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Abstract: This paper presents a new approach to construct a non-tensor product C' subdivision scheme for
quadrilateral meshes. The approach is based on a quadratic function in R* and suggest a methodology for

producing a new class of subdivision schemes.
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INTRODUCTION

Computer Aided Geometric Design (CAGD) is a
branch of applied mathematics, which deals with
algorithms for free-form curves, surfaces and volumes. It
plays a significant role in integrating computers and
industry. Smooth curves and surfaces have pivotal
importance in the field of air craft manufacturing, movie
animation, computer game character design and general
product design. The present work focuses on subdivision
schemes that operate on a mesh of control points,
P={pj j}i,jez . Subdivision surfaces are used to create new

edges and faces within the mesh by complying with
insertion rules. All subdivision schemes are iterative and
contractive generating a new smaller mesh after each
iteration. It is possible to generate a set of meshes p', p,...
by continually applying subdivision rules on the previous
mesh. Then the limits of these meshes converge to the
mesh P, called the limit surface. This technique of
recursive subdivision can be visualised, loosely, as
successively trimming the corners of a polyhedron to
make them less pointed. In 1978, Catmull-Clark [1] and
Doo-Sabin [2] first introduced subdivision surface
schemes, which generalised the tensor product of bicubic
and biquadratic B-splines respectively. For the univariate
case, the binary cubic box spline, which has two insertion
rules (stencils), is given as

ke _ 4 4 kv _ 1 ok 6 1 g
P ZEPZ 1+8Pl 5P21tr1 8Pi71+§}7i +§Pi+1- (1.1
This leads to the Laurent polynomial

[1+4z+622+4z3+z4)/8:2((1+z)/2)4 [14]. In the bivariate

case, it is simply the tensor product of the univariate
subdivision scheme, as the principle directions are
orthogonal to each other. So the cubic product bivariate
box spline subdivision schemes can be generated by (1.1)
given as

2 l+Zl 42 1+22 4
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The expression (1.2) can be written in z-transform,

(1.2)

increasing the power of z, in the horizontal direction and
z, in the vertical direction with the mask coefficients, each
divided by 64

lzl0 zg + 421 22 + 621 22 + 421 22 + lzft zg
+ 4zl 22 + 1621 22 + 2421 22 + 1621 22 + 421 22
+ 6210 Z% + 24211 Z% + 3 621 22 + 24213 z% + 6zfz%
+ 421 22 + 1621 22 + 2421 22 + 1 621 22 + 421 22
+ lz? zg + 421 22 + 621 22 + 421 22 + lzf‘ zg .

(1.3)
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Deriving the four stencils, ,k+1

, okl from the above
2i+1,2j+m

z-transform (1.3), where

0,  corresponds to a vertex point,

[+m=11, corresponds to an edge point, l,m=0,1.
2,  corresponds to a face point .
We have
K+ _ 1 [ k ok K ok L Y S
P2i 2 = ea\Pi-Lj-1 " Pi, jr1 T Pin, j-1 T Pinl 41 T g\ Pl T P -1

fe 13 36 k
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K+ _ Ak k k k 24 k k
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(1.4)

The continuity of tensor product bivariate box spline
subdivision schemes [15] has been derived from the
z-transform of the scheme. Laurent polynomial analysis
[14] shows that the order of continuity of a tensor product
scheme is the same as for the univariate case. A general
formula of z-transform for N-ary multivariate box spline
subdivision scheme for C"-continuity is given by:

N B ]_ZN m+2 (1 5)
N2‘\7 (m+1) J .
g 1-z;

where s=1 is univariate case and s=2 the bivariate case. In
the case N=m = 2, by (1.5) we get the cubic box spline
(1.2). In expression(1.5), using Laurent polynomial
analysis [14], the order of continuity of the subdivision

N

. 1-z%

scheme is two fewer than the exponent of /
1-z;

