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INTRODUCTION 

 
 Nobusawa [1] introduced the notion of a Γ-ring, a notion more general than a ring. Barnes [2] slightly weakened 
the conditions in the definition of a Γ-ring in the sense of Nobusawa. After the study of Γ-rings by Nobusawa [1] and 
Barnes [2], many researchers have done a lot of work and have obtained some generalizations of the corresponding 
results in ring theory [3, 4].  Barnes  [2]  and  Kyuno  [3] studied the structure of Γ-rings and obtained various 
generalizations of the corresponding results of ring theory.  
 If M and Γ are additive abelian groups and there exists a mapping M M M× Γ × →  which satisfies the following 

conditions: 
For all a,b ∈ M and , ,α β ∈ Γ  

 
(i) (a, ,b),β  denoted by a b,β  is an element of M 

(ii) (a b) c = a c b c, a ( ) b = a b a b, a ( b c ) = a b a c+ β β + β α + β α + β β + β + β  

(iii) ( a b) c = a ( b c )α β α β  
 
then M is called a Γ- ring [2]. It is known that from (i)-(iii) the following follows: 
 

(*) 0 b = a 0 b = a 0 = 0β β  
 

for all a and b in M and all β in Γ [2].  
 Every ring is a Γ-ring with M  =  Γ. However a Γ-ring need not be a ring. Let M be a Γ-ring, then M is called a 
prime Γ-ring if a M b = 0 a = 0Γ Γ ⇒  or b = 0, a, b M∈  and M is called a semiprime Γ-ring if 

a M a = 0 a = 0,Γ Γ ⇒  a ∈ M. Every prime Γ-ring is obviously semiprime. If M is a Γ-ring, then M is said to be 

2-torsion free if 2x = 0 implies x = 0 for all x ∈ M. An additive subgroup I of M is called a left (right) ideal of M if 
M I I (I M I).Γ ⊆ Γ ⊆  If I is both left and right ideal of M, then we say I is an ideal of M. Moreover, the set  

 
Z ( M ) = { x M : x y = y x , y M }∈ β β ∀ β ∈ Γ ∈  

 

is called the centre of the Γ-ring M. We shall write [ x , y ] = x y y xβ β − β  for all  x, y ∈ M  and  .β ∈ Γ  We shall make 

use of the basic commutator identities:  
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z[x y, z ] = [ x , z ] y x[ , ] y x [y, z]α α αβ β + β α + β  and x[ x , y z ] = [ x , y ] z y [ , ] z y [ x , z ]α α αβ β + α β + β  

 
for all x, y ,z M∈  and , .α β ∈ Γ  If Γ-ring satisfies the assumption (**) a b c = a b cα β β α   for all 

a , b , c M, , ,∈ α β ∈ Γ  then the above identities reduce to [x y, z] = [ x , z ] y x [ y , z ]α α αβ β + β  and 

[ x , y z] = [ x , y ] z y [ x , z ] ,α α αβ β + β      for all    x, y, z ∈ M   and , .α β ∈ Γ   

 Derivations have been generalized as generalized derivations by Bresar [5] and Hvala [6] and they have 
investigated some properties of such derivation in the context of prime and semiprime rings. Recently the notion of a 
generalized derivation is introduced in semiprime Γ-rings by Dey, Paul and Rakhimov [7]. Yilmaz and Ozturk [8] 
have also proved some results in Γ-rings for Jordan generalized derivations.  
 Let M be a Γ-ring. An additive mapping  D: M →   M is called a derivation on M if  
d(x y ) = d ( x ) y x d ( y )γ γ + γ  holds for all x, y ∈ M  and .γ ∈ Γ  An additive mapping  D: M  →   M is called a right 

generalized derivation if there exists a derivation  D: M  →  M  such that  D(x y) = D(x) y x d(y)γ γ + γ  holds for all 

x, y ∈ M  and .γ ∈ Γ  An additive mapping  D:  M  → M is called a left generalized derivation if there exists a 

derivation D: M  → M such that D(x y) = d ( x ) y x D(y)γ γ + γ  holds for all x, y M∈   and  .γ ∈ Γ   D is said to be 

a generalized derivation, with associated a derivation d, if it is both a right and a left generalized derivation. A 
derivation of the form x a x x b→ α + α  where a, b are fixed elements of M and α ∈ Γ  is called generalized inner 

derivation.  An additive mapping  T: M  →   M is called a  left (right) centralizer if  T ( x y) = T ( x ) yα α  

(T(x y ) = x T(y))α α  for all x, y M, .∈ α ∈ Γ  Obviously the concept of a generalized derivation covers concepts of a 

derivation and a left centralizer. 
 

