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Abstract: In this paper we propose a meshfree technique for the numerical solution of the two dimensional 
Burger’s equation. Collocation method using the Radial Basis Functions (RBFs) is coupled with first order 
accurate finite difference approximation. Different types of RBFs are used for this purpose. Performance of 
the proposed method is successfully tested in terms of various error norms. In the case of non-availability 
of exact solution, performance of the new method is compared with the results obtained from the existing 
methods available in the literature. The elementary stability analysis is established theoretically and is also 
supported by numerical results.  
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INTRODUCTION 
 
 Mathematical models of basic flow equations 
describing unsteady transport problems consist of a 
class of time dependent PDEs. One of such important 
models is known as the two dimensional Burger’s 
equation [1]. The two dimensional Burger’s equation 
occur in a large number of physical problems such as 
the phenomena of turbulence, flow through a shock 
wave traveling in a viscous fluid, sedimentation of two 
kinds of particles in fluid suspensions under the effect 
of gravity [2-4]. Analytical solution of the two 
dimensional Burger’s equation is given by Fletcher [5] 
under restricted conditions. Various numerical methods 
have been introduced for the numerical solution of 
integrable and non-integrable two dimensional Burger’s 
equation. Fletcher [6] has used finite element and finite 
difference methods for the numerical solution of the 
two dimensional model. Bahadir [3], Dehghan [4] and 
Radwan [7] have discussed variety of finite difference 
numerical schemes for solution of the problem. Khater 
et al. [8] have obtained numerical solution of the two 
dimensional Burger’s equation by using spectral 
collocation method. Velivelli and Bryden [9] have 
obtained numerical solution of the problem on parallel 
processors by using traditional finite difference 
methods and lattice Boltzamann approach. Very 
recently, Duan and Liu [10], Zhang and Yan [11] have 
proposed  various  types  of  Boltzmann methods for the  

numerical solution of the two dimensional Burger’s 
equation.  
 In this paper, we develop a meshfree algorithm for 
the numerical solution of the two dimensional nonlinear 
Burger’s equation. The aim of this approach is to obtain 
approximate solution in a simple and effective manner 
free of mesh structure depending entirely on nodal 
points inside and/or in the boundary. A typical RBF 
approximation has the form 
 

N

j j
j 1

u(x) ( r )
=

= λ ϕ∑  

 
where ϕ is the RBF (with or without shape parameter c) 
listed in Table 1.  
 In 1990 Kansa [12] has used Multiquadric (MQ) to 
find approximate solution of different types of PDEs. 
Chen  and  Pepper [13] have used RBFs for simulating 
1-D and 2-D groundwater contaminant transport 
models. Later on, this idea was modified by Fasshauer 
[14] to the Hermite type collocation method for 
invertibility of the collocation matrix. Siraj-ul-Isam et 
al. [15] have used different types of RBFs to obtain 
numerical solution of another class of PDEs known as 
RLW equation. The choice of radial basis functions is a 
flexible feature of meshfree methods. Infinitely 
differentiable RBFs like multiquadric (MQ), Inverse 
multiquadric  (IMQ)  and  Gaussian (GA) contain a free 
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Table 1: 

Name of the RBF Definition 

Multiquadric (MQ) ( ) 2 2r,c c rϕ = +  

Seventh degree spline (r7) ϕ(r) = r7 

 
parameter, called shape parameter, which affects both 
accuracy of the solution and condition number of the 
collocation matrix. The optimal value of the shape 
parameter c is an important factor in finding the 
maximal accuracy while maintaining numerical 
stability [16]. The choice of optimum value of the shape 
parameter is an open problem which is still under 
thorough  investigation.  Some  authors  like  Carlson 
and Foley [17] have reported the dependency of the 
shape  parameter  on  the  function  to be approximated 
by RBFs. They have observed that for rapidly varying 
functions,  a  small  value  of  c  be  used, but a large 
value be used if the function has a large curvature. 
Tarwater [18] has also observed strong dependency of 
the Root Mean Square (RMS) error of the approximate 
solution on different values of the shape parameter c. 
Cheng  et  al. [19] showed that when c is very large 
then  the  RBFs system error is of exponential order. 
But there is a certain limit for the value c after which 
the  solution  breaks  down. In general, as the value of 
the shape parameter c increases, the matrix of the 
system  to  be  solved  becomes  highly  ill-conditioned 
and hence the condition number can be used in 
determining the critical value of the shape parameter c 
for an accurate solution.  
 The contribution of this paper is the numerical 
study is to provide a straight forward approach for the 
solution of nonlinear PDEs. The new method can be 
implemented on a single desktop computer instead of 
using parallel processors for realization of the method. 
We look at the benchmark problems with different 
initial and boundary conditions to test the performance 
of the RBF method with the existing finite difference 
methods   [3,  7]   and  lattice  Boltzmann  methods  [9]. 

