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Abstract: In this paper, we present an algorithm called the Reduced Differential Transform Method (RDTM)
to obtain approximate solutions for the Fitzhugh-Nagumo (FN) equation, Ito equation and find an exact solution
to nonlinear PDE. The numerical results show that this method is a powerful tool for solving nonlinear PDEs
and the results show that the method reduces the numerical calculations. Also, the approximate solutions we
present in this paper reveals that the proposed method is very effective, simple and can be applied to other
nonlinear partial differential equations (NLPDEs) models in the area of Biology, population genetics, Physics

and Engineering.
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INTRODUCTION

Nonlinear partial differential equations are widely
used to describe many important phenomena and dynamic
processes in physics, mechanics, chemistry, biology, etc.
The study of nonlinear partial differential equations plays
an important role in physical sciences and engineering
fields. The investigation of exact solutions of nonlinear
PDEs plays an important role in the study of nonlinear
physical phenomena. Many methods, exact, approximate
and purely numerical are available in literature for the
solution of nonlinear partial differential equations.

The RDTM was first introduced by a Turkish
Mathematician, Y. Keskin in his Ph.D. [1-3]. This method
based on the use of the traditional DTM techniques.
Usually, a few numbers of iteration needed of the series
solution for numerical purposes to get high
accuracy.

The RDTM has been used by many authors to obtain
analytical and approximate solutions to nonlinear wave
equations. Keskin and Oturanc, [1-3] used the RDTM to
solve linear and nonlinear wave equations and they

showed the effectiveness and the accuracy of the

proposed method. Moreover, Keskin and Oturanc showed
that the number of iterations it takes to get an approximate
solutions is less than the one used by the DTM and other
well-known methods in the field. Also, S. M. Sayed and
G. M. Gharib, [6] used the Sine-Cosine Method to solve
the FN equation. In addition, M. Rawashdeh, [12] used
the RDTM to find exact and approximate solution for
Gardner equation, Variant Nonlinear Water Wave
equation (VNWW) and the Fifth-Order Korteweg-de Vries
(FKdV) equation. Finally, Ibis and Bayram [11] used the
RDTM to find approximate solutions for the (KdVB)
equation, Drinefel'd-Sokolov-Wilson equations, coupled
Burgers equations and modified Boussinesq equation.
The standard form of the Fitzhugh-Nagumo equation [9]
is given by u —uy +u(l-u)a—-u)=0_ where is a constant.
Note that when @ = -1 , the FN equation becomes the
Newell-Whitehead (NW) equation which is an important
nonlinear reaction-diffusion equation and usually is used
to model the transmission of nerve impulse, also used in
circuit theory, biology and the area of population genetics
as mathematical models. In this paper, we were being able
to find approximate and exact solutions for the following
NLPDEs:
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First, the Fitzhugh-Nagumo (FN) equation:

u,=u, —u(l—u)(a—u)

(1.1)
subject to the initial conditions
u(x,0) =%[l-tanh[%]] (1.2)
Second, the Ito equation:
u, +um€xx+3uuxx+6uxum+2u2ux =0 (1.3)
subject to the initial condition
u(x,O):—IO,u(2—3tanh2 (Hx)) (1.4)
Third, consider the nonlinear PDE:
u,—uuxx—(ux)z—uzo (1.5)
subject to the initial condition
u(x,0) =/x (1.6)

The aim of our study is to be able to use the RDTM
as an alternative method to the existing methods in
solving different types of nonlinear partial differential
equations (NLPDEs). Many authors used different
methods to solve the NLPDEs mentioned above, to name
few: The DTM, ADM, VIM, Tanh-Coth method and
Sine-Cosine method.

The rest of this paper is organized as follows: In
Section 2, the RDTM is introduced. Section 3 is devoted
to apply the method to the PDEs mentioned above and
present tables to show the effectiveness of the RDTM for
some values of and . Section 4 is for discussion and
conclusion of this paper.

The Reduced Differential Transform Method (RDTM):
In this section, we will give the methodology of the
RDTM. So let's start with a function of two variables u(x,?)
which is analytic and A-times continuously differentiable
with respect to time ¢ and space x in the domain of our
interest. Assume we can represent this function as a
product of two single-variable functions u(x,#)= f(x).g(?) .