RESULTS 
 
In this section we prove our results. 
 
Lemma 1: Let M be a prime Γ-ring with characteristic not equal to 2 and I a non zero ideal of M. Let  ƒ: M → M be a 
generalized derivation of M, with associated derivation d. If ƒ(x) = 0 for  all  x ∈ I, then    ƒ = 0. 
 
Proof: For all x, y ∈ I  and  ,β ∈ Γ  f ( x y)=0.β  That is, f ( x ) y x d (y )=0 ,β + β  which implies x d(y )=0 .β  Let 

z M, .∈ α ∈ Γ   The last relation alongwith  (*)  gives,  x z d (y )=0 .α β  Since M is prime Γ-ring and I is a nonzero 

ideal,  so d(y) = 0 for all y ∈ I. Hence, by hypothesis, f ( r y) = 0β  for all y ∈ I,  β ∈ Γ  and  r ∈ M. That is, 

f ( r ) y r d (y )=0 ,β + β  which gives f(r) y = 0.β  Let , .w M γ∈ ∈ Γ  The last relation alongwith (*), implies 

f ( r ) w y=0 .β γ  Since I is nonzero and primeness of   M, gives   ƒ = 0. 

 
Lemma 2: Let I be a non zero ideal of a prime Γ-ring M, a ∈ M  and  f 0≠  is a generalized derivation of  M, 

 with associated non zero derivation  d, then 
 
(i) If a f ( x ) = 0β  for  all   x ∈ I and  ,β ∈ Γ   then  a  =  0, 

(ii) If  f ( x ) a = 0β  for  all  x ∈ I  and  ,β ∈ Γ   then  a = 0. 

 
Proof  
 
(i) For  any  x I, r M∈ ∈   and  ,β ∈ Γ   a f ( x r) = 0.β α That is, a f ( x ) r a x d ( r ) = 0 ,β α + β α  which implies, 

a x d( r )=0 .β α  Since  I  is a non zero ideal of  M  and  d 0,≠   we get  a  =  0. 

(ii) Proof  is  similar  to  (i).  
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Theorem 1: Let M be a prime Γ-ring with characteristic not equal to 2 and I a non zero ideal of M. Let  ƒ: M  →  M be 
a generalized derivation of M, with associated non zero derivation d on M. If  f ( x ) Z(M)∈   for  all  x∈I,  then  M  is  

a commutative  Γ-ring.  
 
Proof: Using hypothesis, we have  [ f ( x y) ,y ] = 0αβ   for  all  x, y I, , ,∈ α β ∈ Γ  which gives 

[ f ( x ) y x d(y), y] = 0,αβ + β  which implies [ f ( x ) y, y ] [x d(y), y ] = 0.α αβ + β  Using hypothesis, we get 

x [d (y ) ,y ] [ x , y ] d ( y ) = 0 ,α αβ + β  which gives  

 
x d(y) y x y d(y) x y d(y) y x d (y )=0 .β α − β α + α β − α β  

 
Using (**),  from the last equation  we get  
 

x d(y) y x y d(y) x y d(y) y x d ( y ) = 0 ,β α − β α + β α − α β  

which gives 
 
(1) x d(y) y y x d(y) = 0,β α − α β  

 
for all  x, y I, , .∈ α β ∈ Γ  Let  z ∈ I. Replacing x by x β z in (1), we get x z d(y) y y x z d(y) = 0,β β α − α β β  which 

alongwith (1)  and  (**)  gives x y z d(y) y x z d ( y ) = 0.α β β − α β β  That is,  [ x , y ] z d(y) = 0,α β β  for all 

x, y I, , .∈ α β ∈ Γ  Since I is a non zero ideal of  M  and  d 0,≠  therefore  M is a commutative  Γ-ring.  

  
Theorem 2:  Let M be a prime Γ-ring with characteristic not equal to 2 and I a non zero ideal of M. Let  ƒ:  M  →  M 
be a generalized derivation of M,  with associated derivation d on M. If   a ∈ M and  [ f ( x ) , a ] = 0α  for all 

x I, ,∈ α ∈ Γ  then either  a Z(M)∈   or   d(a)  =   0. 

