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Abstract: The problem of the non-Newtonian fluid flow in the complex geometries (pipes), whose domain of
application is very varied, is a topic of interest to both physicists, industrialists and medical doctors. Various
studies have been made ??on cardiovascular problems and more precisely the effect of intra-vascular prosthesis
on the stat of arteries. Indeed, obstruction of the arteries, whether coronary or carotid known as stenosis,
represents a great danger to the people who are affected. It modifies the hemodynamic and consequently
generates a detrimental effect on nutrition and oxygenation of organs (heart, kidney and brain..). Among the
medical intravascular interventions this stenosis is referred to as stenting. The stent is a flexible and deformable
metal object used to straighten the obstructed artery and keep it open. The presence of such an object into the
blood vessel disrupts the flow of blood. In this regards, this paper is a numerical study to show how the
presence of the stent in an artery influences the blood flow. In this work, the blood flow is considered as a
Newtonian and non-Newtonian fluid whose behavior is described by the mathematical Carreau's models. The
hematocrit variation ratio is in the range of 30 to 55% which cover the rate on anemia and normal levels. The
presence of the stent has a very low effect on speed and pressure, however it decreases the overall shear
stresses which could favors and promote restenosis.
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INTRODUCTION blood viscosity increases strongly with the hematocrit

Numerical simulations have the advantage of testing varies from 0 to 20, whatever the rate of hematocrit is and
parameters that are difficult to measure directly in vivo or becomes nearly constant beyond this range.
in vitro, such as shear stress gradients at the wall and the Several studies have been conducted on
pressure. Blood is actually a non-Newtonian fluid; the intravascular prostheses, in order to solve the problems
apparent viscosity depends not only on the fluid faced by surgeons, such as complications that occur after
properties, but also on the flow conditions. It consists of the operation and to offer solutions such as the
plasma containing red blood cells, white blood cells and optimization of stent geometry [3-7].
platelets. Blood flow, its interaction with the arterial walls, A number of researchers have been interested only in
stenosed arteries and their repair techniques have been the structural mechanics i.e. the location of the stent and
the subject of various numerical and experimental studies its response under the effect of balloon expansion [8-12].
[1]. Other researchers have attempted to explain the

L. Achab [2] has modelled the rheological behavior of phenomenon of intimal proliferation under the effect of
the blood using Carreau, Cross and Casson's constitutive the variation of wall shear stress [13-14]. 
laws giving the variation of the shear stress as a function Mickaël Gay et al. [15] have used the finite element
of shear rate to approximate the experimental curve. The method to study the velocity profile and the Von Mises
results obtained using the Carreau's model is in good stress distribution in the stent during implantation. They
agreement with the experimental results. This shows that have  concluded  that  the  obtained results will boost the

and undergoes a rapid decrease when the shear rate
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development of new stent designs and deployment
protocols of stent in order to minimize vascular injuries
during its placement and reduce restenosis. Mickaël Gay
et al, had focused their observations on other works.
They concluded that coronary stents are widely used,
because the rate of restenosis is reduced to 20 up to 30%
compared to balloon angioplasty [16-18]. Benard et al.
[19] have made an experimental study of the laminar flow
of blood through an artery treated by a stent implantation.
They observed that in a zone of weaker shear stress (SS)
the   endothelial    stimulation   favors   the   restenosis.
The authors concluded that since the endothelial
proliferation is highly influenced by the shear stresses
(SS), their knowledge of their variation induced by the
stent implementation can be important for optimizing the
design of prosthesis. 

George et al. [20] studied numerically the effect stent
implanted in the aortic artery on the hemodynamic factors.
They observed that a high blood pressure and a strong
systolic slope of the pressure wave can lead to a high
drag force on a graft-stent compared to the one generated
from high blood viscosity. Balossino et al. [21] studied
the effects of different models of stent after their
expansion on the blood flow under pulsatile physiological
conditions. They noticed that the maximum parietal shear
stress (WSS) is higher on the stent than that on the artery
wall.

The objective of the present study is a numerical
investigation of the combined effects of hematocrit with
the presence of a stent in an artery on the blood flow.

Numerical Simulation: This numerical study examines
the  effect  of  a  stent  in an  artery   on   the  parameters
of  the  blood  flow  is  considered  as  Newtonian and
non-Newtonian. In the non-Newtonian blood behavior is
described by the mathematical Carreau’s model where the
hematocrit is assumed to vary in the range from 30 to 55%
covering rate of disease (anemia) and normal [3].

Geometrical Configurations: The stent studied in this
works (Fig.1), type Palmaz-Schatz stent micro-PS154 [5], a
length of 10.6 mm, an outer diameter of 2.9 mm and a
thickness of 0.1mm is placed against its deformation in the
middle a coronary artery cylindrical of 60 mm in length.

Boundary Condition: To numerically simulate blood flow
in  a  stented  artery,  we  imposed  a  maximum   speed
(0.25 m / s) at the inlet and static pressure of 14000 Pa to
the output (Fig. 2).

Table 1: Blood properties 
Non-Newtonian Fluid (Carreau)
------------------------------------------------------------

Newtonian Fluid He 30% He 55%
=1050 Kg/m µ (mpas) 13.26 74.543

o

µ (mpas) 3.29 5.71
1.25 0.946

p 0.527 0.501
Dis(%) 0.221 0.182

µ= 0,0035Pa.s Coef Teil 0.0183 0.0714

(a)

(b)
Fig. 1: a) Stent, b) artery

(a)

(b)
Fig. 2: a) Average physiological velocity in a coronary

artery, b) domain boundary .

Mesh: Due to the complexity of the stent geometry
considered an unstructured mesh is used. Therefore, the
3D   domains    were   meshed   with   tetrahedral   Hybrid
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Fig. 3: Unstructured mesh (Tet/Hybrid).

elements. The mesh was refined near the  stent  (Fig.3).
The commercial Fluent code is used for the finite volume
analysis.

