the images of the frontier
the camera calibration step by recovering the camera points for deriving point correspondences between
intrinsic  parameters  and  the  relative  pose  of  the images. Hernandez et al. [6] considered the problem of
camera. recovering both the focal length and the camera motion

Recovering camera parameters and motion from under circular motion from silhouettes. They extended the
image sequences without using any calibration patterns idea of exploiting the epipolar tangents [5] to the concept
can be classified into two approaches: the feature-based of silhouette coherence, which measures how well a set of
and silhouette-based approaches. In the feature-based silhouettes corresponds to the projections of the visual
approach, structure from motion algorithm [1] determines hull. The author performed camera calibration by
the camera parameters and the 3D structure of the object maximizing the silhouette coherence in optimization
simultaneously from the feature correspondences [2, 3]. procedure.

smoothed objects with low texture. In addition to feature
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The Powell optimizer [7] was able to quickly reach the
optimal solution for silhouette coherence maximization.
However, we encountered difficulties in robustness when
the initial guess for parameters are far away from the
optimal solution and when the desired global maximum
was hidden by many local maxima.

Genetic Algorithms (GA) [8, 9], are pseudo-stochastic
search methods that derive their fundamental ideas and
terminology from the Darwinian ‘’Natural selection’’
theory, according to which individuals that are better fit Fig. 1: The geometry of a pinhole camera model
to a given environment are more likely to survive. GA are
problem-independent and can process information Where
generated  at  previous  stages  of  a  search  process.
They comprise concepts such as natural selection, quick
exploration and information collection in a design space. (2)
In contrast to most of classical optimization methods, GA
require no initial guess for parameters and can avoid
being trapped in local optimal solutions as shown in our
previous work [10]. These characteristics make the GA The projection matrix P is a 3×4 matrix defined up to
powerful tools for solving optimization problems. a scalar factor that captures both the extrinsic and

In this paper, two optimization methods, the Powell intrinsic camera parameters. R and T representing the
optimizer (PO) and a Genetic algorithm (GA), are applied rotation and translation between the world coordinate
to maximize the silhouette coherence and their system and the camera coordinate system respectively. K
performances   are   compared  for  several  experiments. is the camera calibration matrix. The parameters fy and fx
To take advantage of the strengths of the two methods, represent the focal lengths measured in pixel units, with
we developed a hybrid method that combines the genetic the aspect ratio defined as r = fy/fx, (u ,v  ) represents the
algorithms (GA) and Powell optimizer (PO) to improve the coordinates of the principal point.
performance of the optimization procedure. In this paper, the aspect ratio is assumed to be one

The remainder of this paper is organized as following: (r=1), the principal point (u ,v ) is considered to be the
in Section 2 we present the circular motion center of the image. The only intrinsic parameter that we
parameterization. In section 3 we present the silhouette consider is the focal length f.
coherence  measure  and  its  practical    implementation.
In section 4 and 5, three optimization methods including Circular Motion Parameterization: Circular motion is a
a  Powell   optimizer,   Genetic  Algorithms  and  our practical setup for image-based modeling. A circular
hybrid GA-PO, are described, applied and compared for motion image sequence can be obtained equivalently in
several tests in term of convergence and accuracy. In two ways. The most common and the one used in our real
section 6 we build 3D models with the recovered image experiments, is the case of a static camera viewing
parameters. an object rotating on a turntable. A second method is that

Circular Motion Parameterization static object. Figure 2 shows the 3D geometry of circular
Camera Model: We consider a pinhole  camera model. motion. The camera matrix P  of the first view can be
The geometry of a pinhole camera model is illustrated in written as: 
Fig. 1. Let M = (x, y, z) be a 3D point in an object frame
and m = (u, v) the corresponding image point in the image (3)
frame. The central projection of a 3D scene point M onto
its 2D image point m can be written with the following where K is the camera calibration matrix, R  and t  are the
linear equation using homogeneous coordinates: rotation and translation that transform the world

(1) view.

0 0

0 0

of a camera rotating around a fixed axis and pointing at a

1

1 1

coordinate system to the camera coordinate of the first
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Fig. 2: circular motion parameterization projecting the original object back into cameras.

