World Applied Sciences Journal 23 (12):59-64, 2013

ISSN 1818-4952

© IDOSI Publications, 2013

DOI: 10.5829/idosi.wasj.2013.23.12.2889

Generalized Derivations on Prime G-Rings

Abdul Rauf Khan, Muhammad Anwar Chaudhry and Imran Javaid

Center for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University Multan, Pakistan

Abstract: Let M be a prime Γ -ring with characteristic not equal to 2, I a non zero ideal of M and $f: M \to M$ a generalized derivation of M, with associated non zero derivation d on M. If $f(x) \in Z(M)$ for all $x \in I$, then M is a commutative Γ -ring.

Mathematics subject classification (2010): 16W25 . 16N60 . 47B47 . 16U80

Key words: Gamma ring . prime gamma ring . derivation . generalized derivation . commutators

INTRODUCTION

Nobusawa [1] introduced the notion of a Γ -ring, a notion more general than a ring. Barnes [2] slightly weakened the conditions in the definition of a Γ -ring in the sense of Nobusawa. After the study of Γ -rings by Nobusawa [1] and Barnes [2], many researchers have done a lot of work and have obtained some generalizations of the corresponding results in ring theory [3, 4]. Barnes [2] and Kyuno [3] studied the structure of Γ -rings and obtained various generalizations of the corresponding results of ring theory.

If M and Γ are additive abelian groups and there exists a mapping $M \times \Gamma \times M \to M$ which satisfies the following conditions:

For all $a,b \in M$ and $\alpha, \beta \in \Gamma$,

- (i) (a,β,b) , denoted by $a\beta b$, is an element of M
- $(ii) \quad (a+b)\beta c = a\beta c + b\beta c, \ a(\alpha+\beta)\ b = a\alpha b + a\beta b, \ a\beta(b+c) = a\beta b + a\beta c$
- (iii) $(a\alpha b)\beta c = a\alpha(b\beta c)$

then M is called a Γ - ring [2]. It is known that from (i)-(iii) the following follows:

(*)
$$0\beta b = a 0 b = a \beta 0 = 0$$

for all a and b in M and all β in Γ [2].

Every ring is a Γ -ring with $M = \Gamma$. However a Γ -ring need not be a ring. Let M be a Γ -ring, then M is called a prime Γ -ring if a $\Gamma M \Gamma b = 0 \Rightarrow a = 0$ or b = 0, a, $b \in M$ and M is called a semiprime Γ -ring if a $\Gamma M \Gamma a = 0 \Rightarrow a = 0$, $a \in M$. Every prime Γ -ring is obviously semiprime. If M is a Γ -ring, then M is said to be 2-torsion free if 2x = 0 implies x = 0 for all $x \in M$. An additive subgroup Γ of Γ is called a left (right) ideal of Γ if Γ is both left and right ideal of Γ , then we say Γ is an ideal of Γ . Moreover, the set

$$Z(M) \!=\! \{\, x\!\in\! M\!:\! x\beta y \;=\; y\!\beta\, x \quad \forall \; \beta\in \; \Gamma, \quad y\!\in \; M \;\}$$

is called the centre of the Γ -ring M. We shall write $[x,y]_{\beta} = x\beta y - y\beta x$ for all $x, y \in M$ and $\beta \in \Gamma$. We shall make use of the basic commutator identities:

$$[x\beta y, z]_{\alpha} = [x, z]_{\alpha}\beta y + x[\beta, \alpha]_{z}y + x\beta[y, z]_{\alpha}$$
 and $[x, y\beta z]_{\alpha} = [x, y]_{\alpha}\beta z + y[\alpha, \beta]_{x}z + y\beta[x, z]_{\alpha}$

for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$. If Γ -ring satisfies the assumption (**) $a\alpha b\beta c = \beta b\alpha c$ for all $a, b, c \in M$, α , $\beta \in \Gamma$, then the above identities reduce to $[x\beta y, z]_{\alpha} = [x, z]_{\alpha} \beta y + x\beta [y, z]_{\alpha}$ and $[x, y\beta z]_{\alpha} = [x, y]_{\alpha} \beta z + y\beta [x, z]_{\alpha}$, for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

