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Abstract: In classical Bühlmann credibility models, observations are made of a group of risks selected 
from a population and claims are assumed to be independent between different risks. Further, for each 
individual, past claims have the same mean and variance and are independent and identically distributed 
conditional on the risk parameter. However, there are situations in practical applications that these
assumptions may be violated including the possibility of relationship among the risks and conditional
dependence over time. Thus, this warrants a more appropriate approach to handle such situations. In this 
paper, we extend the Bühlmann and Bühlmann-Straub credibility models to account for not only a certain 
uniform conditional dependence for claim amounts for each individual risk, but also a special type of 
dependence between risks induced by common effects. We further give illustrative examples to show the 
influence of the error uniform dependence when these common effects have Normal distributions.
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INTRODUCTION

In insurance practice, a common object is to
determine insurance premium and its use in credibility
theory. Under credibility techniques, one can calculate 
the  future  premiums  for  a  risk  or  group  of  risks 
based on past experience. In insurance premium
determination, it is a familiar practice to group
individual risks in order to ensure homogeneity in 
reaching a fair and equitable premium across the
individuals. Thus the risks within each group are
presented as homogeneous as possible in terms of
certain observable risk characteristics as well as
underwriting characteristics. However, it is also known 
that not all risks in the group are truly homogeneous. 
Some unobservable factors always affect possible
presence of heterogeneity among the individuals. 

A collective premium, also known as the "manual 
premium", is then calculated and charged for the group. 
The collective premium is designed to reflect the
expected experience of the entire rating class and
implicitly provided that the risks are homogeneous.
Based on the experience and the collective premium, 
the credibility theory determines the credibility
premium by the following credibility form:

  Credibility premium= Z×(experience)+(1-Z)
                                        ×(collective premium) (1)

where Z, value between 0 and 1, is the "credibility 
factor" and needs to be chosen. There are many 
suggested formulas for Z in the actuarial literature and 
they are usually justified on intuitive rather than
theoretical grounds. Note that there are two possibilities 
for data: In the first possibility, the group's collective 
experience might be large enough so that the law of 
large numbers is applicable and therefore ignores the 
existence of heterogeneity. In the second, however, the 
individual's own experience may contain useful
information about the risk characteristics of the
individual but may not be subject to random fluctuation 
due to lack of volume. The credibility models therefore 
are able to lead an evidently attractive formula by 
allowing for larger credibility for longer number of
years of individual experience. If the body of observed
data is large and not likely to vary much from one 
period to another or if there is a high degree of
heterogeneity in the overall experience then Z,
credibility factor, will be closer to one. If the
observation consists of limited data such that individual
risk  experience  is lacking or unreliable or possibly  the
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population is fairly homogeneous with respect to the 
individual risk experience, then Z is closer to zero.

The credibility theory was introduced by Mowbray 
[1] where he attempted to derive credibility formula on 
purely classical statistics arguments by using
confidence   bounds   to   arrive   at  "full  credibility"
(i.e. giving weight 1 to the individual estimate).
Similarly, Whitney [2] suggested using a weighted
average between the individual and the collective
experience. The world of Bailey [3] might be the first 
actuarial world science that recognizes the general
Bayesian structure. However, an excellent introduction 
to credibility theory can be found, e.g., in [4-8].

Bühlmann [9] and in the sequel Bühlmann and 
Straub   [10]  established  the  theoretical  foundation
of modern credibility theory which presented a
distribution  free  credibility  estimation. The method 
was extended in Hachemeister [11] regression model, 
where the credibility premium depends linearly on a 
number of risk characteristics ([12] for time series
regression models with multicollinearity). Jewell,
Taylor and Norberg presented hierarchical models
assuming  that  the  obtainable  portfolio  can  be  split 
into  sub-portfolios  (sectors) and each of these sectors 
contains individual contracts [13-15]. Klugman [16]
gave an introduction to the use of Bayesian methods 
covering  some  particular  aspects  of  credibility 
theory. The papers by Gerber and Jones [17] and Frees 
et al. [18] discussed credibility models with time
dependence of claims. Purcaru and Denuit [19, 20]
provided  a  kind  of  dependence  induced by
introducing the common latent variables in the annual 
numbers of claims reported by several policyholders.
Recently, Yeo and Valdez [21] addressed two-level
common  effects  by  using  a simultaneous dependence 
of  claims  across  individuals  for  a  fixed time period 
and across time periods for a fixed individual. They 
investigated the corresponding credibility premiums 
under normally distributed claim amounts. Wen et al.
extended the Bühlmann and Bühlmann-Straub
credibility models to account for a special type of
dependence between risks induced by common
stochastic effects. They built the Bühlmann credibility
model with uniform dependence and derived the
corresponding  credibility  estimators  and  the  model 
was extended to Bühlmann-Straub credibility in which 
the natural weights among contracts were introduced 
[22, 23].