 
Further more, we discuss stability, space and time 
convergence of the new method.  
 The rest of the paper is organized as follows. In 
Section 2, formulation of the meshfree method for the 
numerical solution of the problem is given. Section 3, is 
devoted to stability analysis of the method. In Section 
4, we apply the method to different types of problems 
related to the two dimensional Burger’s equation. In 
Section 5, we summarize the results. 
 

CONSTRUCTION OF THE METHOD 
 
 In order to implement the meshfree approach, we 
consider the two dimensional Burger’s equation:  
 

  
2 2

2 2
u u u u uu u 0,(x,y) , t 0
t x y x y

 ∂ ∂ ∂ ∂ ∂+ + − ν + = ∈Ω > 
∂ ∂ ∂ ∂ ∂  

 (1) 

 
where the viscosity coefficient v = 1/R and R is the 
Reynolds number. Eq. (1) reduces to hyperbolic partial 
differential equation with shock like wave fronts for 
high value of Reynolds number. Eq. (1) accompanies 
the following Dirichlet boundary condition,  
 
           u(x,y,t) f(x,y,t)(x,y) , t 0= ∈∂Ω >  (2) 

 
and appropriate initial condition,  
 
                u(x,y,0) g(x,y), (x,y)= ∈Ω  (3)  

 
where u(x,y,t) velocity component to be determined is, 
f and g are known functions, 2Ω ⊂ ¡  is the domain set 
and ∂Ω  is the boundary of the domain set Ω . 
 We discretize the time derivatives of the two 
dimensional Burger’s Eq. (1) using first order forward 
difference formula and applying the θ-weighted scheme 
(0≤θ≤1) to the space derivatives at two successive time 
levels n and n+1 as below: 

 

   
2 2 2 2

2 2 2 2

u u u u u u u u u u
u u (1 ) u u 0

t x y x y x y x y

                − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂         + θ + − ν + + − θ + −ν + =                δ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂                         

n+1 n+1 n nn+1 nn+1 nn+1 n
n+1 n+1 n n  (4) 

 
where n n n n 1u u(x,y,t ),t t t−= = + δ  and δt is time step size.  

 The nonlinear terms in Eq. (4) can be approximated by using the following formula which can be obtained by 
applying the Taylor expansion, 
 

                                              n 1 n 1 n 1 n n n 1 n nu u u u
u ( ) u ( ) u ( ) u ( )

x x x x
+ + + +∂ ∂ ∂ ∂

= + −
∂ ∂ ∂ ∂

 (5) 

 
Using Eq. (5) in Eq. (4) we obtain 
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n 1 n 1n 1 nn 1 n 2 2

n 1 n n 1 n n 1
2 2

u u u u u u
u t u u u u

x x y y x y

+ +++
+ + +

        ∂ ∂ ∂ ∂ ∂ ∂     +θδ + + + − +          ∂ ∂ ∂ ∂ ∂ ∂               
ν  

                                
n nnn 2 2

n n n
2 2

u u u u
u t(1 2 ) u u t(1 )

x y x y

        ∂ ∂ ∂ ∂     = − δ − θ + + δ −θ +      ∂ ∂ ∂ ∂             
ν  (6) 

 
 Let (xi,yi), i = 1,2,…,N be the collocation points in 
the domain set Ω  such that (xi,yi), i = 1,2,…,Nd are 
interior points of the domain set Ω  and (xi,yi), i = Nd+1, 
Nd+2,…,N are boundary points of the domain set Ω . 
Solution of Eq. (1) can be approximated by 
 

                        
N

n n
j j

j 1

u (x,y) ( r )
=

= λ ϕ∑  (7) 

 
where ϕ is radial basis function  
 

( ) ( )2 2

j j jr x x y y= − + −  

 
represents the Euclidean distance between the points 
(x,y) and (xj,yj). The points (xj,yj), j = 1,2,…,N are 
known    as    centers.   The    unknown    parameters  λj 
j = 1,2,…,N in Eq. (7) are to be determined by the 
collocation method. Therefore for each collocation 
point (xj,yj) Eq. (7) can be written as 
 

          
N

n n
i i j ij

j 1

u (x , y ) (r ) , i 1, 2 , . . . ,N
=

= λ ϕ =∑  (8)  

 
Eq. (8) can be expressed in a matrix form as 
 
                             n n=U Aλ  (9) 
where  

11 12 1N

21 22 2N

N1 N 2 NN

(r ) (r ) . . . (r )
(r ) (r ) . . . (r )

. . .