From the definitions of the DTM, the function can be
represented as

u(x,)= [iF(i)xi]{iG(j)tj} = iUk(x)tk @1
i=0 =0 k=0

where U,(x) is the transformed function of which can
be defined as:

k
1|0
Uy (x) :ELt_ku(x,t)} & (22)
t=0

From equations (2.1) and (2.2) we can deduce

k )
0 1
u(xr)= Zﬁlat_k”(x’”] * =k§O:EUk(X)tk 23)
t=0 =

Some basic operations of the reduced differential
transformation obtained from equations (2.1) and (2.2) are
given in the table below:

Now, we illustrate the RDTM by using the
Newell-Whitehead (NW) equation in standard form

L(u(x,t)) + R(u(x,t)) + N(u(x,t))+ F(u(x,t)) =0 (2.4)
with initial conditions
u(x,0) = f(x),u,(x,0) = g(x) (2.5)

3

2 .
where, ; _0 p_0" are the linear

9 S F = and N = u
ox

operators that have partial derivatives.
Using the RDTM formulas in Table 1, we can find the
following recursive relation:

(k+1)Uk(x):R(Uk(x))—N(Uk(x))+Uk(x) (2.6)

where, (U (x).Ug(x) and N(u(x.0) are the transformations

of Rwx,0) | F(u(x,n) and N(u(x.1) respectively.
Now from equation (2.5), we can write the initial
condition as:

Up(x) = f(x),U;(x) = g(x) 2.7)
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Table 1: Basic operations of the RDTM [1, 2, 3]

Transformed form

k
u(x,1) ]:'|:6ku(x,t):|
Lot t=0

au(x,t) + Bv(x,t)

Functional Form

Uy (x) £ BVj(x), o and B are contant.

k
u(x,0).v(x, 1) ZUi () Vi —i(x)
i=0

u(x,t).v(x,t).w(x,t)

k i
DD U0V i

i=0 j=0
" (k+n)!
at—nu(x,t) X Uk 4 n(x)
o n
—u(x,t) — Uk (x)
o o
X" Mu(x,1) MUy (x)
1, k=

KMl x™8(k —n), where §(k7n):{0: k¢Z

n+m n

o [(k+m)!
u(x,1) 7{ Uk +m(x)}

oo™ a'l K

To find all other iterations, we first substitute equation
(2.7) into equation (2.6) and then we find the values of
Ui(x). Finally, we apply the inverse transformation to all

the values Uy, 10 obtain the approximate solution:

i(x,t) = ZUk(x)tk (2.8)

k=0

where n is the number of iterations we need to find the
intended approximate solution.

Hence, the exact solution of our problem is given by

u(x,t)= lim u(x,t) ,
n—0

Applications: In this section, we apply the RDTM to three
numerical examples and then compare our approximate
solutions to the exact solutions.

Examples: In this section, we present three examples to
show the efficiency of the RDTM.

Example 3.1.1: Consider the Fitzhugh-Nagumo (FN)
equation:

|

w =tugy —u(1-u)(a-u)» Where a is a constant. It is worth

mentioning that this equation has an exact solution given

by uien =t 1a sl (Lo2) X ]].
Y e 2(1” h((4 2} zﬁD

Case 1: (a=-1) This is called the Newell-Whitehead (NW)
equation which is given by
(3.1)

u, —uy —u(l—u)l+u)=0

subject to the initial conditions

u(x,O)z%[l—tanh(%x]],u (x’o)zgsechZ(%J

(3.2)
where the exact solution is
1 3t X
u(x,t) =—| 1+ tanh| — ——— (33)
(0 2[ [ 4 242 D

Applying the RDTM to (3.1) and (3.2), we obtain the
recursive relation

2

1 8—2(Uk(x))+Uk(x)—
Uk+1(x):(mj ki (3-4)
ZZUJ.(X) Ui (U ()
i=0 j=0

where the Uy(x), is the transform function of the
dimensional spectrum. Note that

Uo(x) = %{l —tanh (%x}] and U1 (%)= %sech2 (%)
(3.5

Now, substitute Eq. (3.5) into Eq. (3.4) to obtain the
following:

X

U2 (x)= %csch3 (ﬁ] sinh4 [%), U3 (x)
) [1440sech2 (zjij ~2160sech® (235})

10240

(3.6)
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Fig. 2: The approximate, exact solutions and absolute error respectively for example 3.1.1 () when -5<x <5 and 0<t <0.01.