J

From (1.5) the order of continuity is simply m. In the case
of a binary cubic box spline, it is C* for both univariate
and bivariate cases. Since Catmull-Clark and Doo-Sabin [1,
2], many subdivision schemes have been proposed,
including triangle mesh schemes [3, 4, 8, 9], quad mesh
schemes [1, 2,5, 6, 10, 11] and combined triangle-quad
(tri-quad) mesh schemes [12, 13]. This is not a definitive
list of tensor product schemes, however all subdivision
algorithms, both tensor-product and univariate forms, are
the result of modifications and convolvements of the
mask of existing schemes. It is interesting to present a
new non-tensor product generating insertion rules, which
are for quad meshes and independent of all the previous

methods. The work in this paper is based on regular quad
meshes (all vertices have valence 4) and gives four
insertion rules such that each vertex is shared by four
quadrilaterals. Due to the nature of the refinement rules,
tensor product schemes naturally lead to quad meshes.
The proposed method also leads to quad mesh but its
generating method is different from tensor product
schemes and hence will generate a new class of
subdivision scheme. The work is organized as follows:

In Section 2, some basic definitions and preliminary
concepts are reviewed and discussed that will be used in
our work. Construction of the subdivision insertion rules
is presented in Section 3. In Section 4, the scheme is
analyzed via its eigenvalues and its continuity in the limit
is established to be C'. Conclusions and summary of the
results including future research directions are discussed
in the last section.

Preliminaries and Basic Concepts: In this section, some
basic notation and concepts regarding bivariate
subdivision schemes defined on a regular quad mesh are
presented.

Given a mesh of control points sz/' eRN i jeZN>2s

k _(k k k) where k _(k k k) and k=0
P j ’(xi,j’yi,j’zi,j] bij *(*‘i,j’yt,j’zi,j)
indicates the subdivision level. In the bivariate case,
consider the four subdivision rules for a quad mesh

k+1 k
Pitvo,2j+B = za2r+a,2s+ﬁpi—r,j—s . o, f=01 " (2.1)
r,s
where a necessary condition for the convergence of the
subdivision process for arbitrary initial data is that

za2r+a,2s+ﬁ =1, a,p=0,L 2.2)
r,s

Given initial values 0

g eRV i jez , then in the limit

k- o the process defines an infinite set of points in R".
The sequence of values ¢ P:kj} is related, in a natural way,

with the diadic mesh points {;k J ] i,jez - The process

D

2

(2.1) then defines a scheme whereby ,k+1

replaces
2i+1,2j+m P

the values ¢
i+l,j+m

at the mesh points [i+1’j+m]
ok T ok
1,m=0,1) ) respectively. The values  k+! k+1
(( ) P y P2i2j+1°P2i+1,2 j+1°

k+1 and

s ) k+1 are inserted at the new mesh
2i+2,2j+1 j

Pit1,2j+2

points i+l i g+l i+l j+1 i+2 j+1
Sk 17 gk P gk +17 k41 Pl ok+17 5kt | pk+17 Hk+]1
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Fig. 1: Solid lines show one face of coarse polygon;
doted lines are refined polygon

and |[_*l Jj+2| respectively. Figure 1 gives the
ok +17 Hk+1

structure of the subdivision scheme (2.1) along with the
labelling scheme for new and old points.

Smoothness analysis for regular quadrilateral
meshes follows directly from the univariate case. This is
because, in general, the tensor product has the same order
of continuity as for the univariate case. So for a non-
tensor product scheme, Reif's [7] sufficient condition for
smoothness of a stationary subdivision scheme can be
used. This method applies to the matrix of the subdivision
algorithm, which relates the values on the localization set
of the topological 1-neighbourhood of zero in the k-
regular complex to the values on the similar neighborhood
on the next subdivision level. If the number of initial
values is equal to the value of an eigenvector of the
subdivision matrix, the subdivision will produce a limit
function, which is called the eigenbasis function.