Derivations have been generalized as generalized derivations by Bresar [5] and Hvala [6] and they have investigated some properties of such derivation in the context of prime and semiprime rings. Recently the notion of a generalized derivation is introduced in semiprime Γ -rings by Dey, Paul and Rakhimov [7]. Yilmaz and Ozturk [8] have also proved some results in Γ -rings for Jordan generalized derivations.

RESULTS

In this section we prove our results.

Lemma 1: Let M be a prime Γ -ring with characteristic not equal to 2 and I a non zero ideal of M. Let $f: M \to M$ be a generalized derivation of M, with associated derivation d. If f(x) = 0 for all $x \in I$, then f = 0.

Proof: For all $x, y \in I$ and $\beta \in \Gamma$, $f(x\beta y)=0$. That is, $f(x)\beta y + x\beta d(y)=0$, which implies $x\beta d(y)=0$. Let $z \in M$, $\alpha \in \Gamma$. The last relation alongwith (*) gives, $x\alpha z\beta d(y)=0$. Since M is prime Γ -ring and I is a nonzero ideal, so d(y)=0 for all $y \in I$. Hence, by hypothesis, $f(r\beta y)=0$ for all $y \in I$, $\beta \in \Gamma$ and $r \in M$. That is, $f(r)\beta y + r\beta d(y)=0$, which gives $f(r)\beta y=0$. Let $w \in M$, $g \in \Gamma$. The last relation alongwith (*), implies $f(r)\beta w\gamma y=0$. Since I is nonzero and primeness of M, gives f=0.

Lemma 2: Let I be a non zero ideal of a prime Γ -ring M, $a \in M$ and $f \neq 0$ is a generalized derivation of M, with associated non zero derivation d, then

- (i) If $a\beta f(x) = 0$ for all $x \in I$ and $\beta \in \Gamma$, then a = 0,
- (ii) If $f(x)\beta a = 0$ for all $x \in I$ and $\beta \in \Gamma$, then a = 0.

Proof

- (i) For any $x \in I$, $r \in M$ and $\beta \in \Gamma$, $a\beta f(x\alpha r) = 0$. That is, $a\beta f(x)\alpha r + a\beta x\alpha d(r) = 0$, which implies, $a\beta x\alpha d(r) = 0$. Since I is a non zero ideal of M and $d \neq 0$, we get a = 0.
- (ii) Proof is similar to (i).

Theorem 1: Let M be a prime Γ -ring with characteristic not equal to 2 and I a non zero ideal of M. Let $f: M \to M$ be a generalized derivation of M, with associated non zero derivation d on M. If $f(x) \in Z(M)$ for all $x \in I$, then M is a commutative Γ -ring.

Proof: Using hypothesis, we have $[f(x\beta y),y]_{\alpha} = 0$ for all $x, y \in I$, $\alpha, \beta \in \Gamma$, which gives $[f(x)\beta y + x\beta d(y), y]_{\alpha} = 0$, which implies $[f(x)\beta y, y]_{\alpha} + [x\beta d(y), y]_{\alpha} = 0$. Using hypothesis, we get $x\beta[d(y),y]_{\alpha} + [x,y]_{\alpha}\beta d(y) = 0$, which gives

$$x\beta d(y)\alpha y - x\beta y\alpha d(y) + x\alpha y\beta d(y) - y\alpha x\beta d(y) = 0.$$