 
Proof: Using hypothesis, we have [ f ( x y) ,a ] = 0αβ  for any x M, y I∈ ∈  and , ,α β ∈ Γ  which gives 
[d(x) y x f ( y ) , a ] = 0.αβ + β  

That is, 
[d(x) y , a ] [ x f ( y ) , a ] = 0.α αβ + β  

 
The last equation gives  
 

d ( x ) [y , a ] [ d ( x ) , a ] y x [ f (y ) , a ] [ x , a ] f ( y ) = 0.α α α αβ + β + β + β  

 
Using hypothesis,  from the last equation  we get  
 

d ( x ) [y,a] [ d ( x ) , a ] y [ x , a ] f ( y ) = 0 ,α α αβ + β + β  

which implies  
d ( x ) y a d ( x ) a y d ( x ) a y a d(x) y x a f ( y ) a x f ( y ) = 0 .β α − β α + α β − α β + α β − α β  

 
Using  (**),  from the last equation we get  
 

d ( x ) y a d ( x ) a y d ( x ) a y a d(x) y x a f ( y ) a x f (y )=0 ,β α − α β + α β − α β + α β − α β  

which gives 
 
(2) d ( x ) y a a d ( x ) y x a f ( y ) a x f ( y ) = 0.β α − α β + α β − α β  
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Let  z ∈ M.  Replacing y  by  y γ z in  (2),  we get  
 

d ( x ) y z a a d(x) y z x a f ( y z ) a x f ( y z ) = 0.β γ α − α β γ + α β γ − α β γ  

That is, 
d ( x ) y z a a d(x) y z x a f ( y ) z x a y d(z) a x f ( y ) z a x y d( z ) = 0,β γ α − α β γ + α β γ + α β γ − α β γ − α β γ  

which implies  
d ( x ) y z a a d(x) y z (x a f ( y ) a x f ( y ) ) z ( x a a x) y d ( z ) =0.β γ α − α β γ + α β − α β γ + α − α β γ  

 
Using (2), from the last equation  we get  
 

d ( x ) y z a a d(x) y z ( a d(x) y d ( x ) y a ) z [ x , a ] y d ( z ) = 0.αβ γ α − α β γ + α β − β α γ + β γ  

This implies  
d ( x ) y z a a d(x) y z a d(x) y z d ( x ) y a z [ x , a ] y d ( z ) = 0.αβ γ α − α β γ + α β γ − β α γ + β γ  

 
Using  (**),  from the last equation  we get  
 

d ( x ) y z a d(x) y a z [ x , a ] y d (z ) = 0,αβ γ α − β γ α + β γ  

which gives  
d(x) y [ z , a ] [ x , a ] y d ( z ) = 0.α αβ γ + β γ  

 
Replacing  x by a from the last equation, we get  d ( a ) y [ z , a ] = 0αβ γ   for  all  y I, z M,∈ ∈  and  , , .α β γ ∈ Γ  

Since I is non zero ideal of prime Γ-ring M, therefore either  d(a)  =  0  or   a ∈ Z ( M ). 
 
Corollary 1:   Let M be a prime Γ-ring with characteristic not equal to 2 and I a non zero ideal of M. Let ƒ: M  → M 
be a generalized derivation of M, with associated derivation  d  on M. If  [ f ( x ) , f ( y ) ] = 0β   for  all    x, y I, ,∈ β ∈ Γ  

then M is a commutative Γ-ring.  
 
Proof:  Using Theorem 2,  we have  f ( I ) Z(M).⊂   Then using Theorem 2, we get the corollary 2.  

 
Theorem 3:  Let M be a prime Γ-ring with characteristic not equal to 2 and I a non zero ideal of M.  Let ƒ:  M  →  M 
be a generalized derivation of  M, with associated derivation  d  on M . If  f ( x y) = f ( x ) f ( y )β β   for  all x, y I, ,∈ β ∈ Γ  

then  d  =  0.  
 