In  the  present  paper, we extend the Bühlmann 
and  Bühlmann-Straub  credibility  models  to account 
for not only a certain uniform conditional dependence 
for claim amounts each individual risk, but also a
special type of dependence between risks induced by 
common effects.

PRELIMINARIES

The purpose of this paper is to study the two level 
common effects model of dependence with error
uniform dependence. The model structure with two 
level common effects of claim dependence is explained 
as follows.

Consider a portfolio of insurance contracts
consisting of K insured individuals and suppose that 
each individual has available a history of a total of n
time periods. Denote by Xij, the claim amount for
individual i during period j. To simplify our exposition, 
the same time periods will be applied to all individuals. 
Let Xi=(Xi,1, Xi,2,..., Xi,T)', i=1,2,...,K.

The model of dependence being proposed in this 
section will allow for both the dependence among the 
individual risks as well as the dependence of experience 
for a particular individual risk over time. The risk
quality of an individual i is characterized by a risk 
parameter Ti and the common effect is represented by a 
random variable Λ. Formally, the assumptions of the 
model are stated as below which are similar to the
assumptions in [23].

A1. The common effect random variable Λ has known 
expectation E(Λ)] = µλ and variance 2Var( ) λΛ = σ .

A2. Given Λ, the random vectors (Xi, Θi), i=1,2,...,K,
are mutually independent and identically
distributed.

A3. For fixed contract i, given Λ, the claims Xi,1,
Xi,2,..., Xi,n, … are characterized by a risk parameter 
Ti and Ti itself is random variable with structure 
distribution p(θi).

A4. For fixed contract i, given Λ and Ti, the Xij follows
the  linear  model:  Xij = µ(Xi, Θi)+εij  and  the 
errors   are  conditionally  uniformly  dependent, 
ie, corr(εij, εim) = ρ, j≠m and ρ<1, where "corr"
indicates correlation coefficient. We also assume 
that E(εij | Θi, Λ) = 0 and 2

ij i 1 iVar( | , ) ( , )ε Θ Λ = σ Θ Λ .

We introduce the following notations for future use 
(which are similar to the notations in [22]):

i 1E[ ( , ) | ] ( )µ Θ Λ Λ = µ Λ
2

i 2Var[ ( , ) | ] ( )µ Θ Λ Λ = σ Λ
2 2
2 2E[ ( )]σ Λ = σ

1Var[ ( )] aµ Λ =

1E[ ( )]µ Λ = µ
2 2
x i 1E[ ( , )] ( )σ Θ Λ = σ Λ
2 2
x 1E[ ( )]σ Λ = σ

2
ip iq i 1 iCov(X ,X | , ) ( , )Θ Λ =ρσ Θ Λ

2
ip iq i 1E[Cov(X ,X | , )]Θ Λ =ρσ (2)
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The following lemma gives some simple but
fundamental features of the dependence structure just 
specified. The lemma in the case of two-level common 
effects was proved in [22].

Lemma 1: Under assumptions A1 to A4 and the
notation (2), we have

(i) The means of Xi are given by

                  E[Xi] = µ11n, i = 1, 2, …, K (3)

where 1n is an n-vector with 1 in all of the n entries.

(ii) The covariance of X is given by 

' '
XX K 1 n 2 n n 1 nK nKCov(X) I [SI S 1 1 ] a 1 1

∆
Σ = = ⊗ + + (4)

where
∆

=  means "defined by", ⊗ indicates the
Kronecker product of matrices, 2

1 1S (1 )= − ρ σ  and
2 2

2 1 2S =ρσ + σ .

(iii) The covariance between X and µ(Θi, Λ) is given by

i

2 ' ' '
( , ),X i 2 i 1 K nCov( ( , ),X) ( e a 1 ) 1

∆

µ Θ ΛΣ = µ Θ Λ = σ + ⊗ (5)

where ei is a vector with 1 in the ith entry and 0 in the 
other entries.

(iv) The inverse of the variance matrix of X is given by

1 '2
XX K n n n

1 1 2

'1
n K n K

1 2 1 2 1

1 SI I 1 1
S S nS

a
1 1

(S nS )(S nS n K a )

−  
Σ = ⊗ − 

+ 

−
+ + +

(6)

Proof: (i) (3) is straightforward.