After rotating by  about the axis a( , ), the1 silhouettes.a a

camera matrix P  of the second view can be achieved by
post-multiplying [R |t ] with R ( ): For n views, we parameterize the circular motion with1 1 a

(4) direction angle , the rotation axis coordinates ( , ),

Suppose that the circular motion image sequence consists recover the projection matrices P  of a set of silhouettes S
of n views and the camera matrices for each view is of an object taken under circular motion as the set of n+3
denoted by P i=1,…,n, from (2) and (3) we have parameters:i

(5)

where  denotes the rotation angle between the i   and Silhouette Coherence: Given a set of silhouettes S , i =i
th

the first view, the rotation matrix R ( ) is written as a 1,…,n of a same 3D object taken from different points ofa i

function of  and the axis a( , ) as follow: view and the corresponding set of camera projectioni a a

(6) the other silhouettes S  that contributed to the

the rotation axis a is written in function of spherical original silhouette S   are  exactly  the  same  (S  = S ).
coordinates ( , ): Two examples of coherent and non-coherent silhouettesa a

the translation is written in function of an angle  (the coherence between silhouettes, some kind of similarityt

angle formed between the camera viewing direction and measurement between the original silhouette S  and the
the z-axis see Fig. 2) as follow: reconstructed visual hull silhouettes S  is needed.

ratio of the silhouette contour lengths:

Fig. 3: Visual Hull reconstruction from a set of
silhouettes. Left: silhouettes obtained by

Right: the reconstructed visual hull using these

n+3 parameters: the focal length f, the translation
t a a

the n-1 camera angle steps . In this paper, our goal is toi

i i

i

matrices P . Let Vh denote the reconstructed visual hulli
1

using the set of silhouettes S  and S  denote thei i
v

reconstructed visual hull silhouettes. We would like to
evaluate the coherence between the silhouette S  and alli

j?i

reconstructed visual hull Vh.
We  assume that the silhouettes segmentation and

the projection matrices are exact. We say that the
silhouette  S   is  coherent  with  all the other silhouettesi

S  if the reconstructed visual hull silhouettes S  and thej?i i
v

i i i
v

are shown in Fig.4 and Fig. 5.

Measure of Silhouette Coherence: To evaluate the

i
v
i

Hernandez [6] defines this measure of coherence as the
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Fig. 4: Two examples of different silhouette coherence. parameters. At the end of each iteration the method
(a)  Perfect coherent silhouette. (b) Low silhouette replaces one of the original directions with the line joining
coherence the starting and ending points. A special care is taken to

Fig. 5: The original silhouettes Si superposed with the
visual hull Silhouettes Svi. The red region Genetic Algorithms (GA): When solving an optimization
indicates non coherent silhouette pixels. problem using GA, each solution is usually coded as an

(7) A     collection  of  N  individuals  is  called  population.

where  denote the contour of the original silhouette Si same size is generated from the current population byi

and  the contour of the reconstructed visual hull applying operators, termed selection, crossover andv
i

silhouette S . mutation [16], that mimic the corresponding processes ofv
i

To compute the total coherence between all the natural selection. Following nature’s example the
silhouettes, we compute the mean coherence of each probability p  of applying the mutation operator is very
silhouette with the (n-1) other silhouette [6]. low compared to the probability of applying the crossover

(8) To improve the search process of the global

If the silhouettes segmentation and the projection The aim of the elitist strategy is to carry the best
matrices are exact then: chromosome from the previous generation into the next.

(9)

Optimization Routines: In order to exploit silhouette population pop  in a separate location.
coherence for recovering camera parameters and motion
under circular motion, the idea is to use the silhouette Step 2: Perform selection, crossover and mutation
coherence measure C  as the cost in an optimization operations to obtain a new population pop .SC

procedure. In this section, three optimization methods,
including a Powell optimizer, Genetic Algorithms and a
hybrid GA-PO, are applied to maximize C  (Eq. 7) andSC

compared for several tests.

Powell Optimizer (PO): The first optimization method
used here is the Powell direction set method. The Powell
optimizer applied in this paper is the version described in
[12, 13] in which starting points and a set of independent
search directions are provided to the program. In each
iteration the method serially performs a sequence of line
minimizations along the various directions in the space of

ensure that the directions remain linearly independent.
This version of the Powell optimizer is applied to the
Silhouette coherence maximization problem. Although
there are many other implementations of the PO such as
described in [14, 15], the current work does not intend to
include a comparative study of the merits of each of these
implementations.

alphabet  string  of  finite  l ength called chromosome.
Each string or chromosome is considered as an individual.