. . .
(r ) (r ) . . . (r )

ϕ ϕ ϕ 
 ϕ ϕ ϕ 
 =
 
 
 ϕ ϕ ϕ 

A  

 
and n n n n T

1 2 N[ , ,..., ] .λ = λ λ λ   

The matrix A can be written as A = Ad+Ab, where  
 

 ij d( r ) : i 1,2,...,N , j 1,2,...,Nand 0 elsewhere = ϕ = = dA  

 

ij d d( r ) : i N 1,N 2,...,N,j 1,2,...,Nand 0 elsewhere = ϕ = + + = bA  

 
 The RBFs listed in Table 1 are used for meshfree 
approximation of the problem. The shape parameter c 
plays an important role in getting accurate solution. The 

value of c is to be found numerically for each radial 
basis functions and for each problem separately.  
 Using Eq. (9) in Eq. (6), we get the following 
equation for the interior points of the domain set Ω  
 

 

N N
n n 1

j ij j x ijN
j 1 j 1n 1

j ij N N
j 1 n 1 n

j ij j x ij
j 1 j 1

t

( r ) ( r )

( r )

( r ) ( r )

+

= =+

= +

= =

+ θδ

λ ϕ λ ϕ

λ ϕ

+ λ ϕ λ ϕ







∑ ∑
∑

∑ ∑
  

 

N N N N
n n 1 n 1 n

j j ij j y ij j j ij j y ij
j 1 j 1 j 1 j 1

N N
n 1 n 1
j xx ij j yy i j

j 1 j 1

(r ) ( r ) ( r ) ( r )

( r ) ( r )

+ +

= = = =

+ +

= =

+ λ ϕ λ ϕ + λ ϕ λ ϕ

 
−ν λ ϕ + λ ϕ  

 

∑ ∑ ∑ ∑

∑ ∑
   

  

N N
n n
j ij j x ijN

j 1 j 1n

j ij N N
j 1 n n

j ij j y ij
j 1 j 1

( r ) ( r )

( r ) t(

( r ) ( r )

1 2 )
= =

=

= =

λ ϕ λ ϕ

λ ϕ − δ

+ λ ϕ λ ϕ

 
 
 − θ
 
  

=
∑ ∑

∑
∑ ∑

 

            
N N

n n
j xx ij j yy ij

j 1 j 1

t(1 ) ( r ) ( r )
= =

+δ − θ ν λ ϕ + λ ϕ
  

  
  
∑ ∑  

            di 1,2,. . . , N=  (10) 

where 

( ) ( ) ( )
i
i

2 2

x ij j j x x
y y

r x x y y
x =

=

∂  ϕ = ϕ − + − ∂  
 

 

( ) ( ) ( )
i
i

2 2 2

xx ij j j x x2
y y

r x x y y
x =

=

∂  ϕ = ϕ − + − ∂  
 

 
and ϕy and ϕyy can be defined in similar way. 
 Also from Eqs. (9) and (3), we get the following 
equation for the boundary points,  
 

     
N

n 1 n 1
j ij i i d d

j 1

(r ) f ( x , y , t ) , i N 1,N 2,...,N+ +

=

λ ϕ = = + +∑  (11)  

 
Eqs. (10)-(11) can be written in matrix form as 
 

{ }
{ } { }

n n n n n 1
x 1 y 2 3 4

n n n
1 2 3 4

( )

) (1 )