(ii) It follows from assumption A4 that

' '
1 2 K nE(X| , ) [ ( , ), ( , ),..., ( , )] 1Θ Λ = µ Θ Λ µ Θ Λ µ Θ Λ ⊗ (7)

and

2 ' 2
1 n n 1 n

2 ' 2
K n n K n

Cov(X| , ) diag{[ ( , )]11 (1 ) ( , )I ,...,

[ ( , )]11 (1 ) ( , )I }

Θ Λ = ρσ Θ Λ + − ρ σ Θ Λ

ρσ Θ Λ + − ρ σ Θ Λ
(8)

where diag[…] is a (block) diagonal matrix with the 
elements in the bracket down the diagonal. Using the 
notation (2) and (8) implies that

2 ' 2 2 '
1 n n 1 n 1 n n

2 2 ' 2
1 n 1 K n n 1 nK

E[Cov(X| , )] diag{ 1 1 (1 ) I ,..., 1 1

(1 ) I } I 1 1 (1 ) I

Θ Λ = ρσ + − ρ σ ρσ

+ − ρ σ =ρσ ⊗ + − ρ σ
(9)

On the other hand, in view of (7) and the
conditional independence among Ti

’s given Λ, the
covariance matrix of E(X | Θi, Λ) can be computed as

'
1 2 K nCov[E(X| , )] E{Cov[( ( , ), ( , ),..., ( , )) 1 | ]}Θ Λ = µ Θ Λ µ Θ Λ µ Θ Λ ⊗ Λ

'
1 2 K nCov{E[( ( , ), ( , ),..., ( , )) 1 | ]}+ µ Θ Λ µ Θ Λ µ Θ Λ ⊗ Λ

2 ' 2 ' '
2 K n n 1 nK 2 K n n 1 nK nKE[ ( ) | ]I 1 1 Cov[ ( )1 ] I 1 1 a 1 1= ο Λ Λ ⊗ + µ Λ = σ ⊗ + (10)

Therefore,

XX
' '

K 1 n 2 n n 1 nK nK

E[Cov(X| , )] Cov[E(X| , )]

I [S I S 1 1 ] a 1 1

= Θ Λ + Θ Λ

= ⊗ + +
∑

(iii) We know that iCov[ ( , ),X| , ] 0.µ Θ Λ Θ Λ =  Thus,

i( , ),X i

i

E[Cov( ( , ) ,X| , )]

Cov[E( ( , ) | , ),E(X| , )]
µ Θ ΛΣ = µ Θ Λ Θ Λ

+ µ Θ Λ Θ Λ Θ Λ

1 2
i n

K

E[ ( , | ],E[ ( , | ],...,
Cov ( , | ), 1

E[ ( , | ]
 µ Θ Λ Λ µ Θ Λ Λ  = µ Θ Λ Λ ⊗  µ Θ Λ Λ   

2 ' '
2 i n 1 1 nK
2 ' ' ' 2 ' ' '
2 i n 1 nK 2 i 1 K n

e 1 Cov[ ( ), ( )1 ]
e 1 a 1 ( e a 1 ) 1

= σ + µ Λ µ Λ
= σ ⊗ + = σ + ⊗

(iv) Using the following formula for matrix inverse
[24].

1 1 1 1 1 1 1(A BCD) A A B(C DA B) DA− − − − − − −+ = − + (11)

we can check that

'
' 1 2 n n

K 1 n 2 n n K n
1 1 2

1 S 1 1
[I (SI S 1 1 ) ] I (I )

S S nS
−⊗ + = ⊗ −

+

and then
' 1

1 n 2 n n n n
1 2

1
(SI S 1 1 ) 1 1

S nS
−+ =

+

Note that 1nk = 1k⊗1n. Finally, using (11) it follows that

1 ' ' 1
XX K 1 n 2 n n 1 n K n K[I ( S I S 1 1 ) a 1 1 ]− −Σ = ⊗ + +

' 1 ' ' 1
' 1 K 1 n 2 n n nK nK K 1 n 2 n n

K 1 n 2 n n
' ' 1
nK K 1 n 2 n n nK

1

[I (SI S 1 1 ) ] 1 1 [I (SI S 1 1 ) ][I (SI S 1 1 ) ] 1 1 [I (SI S 1 1 ) ] 1
a

− −
−

−

⊗ + ⊗ += ⊗ + −
+ ⊗ +

2 '
nK nK'

2 n n 1 2
K n

'1 1 2
nK nK

1 1 2

1
( ) 1 1

1 S 1 1 S nSI (I )
1 1S S nS 1 1
a S nS

+= ⊗ − −
+ +

+

'
'2 n n 1

K n n K n K
1 1 2 1 2 1 2 1

1 S 1 1 aI (I ) 1 1
S S nS (S nS )(S nS nKa )

= ⊗ − −
+ + + +
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Thus the lemma is proved. 
Now, we present the following lemma on

projections of random variables for later use. The
lemma has been proved in [22].