In order to guarantee affine invariance of the
subdivision algorithm, the sum of each row of the
subdivision matrix must be 1. Thus 1 is always an
eigenvalue of a subdivision matrix with associated
eigenvector [1,....,1]. Reif's sufficient criterion for a
subdivision algorithm to generate a smooth limit surface
is given as:

Suppose the eigenvectors of a subdivision matrix
form the basis, the largest three eigenvalues except 1 = A,,
are real and satisfy

Ai=dy=hy, 1>A>2] (2.3)

If the characteristic map is regular and injective,
then the limit surface P is a regular C'-manifold for almost
every choice of initial data.

Scheme Construction: The construction of the non-
tensor product scheme for quad meshes is based
on a general quadratic polynomial function fe R In
this case, an insertion rule can be obtained by
interpolation with a function from the space spanned by

{Lx,y,x0,x2, %) -

Consider the Function:

if(x,y)zAx2+Bxy+Cy2+Dx+ Ey+F G.1)

such that the set of mesh points P:{fj’ i,jez at kth level

satisfies f(L L]: ok . Now interpolating the data
i

2k ok
oints ,k P R in (3.1), results in the
P Pivh,j+r _f(zk ok »h,r=-1,0,1 (3.1),

following system of equations:

f[;—,i,z;,i]:!’,ﬁl,jfl :A;W+B;%+C;77D2%7 EszJ’F’
f[z;’izik] p’k‘ld 2t22k b ;k +F,
f[zik’;_t]:pl{fj—l 7C2t22k _Esz‘FF,
e
f[ZLk,z__t]:p’{{“’J 1 2t2k 2t22k C;%’szLk— Esz+ F,
f{z%’z%]_plk+lj Aztzzk +D2—k+F

(3.2)

To obtain the four stencils, first solve the above
system of equations for the coefficients given in (3.1) and
compute the value of the interpolation function f{x,y) at

the grid points | 0:f 0 t 0t |0t ¢ | and
k17 kA1 Pl pk+17 5k+1 P okl 5kt

t __t |.The coefficients of f(x,y) are
S+l Skt
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k ko, ok k k
2% =2(pi o+ Pi  Pije) F Pis -t Pic

2 k k
6% | +pilt,j + Pic1

k k
+Piv1, 1t pi+l,j}’

22Ky k k k
B= el {pi—l,j—l = Pit1,jr1 ~ Pir,j1 + Pi+1,j+1}a
2% k k k K k k k k k
C= ?{—2(17[,,‘ + Dic1,j t Pist,j) T Pijo + Pi je1 T Pist, jo1 ¥ Pict, jo1 ¥ Pic1, j1 + Pisl, j+l }
25y k k k k k
D= _E{pi—l,j—l + Pic1,j T Pi-,j+1 ~ Pitl,j-1 ~ Pitl,j T pi+1,j+1}’
2k k k k k k
E= _E{pi—l,j—l = Dis1,j t Pijo1 ~ Dij+1 T+ Pixi, j-1— pi+1,j+1}>

2( & k k k
F= 3{ Pij1 T Pijjrit Pic1,j + Pivl, }

L % k k k S5
_a{piﬂ,j—l + Pi-1,j-1tPi-1,j+1 T pi+1,j+1} +§pi,j'

Thus, the new subdivided points k+1  k+l k+1 k+1 are a linear combination of the nine
P2i 2 P2i1,2j7 P2i2 j+1° P2i+1,2 j+1

support points & k k k k Kk k k k iven in (3.2). The resulting four insertion
pportp Pitjt Pic o Pt ja Pijete Pij Pi jetePi 1 Pist o Pivt jan & (3.2) &

rules for the (. 1y level are given by:
kel _ 1 k k k k k
P *m{’m!’H, o1 +32P 1y 6p Ly g +32p g +80p;
k k k k
+32p; s 0P i 320 _16Pi+1,j+1}’

kel 1 k k k k k
P2 —m{‘zzl’tq, jo1726p = 22p i+ 2005 5 +68p;