GA start with a randomly generated population of size N,
in each iteration of the algorithm, a new population of the

m

operator p .c

optimum, an additional operator, elitism, was implemented.

We have implemented this strategy in the following way:

Step 1: Copy the best individual ind  of the initial0

0

1



World Appl. Sci. J., 28 (4): 554-561, 2013

558

Fig. 6: Encoding of camera parameters as chromosome
string

Step 3: Compare the worst individual ind  in p  with ind1 1 0

in terms of their fitness values. If ind  is found to be1

worse than ind , then replace ind  by ind . Fig. 7: Some views of synthetic Teapot sequence with0 1 0

Step 4: Find the best individual ind  in pop  and replace absolute camera angles2 1

ind  by ind .0 2

Note that an individual ind  is said to be better than responsible to provide good initial values of camera1

another individual ind if the fitness value of ind is less parameters, while the Powell optimizer is responsible for2 2

that of ind , since the problem under consideration is a the quality of parameters estimation. The advantage of1

maximization problem. this hybridization is not only reduces the search space
To adapt the GA to the camera parameters estimation greatly, but also avoids premature convergence of Genetic

problem, the real-valued Coding GA is utilized. The C  of Algorithm to some extent.SC

the chosen Silhouettes is taken to be the objective
function. The camera parameters are encoded as a Experimental Results: In order to test the performance of
chromosome  string  of  n+3  genes as shown in Fig. 6. our hybrid method, several parameters of the GA
The alleles of each gene are constrained to a bound of operators need to be determined. As recommended in [9]
values to ensure only feasible solution are adopted for the crossover probability p  was set to 0.6 and the
evolution. mutation probability p  was set to the inverse of the

There exists no criterion in the literature [17], which population size N. The determination of the population
ensures the convergence of GA to an optimal solution. size N depends on the number of parameters to optimize.
But usually, two stopping criteria are used in Genetic For a simple case (3 parameters), such as the estimation of
Algorithms: In the first, the process is executed for a fixed focal length f and rotation axis coordinates ( , ), a
number of iterations and the best individual obtained is population with N=50 is sufficient. However, for full
taken to be the optimal one. In the second, the algorithm motion estimation (n+3 parameters) a small population size
is terminated if no improvement in the fitness value of the can drive the GA to converge to a local maximum. To
best individual for a fixed number of iterations and the facilitate the implementation of our algorithm, we have
best chromosome is taken to be the optimal one. We have used the GAlib version 2.4 developed by MIT.
adopted the second stopping criteria with elitist strategy
[18]. Comparison between PO and GA: In this experiment, we

Hybrid Approach GA-PO: Although GA can quickly silhouettes shown in Fig. 7. We conducted systematic
locate the region in which the optimal solution exists, it comparisons between the PO described in [8] and of the
takes a relatively long time to converge to the optimal GA to estimate the focal length f and the rotation axis
solution [10]. On the other hand, the Powell optimizer is coordinates ( , ). We found that in this case the PO
known for its fast convergence speed but the correctness performs better than the GA, as shown by comparison of
of solution is very dependent on the quality of the initial the convergence histories in Fig. 8. Both the PO and the
guess. Therefore, we exploited in the C  maximization basic GA converge correctly to the optimal solution.SC

problem the benefit of combining the Powell Optimizer However, the PO converges to the optimal solution more
(PO) and the GA. The proposed hybrid method consists rapidly than the GA.
of two steps. We start the search for good initial In the second test we have increased the complexity
parameter values using GA followed by the refining of the optimization problem, we have taken 9 views
process using PO in order to get more accurate solution. spaced  of  20  degrees  and  we  have  computed  the  full

their corresponding exact silhouettes and their

In our Hybrid method, the Genetic Algorithm is

c

m

a a

have used a synthetic Teapot sequence of 18 exact

a a
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Fig. 8: Comparison of the convergence histories of PO Fig. 10: Same images of Hannover dinosaur sequence.
and GA for focal length and rotation axis From top to bottom: color images, binarized
estimation silhouettes and contours extracted from