Lemma 2: Let ' ' '
1 p 1 q(X ,Y )× ×  be a random vector with 

expectation ' '
X Y( , )µ µ  and covariance matrix XX XY

YX YY

Σ Σ 
 Σ Σ 

.

Then, Y can be optimally predicted in the class of
inhomogeneous linear functions of X by

1
Y YX XX Xproj(Y|X,1) (X )−= µ + Σ Σ − µ (12)

where  proj  (Y|X,1) represents the projection of Y on 
the linear space spanned by X, ΣYX is the covariance 
matrix of Y and X and ΣXX indicates the covariance 
matrix of X.

BÜHLMANN MODEL WITH
COMMON EFFECTS

We now proceed to calculate a premium for the 
future claim, denoting by µ(Θi, Λ), i = 1, 2, …, K, with

error uniform dependence in Bühlmann model with
dependence induced by common effects.

Theorem 1: Under assumptions A1 to A4 and the
notations in previous section, the optimal credibility 
estimator of µ(Θi, Λ), i = 1, 2, …, K, is given by

i 1 i 2 1 2 1ˆ ( , ) z X z X (1 z z )µ Θ Λ = + + − − µ (13)
where

n

i ij
j 1

1X X ,
n =

= ∑
K

i
i 1

1X X ,
K =

= ∑

2
2

1
1 2

nz
S nS

σ=
+

,
2

1 1 2 2
2

1 2 1 2 1

nKa (S nS n )z
(S nS )(S nS nKa )

+ + σ=
+ + +

,

2
1 1S (1 )= − ρ σ  and 2 2

2 1 2S =ρσ + σ

Proof: On using Lemma 2, 

i iˆ( , ) proj( ( , )|X,1)µ Θ Λ = µ Θ Λ

Thus we need to get the following term by using 
Lemma 1.

i

1 2 ' ' '
( , ),X XX 2 i 1 K n[( e a 1 ) 1 ]−

µ Θ ΛΣ Σ = σ + ⊗
'

'2 n n 1
K n nK nK

1 1 2 1 2 1 2 1

1 S 1 1 a
I (I ) 1 1

S S nS (S nS )(S nS nKa )
 

× ⊗ − − + + + + 

'
2 ' ' ' 2 n n
2 i 1 K n K n

1 1 2

1 S 1 1
[( e a 1 ) 1 ] I (I )

S S nS
 

= σ + ⊗ ⊗ − + 
2 ' ' ' '1
2 i 1 K n nK nK

1 2 1 2 1

a
[( e a 1 ) 1 ] 1 1

(S nS )(S nS nKa )
 

− σ + ⊗  + + + 

' 2 ' '
2 ' ' ' '2 n 1 2 i 1 K K
2 i 1 K n nK

1 1 2 1 2 1 2 1

1 n S 1 a ( e a 1 )1
( e a 1 ) 1 n1

S S nS (S nS )(S nS nKa )
   σ +

= σ + ⊗ − − ⊗   + + + +   

2
2 ' ' ' '1 2 1
2 i 1 K n nK

1 2 1 2 1 2 1

1 n a ( Ka )
( e a 1 ) 1 1

S nS (S nS )(S nS nKa )
   σ +

= σ + ⊗ −   + + + +   

2
2 ' ' ' '1 2 1
2 i 1 K n nK

1 2 1 2 1

1 n a ( Ka )
( e a 1 ) 1 1

S nS S nS nKa
 σ +

= σ + ⊗ − + + + 

2
2 ' ' ' '1 2 1
2 i n 1 nK nK

1 2 1 2 1

1 na ( Ka )
e 1 a 1 1

S nS S nS nKa
 σ +

= σ ⊗ + − + + + 

2
2 ' ' '1 2 2
2 i n 1 nK

1 2 1 2 1

1 S nS n
e 1 a 1

S nS S nS nKa
  + − σ

= σ ⊗ +  + + +   
.