We continue in this manner and after the fifth
iteration, the differential inverse transform of
Uk, will provide us with the following approximate

solution:

i(x.0)= D Ut =Up() + Uy ()1 + Uy ()2 +.
k=0

:l 1—tanh ﬁx +§sech2 al
2 4 8 22
9 3 x ). 4( x ]2
t+—csch”| —= |sinh" | —= |t“ +...
4 [ﬁj 22

Case 2: (a = 1) Now the Fitzhugh-Nagumo (FN) equation
becomes

u, —uy +u(l—u)(1-u)=0 (3.7

subject to the conditions

u(x,O)z%[l—tanh[%x]],u (x,o):_gsechZ(%j
(3.8)

where the exact solution is

u(x,t) = %(1 —tanh (% + %D

Applying the RDTM to (3.7) and (3.8), we obtain the
recursive relation

(3.9)

2 (U, 0) -V,
—(U, (x)|-U;(x)+
6x2 k k
1 k
Uk+l(x)=(mj 220Ul(x)Uk_l(x)—
=
ki
DAY Ui_j(x)Uj(x)Uk_i(x)
i=0j=0

(3.10)

where U,(x) the, is the transform function of the
dimensional spectrum. Note that

Upx) = %[1 - tanh(?x]} and U} (x) = —gsech2 (%}

(3.11)

Now, substitute Eq. (3.11) into Eq. (3.10) to obtain the
following:

el )
UAE ésechz (%) [sechz (%J [5 +6tanh [%D - 2}

(3.12)

We continue in this manner and after the fifth

iteration, the differential inverse transform of Uk,

will provide us with the following approximate
solution:
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Fig. 3: The approximate, exact solutions and absolute error respectively for example 3.1.2 () when -5<x <5 and 0< t <0.01.

i(x,)= i Uy (0" =Up(x)+ U ()1 + Uz(x)tz o
k=0

=l 1—tanh Qx —Esech2 ~ t
2 4 8 242
3 2 x x )2

+—sech tanh| — [t +...
32 (NEJ (NEJ

Example 3.1.2:
We consider the Ito equation

u, +uwcxx+3uuxx+6uxuxx+2u2ux =0 (3.13)
subject to the initial condition
u(x,O):—1ou(2—3tanh2(ﬁx)) (3.14)
where the exact solution
u(x,z):—wu(z—3tanh2(ﬁ(x—96u2t)j) (3.15)

Now, we apply the RDTM to Eq. (3.13) and Eq. (3.14)
we get

5 k 2

0 0
—\ U, (0))+3 X U, (x)—=U, _:(x)
8x5( k ) 2o k 6x2 k—i

-1 koo o
(X)—((k+l)j +6l§0§Uk(X)ax_2Uk_l(x)+

ki

2 X Ui_j(x)Uj(x)Uk_i(x)
i=0j=0

(3.16)

where the U,(x), is the transform function of the
t-dimensional spectrum. Note that when x4 =-0.01, then

Uy :0.1(2—3tanh2(0.1x)) (3.17)

Now, substitute Eq. (3.17) into Eq. (3.16) to obtain the
following:

Uy (x) = sech?(0.1x) tanh(0. 1x)(0.0048 — 0.001344sech* (0. 1x)

~0.01296 tanh (0. 1x)+ 0.008736 tanh * (0. 1x) + sech® (0.1x)
(~0.00288 + 0.007392 tanh 2 (0. 1x))

U, (x) = 0.000244sech!% (0.1x)(~0.000495 — 0.00055
cosh(0.2x) — 0.0002 cosh(0.4x) — 0.00001327

cosh(0.6x) +0.000017 cosh(0.8x) + (4.42368)10~0
cosh(x) +(7.10366)10 18 sinh(0.2x) + (1.9645)10720
sinh(0.4x) + sinh(0.6x)— (4.911)10 22 sinh(x))

So after the third iteration, the differential inverse

transform of (U ()} will give the following approximate

3
k=0
solution:

3
i(x0)= Y Ui =Uy(x) + Uy ()1 + Uy(x)i% + Uy ()1
k=0

Note this will converge to the exact solution.
Example 3.1.3:

We consider the nonlinear PDE

ut—uuxx—(ux)z—uzo (3.18)
subject to the condition
u(x,0) =~/x (3.19)
where the exact solution
u(x,t)=x e (3.20)
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Applying the RDTM to (3.13) and (3.14), we obtain
the recursive relation

S0,
U.(x)—=U;, _:(x)+
pard i 6x2 k—i

ko )
;)an(x)aUk_i(x)+Uk(x)

U1 90= 4

Uo(x)=\/;

(3.21)

Now for k>1 we obtain

Ul(x)zx/;,Uz(x)zg,U:;(x)=%>U4(x):£
Thus,
u(x,t)=\/;+tx/;+t2;/;+t3;/;+t42f+tj;§+tj;/();+...
=Vx 1+t+é+§+;—1 % ;760+ =Vxd.

This is an exact solution of Eq. (3.13).