Using (**), from the last equation we get

$$x\beta d(y)\alpha y - x\beta y\alpha d(y) + x\beta y\alpha d(y) - y\alpha x\beta d(y) = 0$$
,

which gives

(1) $x\beta d(y)\alpha y - y\alpha x\beta d(y) = 0$,

for all $x, y \in I$, $\alpha, \beta \in \Gamma$. Let $z \in I$. Replacing x by $x \beta z$ in (1), we get $x\beta z\beta d(y)\alpha y - y\alpha x\beta z\beta d(y) = 0$, which along with (1) and (**) gives $x\alpha y\beta z\beta d(y) - y\alpha x\beta z\beta d(y) = 0$. That is, $[x,y]_{\alpha}\beta z\beta d(y) = 0$, for all $x, y \in I$, $\alpha, \beta \in \Gamma$. Since I is a non zero ideal of M and $d \ne 0$, therefore M is a commutative Γ -ring.

Theorem 2: Let M be a prime Γ -ring with characteristic not equal to 2 and I a non zero ideal of M. Let $f: M \to M$ be a generalized derivation of M, with associated derivation d on M. If $a \in M$ and $[f(x), a]_{\alpha} = 0$ for all $x \in I$, $\alpha \in \Gamma$, then either $a \in Z(M)$ or d(a) = 0.

Proof: Using hypothesis, we have $[f(x\beta y),a]_{\alpha} = 0$ for any $x \in M$, $y \in I$ and α , $\beta \in \Gamma$, which gives $[d(x)\beta y + x\beta f(y),a]_{\alpha} = 0$.

That is,

$$[d(x)\beta y, a]_{\alpha} + [x\beta f(y), a]_{\alpha} = 0.$$

The last equation gives

$$d(x)\beta[y,a]_{\alpha} + [d(x),a]_{\alpha}\beta y + x\beta[f(y),a]_{\alpha} + [x,a]_{\alpha}\beta f(y) = 0.$$

Using hypothesis, from the last equation we get

$$d(x)\beta[y,a]_{\alpha} + [d(x),a]_{\alpha}\beta y + [x,a]_{\alpha}\beta f(y) = 0,$$

which implies

$$d(x)\beta y \alpha a - d(x)\beta a\alpha y + d(x)\alpha a\beta y - a\alpha d(x)\beta y + x\alpha a\beta f(y) - a\alpha x\beta f(y) = 0.$$

Using (**), from the last equation we get

$$d(x)\beta y\alpha a - d(x)\alpha a\beta y + d(x)\alpha a\beta y - a\alpha d(x)\beta y + x \alpha \alpha \beta f(y) - a\alpha x \beta f(y) = 0$$

which gives

(2)
$$d(x)\beta y \alpha a - a \alpha d(x)\beta y + x \alpha a \beta f(y) - a \alpha x \beta f(y) = 0$$
.

Let $z \in M$. Replacing y by $y \gamma z$ in (2), we get

$$d(x)\beta y \gamma z \alpha a - a\alpha d(x)\beta y \gamma z + x \alpha a \beta f(y \gamma z) - a\alpha x \beta f(y \gamma z) = 0.$$

That is,

 $d(x)\beta y\gamma z\alpha a-a\alpha d(x)\beta y\gamma z+x\alpha a\beta f(y)\gamma z+x\alpha a\beta y\gamma d(z)-a\alpha x\beta f(y)\gamma z-a\alpha x\beta y\gamma d(z)=0,$ which implies

$$d(x)\beta y\gamma z\alpha a - a\alpha d(x)\beta y\gamma z + (x\alpha a\beta f(y) - a\alpha x\beta f(y))\gamma z + (x\alpha a - a\alpha x\beta y\gamma d(z) = 0.$$

Using (2), from the last equation we get

$$d(x)\beta y\gamma z\alpha a-a\alpha d(x)\beta y\gamma z+(a\alpha d(x)\beta y-d(x)\beta y\alpha a)\gamma z+[x,a]_{\alpha}\beta y\gamma d(z)=0.$$

This implies

$$d(x)\beta y\gamma z\alpha a - a\alpha d(x)\beta y\gamma z + a\alpha d(x)\beta y\gamma z - d(x)\beta y\alpha a\gamma z + [x,a]_{\alpha}\beta y\gamma d(z) = 0.$$