+ δ θ ∗ + ∗ + ∗ + ∗ − ν + 
 = δ θ ∗ + ∗ + ν − θ + + 

A + t U A U B U A U B B B

A - t(1-2 U B U B B B C

λ

λ
(12)  

 
where  



World Appl. Sci. J., 23 (12): 29-40, 2013 

32 

 
Tn 1 n 1 n 1

1 1 2 2 N Nf ( x , y , t ),f(x , y , t ),...,f(x ,y ,t )+ + + =  C   

 

x ij d( r ) : i 1,2,...,N , j 1,2,...,Nand 0 elsewhere = ϕ = = 1B   

 

y ij d( r ) : i 1,2,...,N , j 1,2,...,Nand 0 elsewhere = ϕ = = 2B  

 

xx ij d( r ) : i 1,2,...,N , j 1,2,...,Nand 0 elsewhere = ϕ = = 3B  

 
yy ij d( r ) : i 1,2,...,N , j 1,2,...,Nand 0 elsewhere = ϕ = = 4B  

 
 The symbol “*” means that ith component of the 
vector Un is multiplied to every element of the ith row 
of the matrix B1. Compact form of Eq. (12) is given by 
 
                           n 1 n+ = +M N Cλ λ  (13) 
where  

n n n
x 1 y

n
2 3 4

=
( )

  ∗ + ∗ + ∗  δ θ    + ∗ − ν +  

U A U B U A
M A + t

U B B B
 

and 
 

{ } { }n n n
1 2 3 4) (1 ) = δ θ ∗ + ∗ + ν − θ + N A - t(1-2 U B U B B B λ  

 
                      n 1 1 n 1+ − −= +λ λM N M C  (14) 
 
Using Eq. (14) in Eq. (9) at (n+1) time level, we get  
 
                 n 1 1 1 n 1+ − +- -U = A M N A U AM C  (15) 
 
 The non singularity of the matrix M cannot be 
shown in general [12], therefore, it is not possible to 
show that the scheme is well-posed in all such cases. 
However, the cases of singularity in the practical 
problems  are  rare.  Eq.  (12)   represents   a   system  
of “N” linear equations in “N” unknown parameters λj, 
j = 1,2,…,N. This system can be solved by the Gaussian 
elimination method. The approximate solution can be 
found from Eq. (9) at any point in the domain set Ω , 
after  finding  the  values  of  the  unknown  parameters 
λj, j = 1,2,…,N at each time level. The results of this 
section can be summarized in the following algorithm.  
 
Algorithm 
The algorithm works in the following manner: 
1. Choose  N  collocation  points  from  the  domain 

set Ω . 
2. Choose the parameters δt and θ such that (0≤θ≤1). 
3. Calculate the initial solution Uo from Eq. (3) and 

then use Eq. (9) to find n 1 n−λ = A U  

 

4. The parameters n 1
j

+λ  (j = 1,2,…,N) are calculated 

from Eq. (14). 
5. The approximate solution Un+1 at the successive 

time levels is obtained by combination of step 4 
and Eq. (9).  

 
STABILITY ANALYSIS 

 
 In this section, we present the stability analysis of 
the RBF approximation given in Eq. (12) using the 
matrix method. The error en at the nth time level is 
given by 
 

n n n
exact app= −e U U  

 

where n
exactU , n

appU  are the exact and the approximate 

solutions at the n th time level. The error equation for 
the linearized two dimensional Burger’s equation can 
be written as: 
 

1 n 1 1 n− + −   =   MA e NA e  

 
                    n 1 n[ t ] [ t ]++ δ θ = δI R e I + S e  (16) 
 
where R = DA-1 and 
 

1 1={(1 )F (1 2 ) E }− −− θ − − θS A A  
 
Eq. (16) can be rewritten as 
 
                              n 1 ne e+ = T  (17) 
where  

1[ t ] [ t ]−+ δ θ δT = I R I + S  
 
 The numerical scheme is stable if ||T||2≤1, which is 
equivalent to ρ(T)≤1, where ρ(T) denotes the spectral 
radius of the matrix T. The sufficient condition for 
stability of the method (15) is guaranteed if all the 
eigenvalues of the matrix [I+δtθR]-1[I_δtS] satisfy the 
following condition 
 

                             1 t
1

1 t
+ δ λ

≤
+δθλ

S

R

 (18) 

 
where λS and λR are eigenvalues of the matrices S and 
R respectively. 
For θ = 0.5, the inequality (18) reduces to 
 

                            1 0.5 t
1

1 0.5 t
+ δ λ

≤
+ δ λ

Z

R

 (19) 
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where Z = FA -1.  
 The   inequality   (19)   is   satisfied   if   λR≥λZ.  
This  shows  that  for  θ  = 0.5,  the  scheme  (12) will 
be  unconditionally  stable  if  λR≥λZ.  When  θ  =  0, 
the inequality (18) becomes 1 t 1,+ δ λ ≤Λ  where 