Fig. 9: Comparison of the convergence histories of
Powell and GA for full motion estimation

circular motion (translation direction  and rotation axist

coordinates ( , ), camera angles ) by keeping thea a i

focal length to its calibrated value. Fig 9 shows the
convergence histories for the basic GA and the PO for
this case. As shown in Fig 9 the GA converges correctly
to the optimal solution while PO has been trapped in local
optimal solution due to bad initialization of starting
points. It is important to note that there are different
implementations of the PO. Although the version applied
in this paper fails to find the global maximum, there may be
other versions of the PO that can improve the result.
Though, seeking the best version of the Powell optimizer
is not the intent of this paper.

silhouettes

Table 1: camera parameter estimated by ga and the proposed hybrid method
Rotation
--------------------- Translation Focal leght

Parameters a a at f
Ground Truth 92.663 2.261 2.735 3217
Lower range -180 -90 -5 3000
Upper range 180 90 5 3400
Recovered by GA 92.405 2.272 2.774 3232
Recovered by Hybrid 92.658 2.257 2.743 3246

Comparison between the GA and Hybrid GA-PO: To
demonstrate the advantage of the hybrid method over the
previous one (basic GA), we applied it to recover camera
parameters and motion from real silhouettes. In this
experiment, we have used the Hannover dinosaur
sequence  shown  in  Fig  10.  The  dinosaur    sequence
(36 images) is binarized by a segmentation algorithm and
then the contours are extracted from silhouettes using a
GVF snake [19].

Table 1 gives the ranges of values for each parameter
that we set for this experiment and the estimation of the
rotation axis coordinates ( , ), the translation directiona a

 and the focal length f by the GA and the Hybridt

method. The results are good for both methods. The
Hybrid method outperforms the basic GA when
computing the rotation axis and the translation direction.
The comparison of convergence histories between the
both methods is shown in Fig. 11. It is seen that strong
improvement is obtained when the PO is launched after 50
generations (1000 function calls). The hybrid method
maximizes the C  faster than the basic GA. SC
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Fig. 11: Comparison of the convergence histories of GA and our hybrid method

Fig. 12: Octree generation: the dinosaur octree is carved from a single bounding box given 36 images. From left to right:
bounding box, level 3, 5, 6 and 7 of subdivision

Fig. 13: Dinosaur model: marching cubes meshing and Once the octree is constructed, the next step is to
decimation steps. mesh it. Marching cubes algorithm [21] provides an initial

D Model Recostruction: The 3D object surface is decimation algorithm. Examples are shown in Fig. 13.
determined by an octree based algorithm: We dispose of
a set of 36 silhouettes (dinosaur sequence in Fig. 10) and CONCLUSION
their corresponding projection matrices Pi recovered by
our hybrid GA-PO method. The algorithm needs two In this paper we developed a hybrid method GA-PO
additional input data: the level of detail (the size of the that combines the genetic algorithms and the Powell
voxel) and an initial bounding box. Starting from the optimizer to maximize the silhouette coherence between a

bounding box, the octree approach subdivides a cube into
8 children whenever it is on the isosurface and iterates the
process recursively until the maximum level of depth is
attained. To evaluate a given cube, we project it into all
the silhouettes to assign it one of the 3 labels [20]
depending on whether it lies entirely inside (in), entirely
outside (out), or partially intersects the silhouette (on). If
the cube is on and the maximum depth is not still reached,
we subdivide it and recursively test its children. At the
end, only the cubes that are on surface have been
subdivided. We can see the result of this step for different
levels of resolution in Fig. 12.

consistent surface which is then smoothed using a
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set of silhouettes in circular motion. The Comparison 9. Goldberg, D.E., 1989.  Genetic Algorithms in Search,
between the GA and the PO shows that both methods Optimization & Machine Learning (Addison-Wesley,
converged correctly to the optimal solution. However, the Reading, MA, 1989).
GA was slower than the PO. Important improvements ware 10. Mouafi, A., R. Benslimane and A. El-Ouaazizi, 2013.
obtained with the hybrid method in term of convergence A Genetic Algorithm for Recovering Camera
speed and parameters accuracy. The hybrid method can Parameters and Motion from Silhouettes.
correctly find the optimal parameters without the need of Telecommunications (ICT), 20th International
initial values and successfully avoid to be trapped in local Conference on, 6-8 May 2013.
maxima. These characteristics will make the silhouette 11. Matusik, W., C. Buehler, R. Raskar, S. Gortler and L.
coherence concept more efficient and powerful to work in McMillan, 2000. Image-based visual hulls.
general motion instead of circular motion. SIGGRAPH, pp: 369-374.
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