Using (**), from the last equation we get

$$d(x)\beta y \gamma z \alpha a - d(x)\beta y \gamma a \alpha z + [x, a]_{\alpha} \beta y \gamma d(z) = 0,$$

which gives

$$d(x)\beta y \gamma [z,a]_{\alpha} + [x,a]_{\alpha} \beta y \gamma d(z) = 0.$$

Replacing x by a from the last equation, we get $d(a)\beta y\gamma[z,a]_{\alpha}=0$ for all $y\in I$, $z\in M$, and $\alpha,\beta,\gamma\in\Gamma$. Since I is non zero ideal of prime Γ -ring M, therefore either d(a)=0 or $a\in Z(M)$.

Corollary 1: Let M be a prime Γ -ring with characteristic not equal to 2 and I a non zero ideal of M. Let $f: M \to M$ be a generalized derivation of M, with associated derivation d on M. If $[f(x), f(y)]_{\beta} = 0$ for all $x, y \in I$, $\beta \in \Gamma$, then M is a commutative Γ -ring.

Proof: Using Theorem 2, we have $f(I) \subset Z(M)$. Then using Theorem 2, we get the corollary 2.

Theorem 3: Let M be a prime Γ -ring with characteristic not equal to 2 and I a non zero ideal of M. Let $f: M \to M$ be a generalized derivation of M, with associated derivation d on M. If $f(x\beta y) = f(x)\beta f(y)$ for all $x, y \in I$, $\beta \in \Gamma$, then d = 0.

Proof: For any $x, y \in I$, $\beta \in \Gamma$, $f(x\beta y) = f(x)\beta y + x\beta d(y)$, which implies

(3)
$$f(x)\beta f(y) = f(x)\beta y + x\beta d(y)$$
.

Let $w \in I$, $\gamma \in \Gamma$. Then replacing x by x γw in (3), we get

$$f(x\gamma w)\beta f(y) = f(x\gamma w)\beta y + x\gamma w\beta d(y),$$

which gives

$$f(x)\gamma f(w)\beta f(y) = f(x)\gamma f(w)\beta y + x\gamma w\beta d(y)$$
.

That is,

$$f(x)\gamma f(w\beta y) = f(x)\gamma f(w)\beta y + x\gamma w\beta d(y),$$

which implies

$$f(x)\gamma f(w)\beta y + f(x)\gamma w\beta d(y) = f(x)\gamma f(w)\beta y + x\gamma w\beta d(y)$$
.

That is, $f(x)\gamma w\beta d(y) = x\gamma w\beta d(y)$, which gives $(f(x)-x)\gamma w\beta d(y) = 0$ for all $x \in I$ and γ , $\beta \in \Gamma$. Since I is a non zero ideal of the prime Γ -ring M, therefore either f(x)-x=0 for all $x \in I$ or d(y)=0 for all $y \in I$. If f(x)-x=0 for all $x \in I$, then f(x)=x for all $x \in I$. For all $y \in I$. Replacing x by x β y in the last equation, we get $f(x\beta y)=x\beta y$, which implies $d(x)\beta y+x\beta f(y)=x\beta y$, which gives $d(x)\beta y+x\beta y=x\beta y$. That is, $d(x)\beta y=0$ for all $x,y \in I$, $y \in I$, $y \in I$. Thus d(x)=0 for all $x \in I$ for both cases. So d=0.

Theorem 4: Let M be a prime Γ -ring with characteristic not equal to 2 and I a non zero ideal of M. Let $f: M \to M$ be a generalized derivation of M, with associated derivation d on M. If $f(x\beta y) = f(y)\beta f(x)$ for all $x, y \in I$, $\beta \in \Gamma$, then d = 0.