1 1F  E− −= −Λ A A , i.e. 
2

t
−

δ ≤
λΛ

 and λΛ≤0. Thus for θ = 0, 

the scheme is conditionally stable. 
 The sufficient condition for stability of the scheme 
(12) and condition number of the component matrices 
R, S of the matrix T depend on the weight parameter θ, 
the number collocation points N and the shape 
parameter c. Cheng et al. [19] showed that when c is 
very large then the RBFs system error is of exponential 
order and the system leads to ill-conditioning. In the 
case of ill-conditioned system, the numerical solution 
thus produced is not stable. For fixed number of 
collocation points, co-relation between the condition 
number of the matrix T and the different values of the 
shape parameter c enable us to determine interval of 
stability for the method. This relationship is shown in 
Table 8 and Fig. 5 corresponding to Problem 1 for MQ. 
The interval of stability in this case is (0.02, 0.38) 
corresponding to v = 1, N = 400, δt = 0.005 and t = 1.0. 
It is clear from the Table 8 and Fig. 5, that if the value 
of shape parameter c is greater than the critical value c 
= 0.38, then the solution breaks down and hence the 
method becomes unstable. It can be seen from the Table 
6, 7 and Fig. 1-4 that the sufficient condition of stability 
given in Eq. (19) is satisfied for the test Problem 4.1. In 
case of the parameter free RBFs such as seventh degree 
spline (r7), the stability and conditioning depend on the 
weight parameter θ, eigenvalues λR, λZ and the number 
collocation points N. 
 

NUMERICAL TESTS AND RESULTS 
 
  In this section we present the results of numerical 
tests of our scheme for the solution of the two 
dimensional Burger’s equation (1)-(3). The accuracy of 
the scheme is measured in terms of error norms L∞, LR 
and L2 which are defined below: 

 
exact j app j

j
L max(u ) (u )∞ = −  

 

( )

( )

d

d

1/2N
2

exact j app j
j 1

R N
2

exact j
j 1

(u ) (u )

L

(u )

=

=

 
 −
 
 =
 
 
 
 

∑

∑
 

 

( )
d

1
N 22

2 exact j app j
j 1

L (u ) (u )
=

 
 = −
   
∑  

 
where uexact and uapp represent the exact and 
approximate solutions respectively. The value of the 
weight parameter θ used in the main scheme (12) is 
taken as 0.5 for each problem. The performance of the 
method is also compared with some of the published 
papers [7, 8, 15, 21, 22]. 
  
Test problem: Consider the two dimensional unsteady 
Burger’s equation (1) that is dominated by moderate 
gradients [8] with the following boundary conditions  
 

(y t ) /2
1

u(0,y,t)
1 e − ν

=
+

 

 

(1 y t ) / 2
1

u(1,y,t)
1 e + − ν

=
+

 

 

(x t ) /2
1

u(x,0,t)
1 e − ν

=
+

 

 

(1 x t ) / 2
1

u(x,1,t)
1 e + − ν

=
+

 

 
and initial condition 
 

(x y) /2
1

u(x,y,0) ,
1 e + ν

=
+

0 x 1 ,0 y 1≤ ≤ ≤ ≤  

 
 The numerical tests of the two dimensional 
Burger’s equation are performed for radial basis 
functions MQ and seventh degree spline (r7). The 
algorithm is examined up to maximum time t = 0.25. 
The error norms E∞ and E2 are computed for various 
values of the parameters N, δt, R using MQ and r7 
RBFs. These results are shown in Table 2 and 3. The 
performance of the new method is compared with LBM 
[8]. Table 2 clearly shows that the results of MQ are 
better for large N and small v (specially in L∞ error 
norm). The performance of L2 error norm of [8] is 
slightly better than our method. The results produced by 
spline basis (r7) are given in Table 3 along with the 
results of [8]. Like previous case L∞ norm of our 
method is slightly better than [8] whereas L2 norm of 
method [8] is marginally better than our method. 
Improved accuracy of the new method for small values 
of v is evident of the fact that it can handle steep shock 
like wave front accurately in the same way as [8]. Time 
and spatial rates of convergence for Problem 4.1 are 
presented in Table 4 and 5. 
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Table 2: L∞ and L2 errors at different viscosities and c = 0.18, δt = 0.0025, t = 0.25 for problem 4.1 