+ 2°P{f it 2Pﬁl, jo1t 501’{11, it 21’1111, j+1}’

plzfileﬁl :ﬁ{—22plk_l,j_l + 20pl?‘_1’j + pr_l’j o 26;{}._1 +68 plZf ;
+5°Pf 4T 221’5‘11, jo1t 201’!11, Jt 2plk+1, i+l }

i j+1 :ﬁ{’lgl’fq, j-1 +14”;{71,/‘ ~13p tkfl,jﬂ * 14”5/'71 +367]

k k k k
+38p; i T3P o1 380 +29pi+1,j+1}'

The masks for each of the four insertion rules are shown in Figure 2, where péffrzl _is called the vertex rule,
l’ }

phrl okl are called edge rules and ,k+l  is the face rule.
2i+1,2j° 20,2 j+1 2i+1,2j+1

Smoothness Analysis: In order to determine the continuity of the proposed scheme, it is reformulated in terms of
subdivision matrices. This enables the eigenvalues to be determined and hence compared to (2.3). To calculate the
eigenvalues of the proposed subdivision scheme, consider the polygonal mesh of the sixteen control points of the new

corresponding to old mesh p -,k , where m=-2,-10,l (Figure 3). The following matrix

mesh -
Pe+1 = i+l j+m

k+1
Pitl 2 j+m

expression is showing operation to generate new control mesh Pr+1.

1638



World Appl. Sci. J., 24 (12): 1635-1641, 2013

|
2 Lﬁu 5 13 38 Poiiaia 29
;)21..! 1 ®
20 68 20 14 56 38
22 26 22 “19 14 T3
16 32 16 22 20 2
Psisj Poi2j
@ @
32 80 32 26 68 50
16 32 16 22 20 2

Fig. 2: Mask configuration of the scheme (3.3) using nine grid points.

Combining the four masks that generate the new vertices, edges and face points into a single matrix operator, [ M]
enables the subdivision scheme (3.3) at level & to be expressed as:

4.1
PR =Pk, -1
where
k k+1
P2, j-2 P2i-22j-2
13 k+l
Pi1,j-2 Pri—1,2j-2
k k+1
Pi j-2 P2inj-2
-16 31 -16 0 32 8 32 0 -16 32 -16 0 0 0 0 0 pk1.2 1,12c_+112,2
220 2 0 26 68 50 0 -22 20 2 0o 0 0 0 ’l:’ff k’J'l”_
.
0 -16 32 -16 0 32 8 32 0 -16 32 -16 0 0 0 0 Piio,j Pi=22j-1
0 -22 20 0 26 68 50 0 -22 20 2 0 0 0 0 k K+l
22 26 -2 0 20 68 20 0 2 50 2 0 0 0 0 Pirt,j-1 P2i-1,2j-1
-19 14 -13 0 14 56 38 0 -13 38 29 0 0 0 0 0 pikFI plzfl_*zlj_l
0 -22 26 -22 0 20 68 20 0 2 5 2 0 0 0 0 k k;I
10 -19 14 -13 0 14 5 38 0 -13 3 29 0 0 0 0 (k)= Piyl,j-1 [Pk PRi+1,2j-1
44/ 0 0 0 0 -16 32 -16 0 32 8 32 0 -16 32 -16 0 ok T k4l
Pip j P22
0 0 0 0 —22 20 2 0 2 68 50 0 -2 20 2 0
0 0 0 ©0 0 -16 32 -16 0 32 8 32 0 -l6 32 -I6 pl-k_lj pé‘j_llzj
0 0 0 0 0 -22 20 2 0 26 68 50 0 -22 2 2 k P
0O 0 0 0 22 26 22 0 20 68 20 0 2 5 2 0 Pij P2i2j
0 0 0 0 -19 14 -13 0 14 56 38 0 -13 38 29 0 o prrl
i+1,j 2i+1,2
0 0 0 0 0 -22 2 -22 0 20 68 20 0 2 50 2 ' ol
0 0 0 0 0 -19 14 -13 0 14 56 38 0 -13 38 29 Pi—,j+1 P2i-2.2j+1
k k+1
Piy,j+1 Pi-1,2j+1
k k+1
Pi j+1 P2i2j+1
k k+1
Pisl, j+1 Pit1,2j+1
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Fig. 3: Configuration of new mesh (round dots)
corresponding to the old mesh (square dots).