Then
i

1
i i i ( , ),X XXˆ( , ) proj( ( , )|X,1) E[ ( , )] [X E(X)]−

µ Θ Λµ Θ Λ = µ Θ Λ = µ Θ Λ + Σ Σ −

2
2 ' ' '1 2 2

1 2 i n 1 nK 1 nK
1 2 1 2 1

1 S nS n
e 1 a 1 (X 1 )

S nS S nS nKa
  + − σ

= µ + σ ⊗ + − µ  + + +   

2
2 ' ' '1 2 2

1 2 i n 1 nK 1 nK 1 n K
1 2 1 2 1

1 S nS n
( e 1 )(X 1 ) a 1 (X 1 )

S nS S nS nKa
  + − σ

= µ + σ ⊗ − µ + −µ  + + +   

2
2 1 2 2

1 2 i 1 1 1
1 2 1 2 1

1 S nS n
n (X ) nKa (X )

S nS S nS nKa
  + − σ

= µ + σ − µ + − µ  + + +   

( )22
1 1 2 22

i
1 2 1 2 1 2 1

nKa S nS nn X X
S nS (S nS )(S nS nKa )

+ − σσ= +
+ + + +

( )22
1 1 2 22

1
1 2 1 2 1 2 1

nKa S nS nn
1

S nS (S nS )(S nS nKa )

 + − σσ + − − µ
 + + + + 

( )1 i 2 1 2 1z X z X 1 z z= + + − − µ .
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BÜHLMANN-STRAUB MODEL 
WITH COMMON EFFECTS

We now turn to the more general Bühlmann-Straub
setup developed in [10]. In this section, we extend the 
Bühlmann model with error uniform dependence
described in previous section to the case of the
Bühlmann-Straub model. To be more specific, as
before, we are given a portfolio of K risks or
individuals, with assumptions A1 to A3 and the
following A4′:

A4′:For fixed contract i, given Λ and Ti, the Xij follows 
the linear model: Xij = µ(Θi, Λ)+εij and the errors 
are conditionally uniformly dependent, i.e, corr(εij,
εim) = ρ , j≠m and ρ<1, where "corr" indicates 
correlation coefficient. We also assume that E(εij |
Θi, Λ) = 0 and 

2
i

ij i
ij

( , )
Var( | , )

σ Θ Λ
ε Θ Λ =

ω

where ωij are known weights.
Moreover, the following will be used to simplify 

the notations later:

'
i i1 i2 in( , ,..., )ω = ω ω ω

1 '
i

i1 i2 in

1 1 1
( , ,..., )−ω =
ω ω ω

1
'2

i i1 i 2 in( , ,..., )ω = ω ω ω
1

'2
i

i1 i2 in

1 1 1
( , ,..., )

−
ω =

ω ω ω
1 1 1

'2 2 2
i i iW ( )
− − −
= ω ω
n

i ij
j 1=

α = ω∑
n

ia ij
j 1=

α = ω∑ (14)

The following lemma gives some simple but
fundamental features of the dependence structure that 
we just specified. The lemma in the case of two-level
common effects was proved in [22].

Lemma 3: Under assumptions A1 to A3 and A4′ and 
the notations (3) and (14), we have

(i) The means of Xi are given by

i 1 nE[X] 1 ,i 1,2,...,K= µ = (15)

(ii) The covariance of X is given by

XX

1
2 2 12
1 i 1 i
2 '
2 n n

'
1 n K n K

Cov(X)

W (1 ) diag( )diag
1 1 , i 1,2,...,K

a 1 1

− −

Σ =

 
ρσ + − ρ σ ω =
 +σ = 

+

(16)

(iii) The covariance between X and µ(Θi, Λ) is given by

( )
i

2 ' ' '
( , ),X i 2 i 1 K nCov ( , ),X ( e a 1 ) 1µ Θ ΛΣ = µ Θ Λ = σ + ⊗ (17)

(iv) The inverse of the variance matrix of X is given by

1 1
XX i

1 1 ' 1 1
1 1 n K n 1 n K n

K
' 1

1 n i n
i 1

diag[C ,i 1,2,...,K]
a [ C 1 ,...,C 1 ][C 1 ,...,C 1 ]

1 a 1 C 1

− −

− − − −

−

=

Σ = =

−
+ ∑

(18)

where

1
2 2 1 2 '2

i 1 i 1 i 2 n nC W (1 ) diag( ) 1 1 , i 1,2,...,K
− −=ρσ + − ρ σ ω + σ =

Proof: (i) (15) is straightforward.

(ii) We have

' '
1 2 K nE(X| , ) [ ( , ), ( , ),..., ( , )] 1Θ Λ = µ Θ Λ µ Θ Λ µ Θ Λ ⊗

and
1

2 2
i i

2 1
i i

Cov(X| , ) diag[ ( , )W
(1 ) ( , )diag( ),i 1,2,...,K]

−

−

Θ Λ = ρσ Θ Λ
+ − ρ σ Θ Λ ω =

thus
1

2 2 12
1 i 1 iE[Cov(X| , )] diag[ W (1 ) diag( ),

i 1,2,...,K]

− −Θ Λ = ρσ + − ρ σ ω
=

Then it follows as before

2 ' '
2 K n n 1 n K n KCov[E(X| , )] I 1 1 a 1 1Θ Λ = σ ⊗ +

Therefore,

XX E[Cov(X| , )] Cov[E(X| , )]Σ = Θ Λ + Θ Λ
1

2 2 12 '1 i 1 i
1 nK nK

2 '
2 n n

W (1 ) diag( )diag a 1 1
1 1 , i 1,2,...,K

− − 
ρσ + − ρ σ ω = +
 + σ = 

.