Proof: Let $x, y \in I$, $\beta \in \Gamma$. Then $f(x\beta y) = d(x)\beta y + x\beta f(y)$, which implies

(4) $f(y)\beta f(x) = d(x)\beta y + x\beta f(y)$.

Let $x \in I$, $\gamma \in \Gamma$. Then replacing y by $x \gamma y$ in (4), we get

$$f(x\gamma y)\beta f(x) = d(x)\beta x \gamma y + x\beta f(x\gamma y).$$

That is,

$$d(x)\gamma y\beta f(x) + x\gamma f(y)\beta f(x) = d(x)\beta x\gamma y + x\beta f(y)\gamma f(x)$$
.

Using (**), from the last equation we get

$$d(x)\gamma y\beta f(x) + x\beta f(y)\gamma f(x) = d(x)\beta x \gamma y + x\beta f(y)\gamma f(x),$$

which gives

(5) $d(x)\gamma y\beta f(x) = d(x)\beta x\gamma y$.

Let $w \in I$, $\alpha \in \Gamma$. Then replacing y by $y \alpha w$, we get $d(x)\gamma y \alpha w \beta f(x) = d(x)\beta x \gamma y \alpha w$, which along with (5) gives

$$d(x)\gamma y\alpha w\beta f(x) = d(x)\gamma y\beta f(x)\alpha w$$
.

Using (**), from the last equation we get

$$d(x)\gamma y\alpha f(x)\beta w - d(x)\gamma y\alpha w\beta f(x) = 0$$
.

That is, $d(x)\gamma y\alpha[f(x),w]_{\beta}=0$. Since I is a non zero ideal of the prime Γ -ring M, therefore either d(x)=0 for all $x\in I$ or $[f(x),w]_{\beta}=0$ for all $x,w\in I$ and $\beta\in\Gamma$. Let $A=\{x\in I:d(x)=0\}$ and $B=\{x\in I:[f(x),w]_{\beta}=0,\ \forall\ w\in I\}$. Obviously A and B are additive subgroups of I. Moreover I is the set theoretic union of A and B. But a group can not be set theoretic union of two proper subgroups. Hence either A=I or B=I. If A=I, we have d(R)=0, which completes the proof. If B=I, then $0=[f(x),w]_{\beta}=w\alpha[f(x),r]_{\beta}$ for all $x,w\in I$, $r\in M$ and $\alpha,\beta\in\Gamma$. Thus, we obtain $f(I)\subset Z(M)$. Using Theorem 2, we get d=0.

ACKNOWLEDGEMENT

The authors are thankful to the Bahauddin Zakariya University, Multan and Higher Education Commission of Pakistan for the support and facilities provided during this research.

REFERENCES

- 1 Nobusawa, N., 1964. On the generalization of the ring theory. Osaka J. Math., 1: 81-89.
- 2. Barnes, W. E., 1966. On the Γ -rings of Nobusawa. Pacific J. Math., 18 (3): 411-422.
- 3. Kyuno, S., 1978. On prime gamma rings. Pacific J. Math., 75 (1): 185-190.
- 4. Khan, A. R., I. Javaid and M. Anwar Chaudhry, 2013. Derivations on semiprime Γ -rings, Utilitas Mathematica, 90: 171-185.
- 5. Bresar, M., 1991. On the distance of the composition of two derivations to the generalized derivations. Glasgow Math. J., 33 (1): 89-93.
- 6. Hvala, B., 1998. Generalized derivations in rings. Comm. Algebra, 26 (4): 1147-1166.
- 7. Dey, K. K., A. C. Paul and I. S. Rakhimov, 2012. Generalized derivations in semiprime gamma rings. IJMMS.
- 8. Yilmaz, C. and M. A. Ozturk, 2004. On Jordan generalized derivations in gamma rings. Hacet. J. Math. Stat., 33: 11-14
- 9. Ozturk, M. A., Y. B. Jun and K. H. Kim, 2002. On derivations of prime gamma rings. Turk. J. Math., 26: 317-327.