(a) Level 0(Control mesh) (b) Level 1

-

(c) Level 2 (d) Level 3

(e) Level (f) Level

Fig. 4: Results of proposed non-tensor product scheme

(3.3).
The polygonal mesh of new sixteen points
k+l _ K+l k_ k
PR A 2 em corresponding to old mesh p =Pfjem’

where 4m=-2-101 g illustrated in Figure 3.

According to Reif's condition (2.3) the eigenvalues
of [M] determine the continuity of the subdivision
scheme. The eigenvalues of [M] are

27278844748 432
593 L2 LL,Liﬁi
216(46450+I8M)1/3 2167167247 16 48
(46450 +184/1510431)1/3 N 593 L25
864 43246450 + 184151043 1)1/3 216
1£[ (46450 +184/1510431)!/3 . 593 i].
8 108 54(46450 + 18151043 1)/3

Since the characteristic map is regular (i.e. it is 1-1
and onto everywhere) and satisfy Reif's condition (2.3),
the proposed non-tensor product scheme (3.3) is C'-
continuous for regular quad meshes. Figure 4 illustrates
the performance of proposed scheme at different levels.
Figure 4 (a) is the initial control polygon while Figure
4(b), (c), (d), (e) & (f) show the result after subdivision
level 1, 2, 3, 4 and 8 respectively.

DISCUSSION

A new non-tensor product binary C' subdivision
scheme for regular quad meshes has been introduced. The
construction method is direct, with no reliance on any
existing schemes. The subdivision mask comprises four
stencils each of support 9, which generate new vertex,
edge and face points from previous level mesh points.
The scheme has been demonstrated to generate visually
however it is at best only ('
Future research direction will focus on

smooth surfaces,
continuous.
selecting an optimal
smoothness and small support. However, care needs to be
taken to avoid the growth of the support to ensure the
scheme is as local as possible. The idea of using a cubic
function in the generation of subdivision rules is
worthwhile. That is,

A+Bx+Cy+ny+Ex2 +Fy2 +ny2 +ny2 +Jx3 +Ky , we get the

function which gives high

if we wuse cubic function

following insertion rules

k+1 _ 1 k k
p212/ 800 92‘”1 —1,j— 1+176(‘”1 1j+plj l) 16(17[ lj+l+pl+lj 1)
k k k
_68(pi—1 J+2 t Py /'+1 z+2 L J— 1)+372pt . +148(pl ,j+l * Py ])
k
+104(pl 2 TPt ]) (pH—l ,Jj+2 p1+2 /+1) 8p1+2 J+2[°

k+1

k k
P21+1 2/ "%oo ! Piyg, j) 150y

k k

00( p—l ]—1+pl] 1 p1+l,j—l_

K e rs(pf e pR L yesoept gk gk R
l+ i L] l+ 5] l*,‘/‘*’ l,j+ 1+ ,_]+ 1+ ,j+

k k k
+25(- pl 1]+2+p1 ]+2+p1+1 J+2 “Piy2 ]+2)
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k4 _ 1 k k k k k
P3i2j+1 = gog [\ OCPict, jo1 * Pict, T Picy o P ja2) 1P g

P ok k P P &
0 ) I Py ) S0P iyt Pt P et Pis ja2)

k k k k
0Py 1t Piva,j P, Piv, j42))

K+l _ 1 k k k k k
Py )41 —ﬁ{‘75@i—1,j—1 FPiL 42 P2, j1 P, ) TR0

& 2 2 & & P P P
P i P P ) PP P i TP P a2 P

k k k
i 2 TP, TP, j+l)}'

Unfortunately, its support size is 16, which is
higher than the scheme (3.3), which makes it less local.
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