(iii) As part (iii) of Theorem 1.
(iv) Using (11) we can check that
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1 11 1 1
1 2 2 1 2 1 2 '2 2 2

i 1 i 1 i 1 i 1 i iB W (1 ) diag( ) (1 ) diag( ) ( )
− −

− − −− − −   
= ρσ + − ρ σ ω = − ρ σ ω + ρσω ω   
   

1 1
2 '2 2

i 1 i i i2 2
1 1

i 1 12
' 21 2 2

i i 1 i2
1

1 1
diag( ) ( ) diag( )

1 (1 ) (1 )
diag( )

(1 ) 11 ( ) diag( )
(1 )

− −

− −

ω ρσ ω ω ω
− ρ σ − ρ σ

= ω −
− ρ σ

+ ω ω ρ σ ω
− ρ σ

1
2

i i2
1

1
diag( ) W

(1 ) 1 n
− ρ

= ω − − ρ σ −ρ+ ρ 

and hence (as in Wen et al. [23])

1
1 ia 2

i n i i2
1

1
B 1

(1 ) 1 n
−  ρα

= ω − ω − ρ σ − ρ + ρ 
,

2
' 1 i ia
n i n 2

1

(1 n )1 B 1
(1 )(1 n )

− − ρ + ρ α −ρα=
σ −ρ − ρ + ρ

and

1 2 ' 1
i i 2 n nC [B 1 1 ]− −= + σ ,

1
1 ia 2

i n i i iC 1
1 n

−  ρα
= ω − ω γ − ρ + ρ 

,
2

' 1 ia
n i n i i1 C 1

1 n
−  ρα

= α − γ −ρ+ ρ 
where

i 2 2 2
1 2 i ia

1 n
(1 )(1 n ) [(1 n ) ]

−ρ+ ρ
γ =

σ − ρ −ρ+ ρ + σ − ρ + ρ α + ρ α
Therefore

1 ' 1
XX i 1 nK nK{diag[C , i 1,2,...,K] a 1 1 }− −Σ = = +

1 1 ' 1 1
1 1 1 n K n 1 n K n

i K
' '

1 n i n
i 1

a [ C 1 ,...,C 1 ][C 1 ,...,C 1 ]diag[C ,i 1,2,...,K]
1 a 1 C 1

− − − −
−

=

= = −
+ ∑

The lemma is thus proved.

Theorem 2: Under assumptions A1 to A3 and A4′ and the notations (3) and (14), the optimal credibility estimator 
of µ(Θi, Λ), i=1, 2, …, K, is given by

a a
i 1 i 2 i 3 4 1 2 3 4 1ˆ( , ) ( z X z X ) ( z X z X ) (1 z z z z )ω ωω ωµ Θ Λ = − + − + − + − + µ (19)

where
2

1 2 i iz ,= σ γ α
2 2
2 i ia

2z ,
1 n
ρσ γ α=
−ρ+ ρ

K

3 1 i i i
i 1

z (a )( ),
=

= − ϕ γ α∑
K

21 i
4 i ia

i 1

(a )z ( ),
1 n =

− ϕ ρ= γ α
− ρ + ρ ∑

n

ij ij
j 1

i
i

X
X ,=ω

ω
=

α

∑
a

n

ij ij
j 1

i
ia

X
X ,=ω

ω
=

α

∑
K

i i i
i 1

K

i i
i 1

X
X ,

ω

ω =

=

γ α
=

γ α

∑

∑

a

a

K

i ia i
i 1

K
2

i ia
i 1

X
X

ω

ω =

=

γ α
=

γ α

∑

∑
and

K
' 1 2 ' 11

i 1 n i n 2 n i nK
' 1 i 1

1 n i n
i 1

a a 1 C 1 1 C 1
1 a 1 C 1

− −

− =

=

 ϕ = + σ 
 +
∑

∑

Proof: Firstly, we need to get the following term.