Mathematical Equations: The laminar flow of blood,
considered    incompressible,   is   governed   by  the
Navier-stockes’ equations and conservation of mass:

(1)

(2)

where v = velocity, p = pressure, µ = viscosity and = Fig. 5: Evolutions of the axial velocity along the vertical
density. line 1 for different rate of hematocrit

The blood properties used are given in Table [1]:

(3)

RESULTS AND INTERPRETATION

Numerical calculations are carried out in 3-D, but only
the results corresponding to the vertical plan (Fig.2.b) are
shown. In this plan, appear small square ribs of the same
size.

The axial velocity is calculated upstream (Line 1), on Fig. 6: Evolutions of the axial velocity along the vertical
rib (line 2) and downstream (line3) of the last rib of the line 2 for different rate of hematocrit
vertical plane (Fig.4).

The axial velocity of the blood changes were shown gradient must decrease with increasing of hematocrit rate,
in Figures 5, 6 and 7 which is considered Newtonian and as the blood viscosity increases with the latter which
non-Newtonian with different hematocrit values, leads to the slowdown in fluid layers between each other.
respectively along the lines 1, 2 and 3. It is noticed that In the central area, radial abscissa fixed, the shear rate
the axial velocity profile of the blood and assumed increases with the hematocrit rate which makes the blood
Newtonian with a hematocrit of 30% are identical and that more fluid.
the speed increases with the hematocrit in the central area Figure 8 represented the pressure distribution in the
of the artery and decreased in the vicinity of wall. In the direction of the flow. It is observed a drop in pressure
area near the wall, at the radial abscissa given the velocity along  the artery with the presence of small fluctuations at

Fig. 4: Plan1 (with 3 ribs of the same size (square))
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Fig. 7: Evolutions of the axial velocity along the vertical Fig. 10: Evolutions of the wall shear stress, in the vertical
line 3 for different rate of  hematocrit plan, along the entire artery

Fig. 8: Longitudinal evolutions of pressure for normal Fig. 11: Distribution of the wall shear stress 
subject (He 45%).

Fig. 9: The longitudinal evolutions of wall shear stress, in stress in the vertical plane along the entire stented artery
the vertical plan, between two consecutive ribs for for the same hematocrit values. Along the stent, the WSS
different hematocrit. is fluctuating while it is generally constant and of the

the stented part. In general, one may say that the values, the average value of the WSS in the stented
implantation of the stent does not have excessive portion is slightly lower than that of the smooth parts.
influence on the pressure. This is an advantage for The opposite phenomenon occurred for low values ??of
prosthesis. hematocrit and Newtonian fluid.

Figure 9 showed the evolution of the wall shear
stress (WSS) between two consecutive ribs in the vertical
plane, for different values ??of hematocrit.

The WSS increased with the hematocrit which
explains the increase in the degree of blood deceleration
with hematocrit in the wall vicinity. On the ribs, the WSS
undergoes a peak amplitude much greater than elsewhere
followed by a minimum. This peak is due to the impact of
the flow on the ribs. In the space between the ribs, the
WSS  remains  essentially  constant for a given
hematocrit.

Figure 10 showed the evolution of the wall shear

same value in the non-stented part. A high hematocrit
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In order to see the effect of the stent on the 3. Sanjay Pant, Neil W. Bressloff and Georges Limbert,
distribution of the WSS over the whole wall, a 3D color 2012. Geometry parameterization and
distribution is given in Figure 11. We noted that the WSS multidisciplinary constrained   optimization   of
is greater on the metal part constituting the stent and just coronary   stents,  Biomech  Model  Mechanobiol.,
in its upstream and lower immediately upstream and 11: 61-82.
downstream of the stent mesh conjunctions where the 4. Linxia      Gua,        Swadeshmukul        Santrab,
flow is lifted off. Within the mesh, the distribution of the Robert A. Mericleb and Ashok V. Kumara, 2005.
WSS is similar to those in the non-stented parts of the Finite element analysis of covered microstents,
artery. Journal of Biomechanics, 38: 1221-1227.

CONCLUSION of NIR stent in a stenotic artery using finite element

The purpose of this study is to characterize the main 22(7): 892-897. 
features of blood flow through a stented artery 6. Atherton, M. and R. Bates, 2006. Searching for
considering the Newtonian and non-Newtonian behavior improvement. In: J.A. Bryant, M.A. Atherton and
of blood increasingly marked by an increase in hematocrit. M.W.  Collins  (eds)  Information transfer in

The stent does not have a significant influence on biological systems, design in nature series, vol 2.
the speed of blood flow due to its low thickness which is WIT Press, Southampton, pp: 345-379. ISBN
advantageous for the surgery but disturbs the 1853128538.
distribution of wall stress without leading to an average 7. Lorenza    Petrini,    Francesco    Migliavacca,
value too different from those non stented parts of the Ferdinando Auricchio and Gabriele Dubini, 2004.
artery. Numerical  investigation of the intravascular

The increase in hematocrit decreases the axial coronary stent flexibility, Journal of Biomechanics,
velocity of the blood in the vicinity of the arterial wall and 37: 495-50.
increases it in the central part and makes increase the wall 8. Liang,  D.K.,  D.Z.  Yang  and  W.Q.  Wang,  2005.
shear stress in general. In fact, more the non-Newtonian Finite element analysis of the implantation of a
behavior of blood is marked (high hematocrit) more the balloon_expandable stent in a stenosed artery,
blood is slowed down near the wall and accelerated International Journal of Cardiology, 104: 314-318.
further. 9. Imani, M., A.M. Goudarzi and M.H. Hojjati, 2013.
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