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Discrete-Time Sliding Mode Control of a Class of Saturated Systems

Zaafouri Chaker, Sellami Anis and Germain Garcia1 1 2

Research Unit c3s ESSTT, University of Tunis, Tunisia1

LAAS-CNRS, Toulouse, France2

Abstract: This paper presents a design methodology of sliding mode control of a class of discrete-time linear
saturated systems. The constraint of saturation is reported on the control vector. Firstly, we present the
structure of saturation and the new formulation of the saturated state system. Secondly, we propose a method
for sliding surface selection. This latter is formulate as a problem of root clustering, which leads to the
development of a discrete and non-linear control law that ensures the reaching condition of the sliding mode.
Finally we present a numerical application to validate the theoretical concepts.
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INTRODUCTION Research in discrete-time sliding mode control has

The variable structure control has  received techniques are available [6-7]. However, there is a lack of
increasing attention because of its inherent insensitivity design approaches that consider the saturated systems.
to disturbances and parametric  variations  and ease of The problem of saturation remains one of the obstacles to
use for a quick and accurate response [1-3]. Design provide properties of guarantee on the stability of
approaches for continuous-time control systems in sliding systems. Nevertheless with the fast evolution of industrial
mode are already well established [4]. technology, especially in the actuators, it is necessary to

Most industrial processes operate in the areas envisage methods of resolution for this problem.
delineated by many physical and technological Used in early days, let, quote of these methods, the
constraints       (saturation,              limit       switches...). anti-windup design [8-9] and many other methods which
The implementation of the control law designed without introduce conditions on systems containing saturation
considering these limitations can have dire consequences functions [10-11].
for the system. Nerveless, the performance of these approaches in

The recent development of the concept of sliding term of robustness is less effective than sliding mode
mode  control  (SMC) of saturated systems has led to ones. In fact, the latters are a very significant transitory
linear continuous systems for constructing a robust mode for the Variable Structure Control  (VSC)  [12-14].
controller which satisfies the constraints imposed on the The main robustness advantage of VSC was mainly done
control [5]. by Soviet control scientists. In recent years, we find more

However, in the recent years with the rapid research and many successful applications [15-19].
development of computer technologies and DSP chips, it In this work we propose a new design methodology
is imperative to realize a digital system controller by of discrete-time sliding mode control for a class of linear
computer. Therefore, it is more significant to extend the saturated systems. Then, we extend the classical SMC
design method of sliding mode control in continuous method of continuous systems to discrete-time saturated
systems into the discrete-time control system. A primary systems. The sliding surface design is formulated as an
reason is that most control strategies nowadays are LMI discrete-time root clustering problem of an order
implemented in discrete-time. reduced system.

been intensified in recent years; and many interesting
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Fig. 1: The Structure of the saturation constraint The sliding mode condition can be represented by

This paper is  organized  as  follows:    in  first
section, we give the form of the saturation structure (5)
reported on the control vector. Then, in the second
section,   we    present     a    design     procedure of k  represent the instant when the sliding mode is reached.
robust  saturated  discrete-time-sliding  mode control. With i=1, 2, …
This controller development procedure contains  the Also, we have:
classical   steps   of   sliding  mode  design.  The first one
is  to  build  an  optimal  sliding surface using the Gx(k + 1) = Gx(k) = 0 (6)
technique of pole placement in LMI region and the
second one is to choose a control law to enforce the G: matrix which defines the sliding surface.
system behavior to reach and stay in the desired sliding It can be written as:
surface. Finally, we apply the proposed approach to a
numerical example. (7)

System Description and Preliminaries: Let us consider If (G )  exists, Then
that the structure of the saturation constraint is described
by Figure 1: (8)

Assumption: The control vector is subjected to constant With
limitations in amplitude. It's defined by:

(1) The dynamics ,

For 0 <  < 1 such as sat(u(k)) = u(k), the term of
saturation sat(u(k)) and  are given by, [20].

(2)

With

(3)

The saturated system can be written as:

x(k + 1) = x(k) + u(k)
(4)

Assumption: The pair ( , ) is controllable,  has full rank
m and n > m.

the following equation:

g

1

(9)

describes the motion on the sliding surface which
depends only on the choice of the matrix G.

To determine the matrix G of the sliding surface, we
made the call to the principle of pole placement in LMI
region in the complex plane.

Design of the Sliding Surface: In this section, we will
prove the existence of the sliding mode. Indeed the
canonical form used by for VSC design can be extended
to saturated systems to select the gain matrix G.
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Assumption: There exists an (nxn) orthogonal G = [F 1 ]T (17)

transformation matrix T suchthat y(k +1) =Tx(k +1) and

where  has full rank m and  is (m x m) and non-singular.2

The transformed state equation

(10) the poles in a defined area [21], called area LMI. For that,

Such as , with , can

be rewritten as:

(11)

Since the sliding condition is Gx(k) = GT  y(k) = 0, with:T

(12)

We can obtain the new defining sliding condition:

(13)

By assumption G  is non-singular then G  must be2

non-singular.
The sliding mode condition becomes:

(14)

With , F being an [m x (n-m)] matrix.