i

1 2 ' ' '
( , ),X XX 2 i 1 K n[( e a 1 ) 1 ]−

µ Θ ΛΣ Σ = σ + ⊗
1 1 ' 1 1

1 1 1 n K n 1 n K n
i K

' 1
1 n i n

i 1

a [ C 1 ,...,C 1 ][C 1 ,...,C 1 ]diag[C ,i 1,2,...,K]
1 a 1 C 1

− − − −
−

−

=

 
  × = − 
 +
  

∑
' 1 2 ' 1 ' 1 1 1

1 n 1 1 2 n i 1 n K i 1 n K n[ a 1 C ,...,(a )1 C , . . . ,a1C ] [C 1 ,...,C 1 ]− − − − −= + σ −ϕ

Using Lemma 2 and Lemma 3,
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i

1
i i i ( , ),X XXˆ( , ) proj( ( , )|X,1) E[ ( , )] [X E(X)]−

µ Θ Λµ Θ Λ = µ Θ Λ = µ Θ Λ + Σ Σ −

{ }' 1 2 ' 1 ' 1 1 1
1 1 n 1 1 2 n i 1 n K i 1 n K n 1 n k[ a 1 C ,...,(a )1 C , . . . ,a1C ] [C 1 ,...,C 1 ] (X 1 )− − − − −= µ + + σ − ϕ − µ

' 1 2 ' 1 ' 1 1 1
1 1 n 1 1 2 n i 1 n K 1 n k i 1 n K n 1 nk[ a 1 C ,...,(a )1 C ,...,a1 C ](X 1 ) [C 1 ,...,C 1 ](X 1 )− − − − −= µ + + σ − µ − ϕ − µ

a

2 2K
ia ia

1 1 i i i i i 1
i 1

a X X
1 n 1 n

ωω

=

  ρα ρα
= µ + γ α − − α − µ  − ρ + ρ −ρ + ρ  
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a
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a

K K
2 2

i ia i iaK K
i 1 i 1

1 1 i i i i i 1
i 1 i 1

(a ) X X
1 n 1 n
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= =

  ρ γ α ρ γ α     = µ + − ϕ × γ α − − γ α − µ  − ρ + ρ − ρ + ρ   
    

∑ ∑
∑ ∑ a

2 2 2 2
2 22 i ia 2 i ia
2 i i i i 2 i i 1X X

1 n 1 n
ωω  ρ σ γ α ρσ γ α

+σ γ α − − σ γ α − µ −ρ+ ρ − ρ + ρ 

a a
1 i 2 i 3 4 1 2 3 4 1( z X z X ) ( z X z X ) (1 z z z z )ω ωω ω= − + − + − + − + µ

NUMERICAL EXAMPLE

In order to show the influence of the error uniform 
dependence on credibility models with common effects, 
we simulate some generated claims data to examine
what effect there might be from assuming error uniform 
dependence, using the two-level common effects
framework suggested for Bühlmann model. We
compare it with the case of two-level common effects 
model regardless of the effect of the error uniform
dependence.

In  this  section, we briefly describe the nature of 
the assumptions used to draw numerical results. First, 
we generated the observations assuming that
assumptions of the two-level common effects model 
with the error uniform dependence hold in reality and 
then  compare  the  results  based  on  two  different 
models: the two level common effects model with both 
considering the effect of the error uniform dependence 
and regardless of the effect of the error uniform
dependence. In the meantime, we use the Normal
distribution assumptions of the common effects in both 
situations models.

A summary of the specification, description, as 
well as the parameter values used in the simulation is 
found in Table 1.

We generate R = 1000 different 10-year paths of 
claims  for  10  different  individuals  assuming  the 
two-level  common  effects  model  with  the error 
uniform  dependence  is  the  true  model.  We  label
the   two-level   Normal  common   effects   model
with considering the effect of the error  uniform
dependence  as  Model  I and the two-level Normal 
common  effects  model  regardless  of  the  effect  of 
the  error  uniform  dependence  as  Model  II.  For
each one of sample paths of claims from 10 individuals, 
we  computed  the  credibility  premium  for  year  11 
(the next period) for individual 1.

Table 1: Summary of model assumptions and parameters used in
simulation

Specification Description
for i = 1,2,…K and t = 1,2,…,n

Conditional density Xi,t|θi,λ = N(θi+λ,s 1
2),

‘Individual’ common effect θI = N(µθ, s 2
2), for i = 1,2,…,K

‘Overall’ common effect λk = N(µλ, s λ
2)

Assumption K = 10 Individuals, n = 10 years
Parameter values s 1

2 = 6000
µθ = 100, s 2

2 = 1000
µλ = 200, s λ

2 = 4000
ρ = Corr(Xij, Xim|θi, λ) = 0.7

For Model I, we use the formula presented in 
Theorem 1 for Bühlmann model which summarized
below:

i 1 i 2 1 2 1ˆ( , ) z X z X (1 z z )µ Θ Λ = − + − + µ
where

2
2

1
1 2

nz 0.1858736
S nS

σ= =
+

and
2

1 1 2 2
2

1 2 1 2 1

nKa (S nS n )z 0.7176081
(S nS )(S nS nKa )