Proof:      For any x, y I, ,∈ β ∈ Γ   f ( x y) = f ( x ) y x d(y),β β + β  which implies 

 
(3) f ( x ) f ( y ) = f ( x ) y x d(y).β β + β  

 
Let w I, .∈ γ ∈ Γ  Then replacing x by x γ w in (3), we get  

f ( x w) f ( y ) = f ( x w ) y x w d(y),γ β γ β + γ β  

which gives  
 

f ( x ) f ( w ) f ( y ) = f ( x ) f ( w ) y x w d(y).γ β γ β + γ β  

That is,  

 
f ( x ) f ( w y ) = f ( x ) f ( w ) y x w d(y ) ,γ β γ β + γ β  

which implies  
 

f ( x ) f ( w ) y f ( x ) w d ( y ) = f ( x ) f ( w ) y x w d(y).γ β + γ β γ β + γ β  
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 That is, f ( x ) w d ( y ) = x w d(y),γ β γ β  which gives ( f ( x ) x ) w d ( y ) = 0− γ β   for  all  x ∈ I  and  , .γ β ∈ Γ  Since  I is  

a non zero ideal of the prime Γ-ring  M,  therefore either  f ( x ) x = 0−   for  all  x ∈ I  or  d( y )  =  0  for  all  y ∈ I. 

If  f ( x ) x = 0−   for  all  x ∈ I,  then   ƒ ( x )  =  x  for  all  x ∈ I. For  all  y ∈ I. Replacing  x by x yβ  in the last equation, 

we get f ( x y ) = x y,β β  which implies d ( x ) y x f ( y ) = x y,β + β β  which gives d ( x ) y x y = x y.β + β β  That is, 

d ( x ) y = 0β  for  all  x, y I, .∈ β ∈ Γ  Thus d( x )  =  0 for  all  x ∈ I for both cases.  So   d  =   0.  

  
Theorem 4:   Let M be a prime Γ-ring with characteristic not equal to 2 and I a non zero ideal of M.  Let ƒ:  M  → M 
be a generalized derivation of  M, with associated derivation d on M. If  f ( x y ) = f ( y ) f ( x )β β  for all x, y I, ,∈ β ∈ Γ  

then d  =   0. 
 
Proof:   Let x, y I, .∈ β ∈ Γ   Then f ( x y ) = d ( x ) y x f(y),β β + β  which implies 
 
(4) f ( y ) f ( x ) = d ( x ) y x f(y).β β + β   

 
Let x I, .∈ γ ∈ Γ  Then replacing  y  by  x γ y  in  (4),  we get  

 
f ( x y) f ( x ) = d(x) x y x f ( x y).γ β β γ + β γ  

That is, 
d ( x ) y f ( x ) x f ( y ) f ( x ) = d ( x ) x y x f ( y ) f(x).γ β + γ β β γ + β γ  

 
Using  (**),  from the last equation  we get  
 

d ( x ) y f ( x ) x f ( y ) f ( x ) = d ( x ) x y x f ( y ) f(x),γ β + β γ β γ + β γ  

which gives 
 
(5) d ( x ) y f ( x ) = d ( x ) x y.γ β β γ   

 
Let w I, .∈ α ∈ Γ  Then replacing  y  by  y α w,  we get d ( x ) y w f ( x ) = d ( x ) x y w,γ α β β γ α  which alongwith (5) gives  

 
d ( x ) y w f ( x ) = d ( x ) y f ( x ) w.γ α β γ β α  

 
Using  (**),  from the last equation  we get  
 

d ( x ) y f ( x ) w d(x) y w f ( x ) = 0 .γ α β − γ α β  

 
 That is, d ( x ) y [ f ( x ) , w ] = 0.βγ α   Since I is a non zero ideal of  the prime  Γ-ring M,  therefore either  d(x) = 0 

for all x ∈ I  or  [ f ( x ) , w ] = 0β  for all x, w I∈  and .β ∈ Γ  Let A = { x I: d ( x ) = 0}∈  and 

B = { x I : [ f ( x ) , w] = 0, w I}.β∈ ∀ ∈   Obviously  A  and  B are  additive subgroups of  I. Moreover  I is the set 

theoretic  union  of  A  and  B.  But a group can not be  set  theoretic  union  of  two proper  subgroups.  Hence  either  
A  =  I   or    B  =  I. If  A  =  I,  we have  d ( R )  =  0,  which completes the proof. If  B  =  I, then 
0 = [ f ( x ) , w ] = w [ f ( x ) , r ]β βα   for  all x, w I, r M∈ ∈  and , .α β∈Γ  Thus, we obtain f ( I ) Z(M).⊂  Using 

Theorem 2,  we  get  d   =  0.  
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