The reduced system is (n-m) order. y  becomes a state2

feedback control. The sliding mode is then governed by:

(15)

The closed loop system will have the dynamics:

(16)

This indicates that the design of a stable sliding
mode requires  the  selection  of  a  matrix  F such that
(  – F) has (n-m) eigenvalues in the unit circle.11 12

If the stabilizing matrix F has been determined, G is
given by:

m

Determination  of   the  Gain  of  the  Reduced  System:
To determine the matrix G defining the sliding surface and
the gain F, the method of the LMI seems to us very
effective. Indeed to improve the performances of the
control law and the response of system, we select to place

we propose to choose all the eigenvalues of the matrix
(  – F) in an area defined by a disc of center q and11 12

ray r in the unit circle.
Poles must be placed in a circle with center on the

positive real axis in order to obtain a reasonably damped
response (damping ratio  < 1), [22].

The system (  – F) is asymptotically stable11 12

such as:
The eigenvalues of system (  – F) are all in11 12

area  circle of center (q, 0) and of ray r of the complex
plan so if Q > 0:

(18)

With L: optimal gain given by the solution of LMIs.
Then the gain is given by F = LQ

Saturated Control Law Design: To reach the sliding
surface  and  ensures  that trajectories are directed
towards the switching surface from any point in the state
space, we select a saturated feedback nonlinear control
function u = u  + u , where u  and u  are the linear andL N L N

nonlinear control law parts. The general form is the
following

(19)

Where K and  are appropriate matrix.
To determine the sliding mode control with state

feedback, we proceed in the following way [23]:

(20)

With  > 0, q > 0 and 1 – qT > 0

Theorem 1: If the reaching law in Eq (19) is respected
and at any |s(k)|< T/1–qT, then |s(k + 1)|<|s(k)|, [23].
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Remark 1: If the reaching law in Eq (19) is respected in
the design of a suitable control law, the reachability
condition of |s(k + 1)|<|s(k)| can be satisfied under the
condition that |s(k)|< T/1–qT.

Remark 2: |s(k)|< T/1–qT Define a switching boundary
in which the state trajectory will cross the ideal
switching surface s(k)=0 at the next sampling instance.

Referring to the control law defined [23]: for
unsaturated systems, we developed a control law for
saturated systems, by integrating the term of saturation
this integration is given by the following equation:

(21)

The resolution in u(k) gives the control law expressed Fig. 2: Two degree of freedom vibrating system with one
by: actuator

Simulation is achieved under the following condition:

(22)

By identification one obtains:

The discrete-time model is given as follows:
(23)

And

(24)

Numerical Application: In this study, a quarter-vehicle
MR suspension system is established to evaluate the
control performance of the manufactured MR damper.
Fig. 2 shows the quarter-vehicle model of the semi-active
MR suspension system, which has two degrees of
freedom. Here, m  and m  represent the sprung mass and1 2

unsprung mass respectively. The spring for the
suspension is assumed to be linear and the tire is also
modeled as linear spring component and MR damper.
Now, by considering  the  dynamic  relationship,  the
state-space control model is expressed for the quarter-
vehicle MR suspension system as follows.

The initial condition is given by x  = [0   0  0   1]'0

With

In this section we have the results of simulations with
a sampling period T=0.3, one obtains:

After 3 iterations, the algorithm gives the stabilizing
gain F of the reduced discrete-time system:

F= [-3.5497 3.1844 -7.2307]

The Figure 3 represents the poles of the reduced
discrete-time system in an area defined by (q,r) in the
complex plan. Indeed, this area offers mainly a minimal
damping of the poles and an absolute degree of stability
minimum:

The matrix G which definite the sliding surface is
given by:
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Fig. 3: Poles of the reduced discrete system Simulations enable us to obtain the results given in

Fig. 4: Evolution of switching surface

Fig. 5: Evolution of the control law

The following results are obtained: mode control of DC-to-DC power converters via

and Systems, Fundamental Theory and Applications,

Fig. 6: Evolution of state variables

Figure 4, Figure 5 and Figure 6 which presents,
respectively, the evolution of the switching surface,
control input and state variables ( : system without
saturation, : system with saturation constraint).
These figures show a typical stable sliding mode
convergence of the system in the two cases. However,
that the introduction of saturation level of the control law
is slightly degrade system performance. As consequence,
the state variables dynamics of the saturated system have
a more slowly transient mode than that of the system
without saturation. The control is saturated and always
inferior to its maximal value and able to reach S in a small
time.

CONCLUSION

In this paper, we presented a new design approach
for discrete-time sliding mode of a class of linear time
invariant saturated system. The control input is saturated
and is being of constant limitations in amplitude. In the
first step, we have exposed the design of the stable
sliding surface by solving linear matrix inequalities by
means of the LMI. In the second step, a non-linear control
schema is introduced, which drives and maintain system
state trajectories in to a switch band in limit time.
Numerical simulations have been presented showing the
applicability, the efficiency and the robustness of the
proposed method.
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