+ − σ= =
+ + +

The credibility premium for Model II is well-
known and it is given by

i 1 i 2 1 2 1ˆ( , ) w X w X (1 w w )µ Θ Λ = − + − + µ

2
2

1 2 2
1 2

nw 0.625
n
σ= =

σ + σ
and

2
1 1

2 2 2 2 2
1 2 1 2 1

nKaz 0.3605769
( n )( n nKa )

σ= =
σ + σ σ + σ +
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Fig. 1: (a) Histogram of the percentage premium differences for individual 1. (b) Histogram of the percentage 

premium differences for the aggregated portfolio
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Fig. 2: (a) A Normal Q.Q plot for individual 1. (b) A Normal Q.Q plot for the aggregate portfolio

See [19] for discussion of these credibility
formulas for Model II.

As a convention, we shall use I
j,n 1+µ and II

j,n 1+µ to
denote the credibility premiums in Model I and Model 
II,  respectively.  Now  for  comparison  purposes, we 
then comp ute the percentage difference in credibility 
premiums  for  individual j between these two models 
as follows:

I II
j,n 1 j,n 1

j I
j,n 1

100+ +

+

µ −µ
∆ = ×

µ

For each simulation, we can compute this
percentage premium difference and examine the
resulted  distribution  of  these  premium  differences 
for the entire 1000 simulations. In order not to
overwhelm  the  reader  with  lots  of  statistics,  we 
chose  to  present  the  results  only  in terms of 
individual 1 and the aggregate of all the 10 individuals. 
The  aggregate  percentage  difference  has  been 
computed using:

K K
I II
j,n 1 j,n 1

j 1 j 1
K

I
j,n 1

j 1

100
+ +

= =

+
=

µ − µ
∆ = ×

µ

∑ ∑

∑

In [21], they used ∆j and ∆ for comparing different 
models.

Some summary of the resulting percentage
differences are given in Table 2. Figure 1 provides the 
histogram of the percentage difference for the case of 
individual 1 only and also for the aggregate i.e, sum of 
all the individuals. We also show in Fig. 2 the Normal 
Q-Q plots of these respective distributions to show the 
skewness, or the non-symmetry observed from these 
resulting differences.

Assuming the premium calculated based on the 
two-level common effects model with error uniform
dependent, the two-level common effects Normal
model regardless of the effect of the error uniform
dependence tends to understate the credibility premium 
from its true value. This is also evident in the Figures 
and statistics.
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Table 2: Some descriptive statistics of the percentage difference 
between the credibility premiums in Models I and Model II

Statistics Individual 1 Aggregate
Mean (%) 1.0802 0.3898
Median (%) 0.0994 -0.0670
Variance (%2) 142.9794 4.9171
Standard deviation (%) 11.9574 2.2175
Minimum (%) -27.3317 -3.9713
Maximum (%) 67.9023 11.7920

Table 3: Detailed computation for different ρ s

ρ 0.00 0.01 … 0.98 0.99
Average of ∆1 (individual 1)0.00 0.0395 … 0.9750 1.0292
Average of ∆ (aggregate) 0.00 0.0084 … 0.6292 0.4583

Fig. 3: The plot of the influence of different ρs for the 
case of individual 1 and also for the aggregate

Fig. 4: The plot of the influence of different ρs on z1-
w1, z2-w2 and (1-z1-z2)-(1-w1-w2)

For the purpose of numerical illustration to show 
the influence of different ρs, we generate claims as 
previous method for different ρs. The summary of the 
results are given in Table 3. 

Figure 3 provides the plot of the influence of 
different ρs for the case of individual 1 only and also 
for the aggregate. We also show the plots of the
differences  of  weights  between  these  two  models 
for different ρ s in Fig. 4.

CONCLUSION

In  classical  Bühlmann  credibility models, there 
are  some  situations  that  could  drive  not  only 
possible  relationship  among  the  risks  but  also 
certain conditional dependence over time which has 
been recognized as more appropriate to fit the practice 
in some circumstances. In this paper, we extended the 
Bühlmann and Bühlmann-Straub credibility models to 
account for not only a certain uniform conditional
dependence  for  claim  amounts  each  of  individual 
risk, but also a special type of dependence between 
risks induced by common effects. We further gave
illustrative examples to show the influence of the error 
uniform dependence when these common effects have 
Normal distributions.
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