Tables of Numerical Calculations: We employed the
RDTM successfully to three applications. The RDTM
showed it is accurate and efficient method. Tables {2, 3,4}
show the exact solution, the approximate solution and the
absolute error obtained by the RDTM for different values
of x and t.

Table 2: Comparison of the absolute error of the solution for the
Newell-Whitehead equation, by RDTM for different values of

Table 3: Comparison of the absolute error of the solution for the
Fitzhugh-Nagumo equation , by RDTM for different values of x

and ¢
¥ 1 Exact Solution BTN Solation Al ervor (BITM) (=5 §
-5 0002 0071500416502 523 0071 S00 024454562
0004 DOTISI6E 17070086 [ B ) e
006 DOTIIIIEII I8 007143408651 77219
001 DHT] 266408055 185 ] 007 2EEIGH050042T
-3 0002 DR02671 B THETIE Ly B
0004 5513513000190 14 055135161933 56554
0006 D EO200EGH07I0T B0 BITY
0.01 (EDLS 1065 TILL1E (R R T T AR
0002 0106745387763 0408 01067 S 1626488172
0004 0 1M PO 0028 0 10GHETPIIEH
0006 01061545542 | 208 0 106182 5620190173
001 0 10561647180152123 0 1056 10B65 702963 86
0002 0411 TSI RI8R156 041170902072 2006
0004 00281 1318886014338 00281 519781 13600
0006 002807131101 3531982 DOIB0TELHTION
(1] DO2THBOBSETETI6IS 002051 E103230626
Table 4: Comparison of the absolute error of the solution for the Ito

equation (1 =-0.01 ), by RDTM for different values of x and t

Exact Sohstion RDTM Solution Abs aror (RDTM) (n=3)

OFS0IIO01 21656411 15403 5001 1696811

01303348250352562 01350334RIE32552

Q006 0.135033063860461 58 0 13503306386046158 "
001 013III68104888 Q1109104 o
=] 0001 QTS HTRLABAT2S QISR pssemegs

1 o 019073009267 S801 55 O 1POTIHHIOLETSEOLSS o
a6 01740167291 163 0101672091163 [

001 O1TI3085206431943 017483055206 5310%5 A
] 1002 017441 9800002 0174190 o

Q004 OIS DTS00 sasrsge

a0 017200 G ssamsg !

O 17454262409 293766

0139035 1472338906 ORI ISTIIINIG

0.3503557500446917 O3503E5TE0046817

13503641 3144471 01303641 B TR

CONCLUSION

In this paper, we applied the Reduced Differential
Transform Method (RDTM) to all three physical models,
namely, the Fitzhugh-Nagumo equation, Ito equation and
one NLPDEs equation. We successfully found
approximate solutions for the Fitzhugh-Nagumo equation
and Ito equation and found an exact solution to another
NLPDE. We only used 3-iteration in the case of Ito

equation to get a very good error.

Also, we were being able to find exact solutions to
examples (3.1.3). The results we obtained in example (3.1.1)

and (3.1.2) were in excellent agreement with the exact

solutions. The RDTM introduces a significant

improvement in the fields over existing techniques

because it takes less calculations and the number of

iteration is less compared by other methods. My goal in

the future is to apply this method to other nonlinear PDEs

which arise in other areas of science such as Biology,

Medicine and Engineering. Computations of this paper

x and ¢
v i Exact Solution EDTM Sohtion Abe emor (RDTM)
{n=5)

-5 Do 9TITBISLIMITH DOTIRIELBIM 1102em02s e
DO GOTIEHTTI0S DOTISITIILI0NGT 1 nzzzze e
2006 09719 I56TTORGIE 07| 9286TE6HE
oot 00701014321 2247 BOTNRIOLLELH
06 0824612235705 0BIRLHE1IHE5]
D004 0501E0IAI00T01 054BITBIIINT2
0006 OB0IRLEITEL 4 GSMRIATRIRY
ool OBBEIS IR N0ET (B0 353 428105407
DGz 0107328601 23432610 10T R4 262 .
DO 0.10761664823300825 010761665523 100631 s 163m3ean "
0006 0107004 LO3 30024035 (L0 100 20024042 326672688
oot 0108481033 88782 0108431033 28877902 1 7208459815
pocz DALILEIH0M0E OALLSILHONES sssinsize!
004 00284838260 001408 Q0288122001308 :
0008 0025565616 745610607 0025465616 461060 3 aepmaezsg e
oot 002THE AU HIETIHOINNTLNG 1 367778 ¢

have been carried out using the computer package of

Mathematica 7.
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