  L∞ error  L2 error 

  --------------------------------------------- ------------------------------------------- 

Viscosity  Collocation points N (Grid)  MQ [8] MQ [8] 

v = 1 100(10×10)  7.8844×10-4 7.882×10-5 4.0331×10-3 2.016×10-5 

 400(20×20)  8.5596×10-5 1.483×10-4 8.4763×10-4 2.652×10-5 

 1600(40×40) 2.2577×10-6 2.921×10-4 4.5880×10-5 3.681×10-5 

v = 0.1 100(10×10) 7.1842×10-4 1.061×10-2 3.6837×10-3 2.565×10-3 

  400(20×20)  3.5395×10-4 3.077×10-3 1.9617×10-3 4.536×10-4 

 1600(40×40) 7.4860×10-6 1.626×10-2 6.0343×10-5 1.875×10-3 

v = 0.01 1600(40×40) 6.4518×10-2 -- 8.5465×10-2 -- 

 
Table 3: L∞ and L2 errors at different viscosities and δt = 0.0025, t = 0.25 for problem 4.1 

  L∞ error  L2 error 

  --------------------------------------------- ------------------------------------------- 

Viscosity Collocation points N (Grid)  r7 [8] r7 [8]  

v = 1 100(10×10)  8.5437×10-5 7.882×10-5 6.8373×10-4 2.016×10-5 

 400(20×20) 2.6616×10-6 1.483×10-4 4.1168×10-5 2.652×10-5 

 1600(40×40) 1.0841×10-7 2.921×10-4 3.0647×10-6 3.681×10-5 

v = 0.1 100(10×10) 3.1857×10-4 1.061×10-2 9.4443×10-4 2.565×10-3 

 400(20×20)  3.2712×10-5 3.077×10-3 1.1452×10-4 4.536×10-4 

 1600(40×40) 6.4858×10-6 1.626×10-2 6.4032×10-5 1.875×10-3 

v = 0.01 1600(40×40) 6.3565×10-3 -- 2.3144×10-2 -- 

 

Table 4: Time rate of convergence produced by MQ at c = 0.18, t = 0.25, N = 400, v = 0.01 for problem 4.1 

δt  L∞ Order L2 Order 

0.1 2.1196×10-3 -- 3.8717×10-3 -- 

0.05 4.2705×10-4 2.3113 7.0465×10-4 2.4580 

0.02 3.1285×10-4 0.3396 5.6663×10-4 0.2379 

0.01 3.4560×10-4 -0.1436 6.6977×10-4 -0.2413 

0.005 3.5395×10-4 -0.0344 7.0062×10-4 -0.0650 

 

Table 5: Spatial rate of convergence produced by MQ at time c = 0.18, t = 0.25, v = 0.1 for problem 4.1 

N L∞ Order L2 Order 

25 1.7665×10-2 -- 5.3605×10-2 -- 

100 3.3948×10-3 2.3795 7.5466×10-4 2.8284 

400 3.5395×10-4 3.2617 7.0062×10-4 3.4291 

625 1.3136×10-4 4.4421 2.5296×10-4 4.5653 

1600 7.4860×10-6 6.0955 9.9991×10-6 6.8738 

 
The point wise rate of convergence in space and time is calculated by using the following formulae: 
 

i i 110 exact h exact h

10 i i 1

log u u / u u

log (h / h )

( )
+

+

− −
 and i i 110 exact t exact t

10 i i 1

log u u / u u

log ( t / t )

( )
+δ δ

+

− −

δ δ
 

 
 The term uexact is the exact solution, whereas 

ihu and 
it

uδ are the numerical solutions with spatial step size h i and 

time step size δti respectively. Computations are carried out with the different spatial and time step sizes to examine 
the point rates of convergence in space and time for MQ. These results are shown in Fig. 3-5 as well. 
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Fig. 1: Graph of maximum eigenvalue of the matrix R 

corresponding to v = 0.1, N = 400 and t = 0.25 
using MQ 
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Fig. 2: Graph of maximum eigenvalue of the matrix Z 

corresponding to v = 0.1, N = 400 and t = 0.25 
using MQ 
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Fig. 3: Graph of time rat of convergence produced by 

MQ at c = 0.18, t = 0.25, N = 400, v = 0.1 
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Fig. 4: Graph of time rat of convergence produced by 

MQ at c = 0.18, t = 0.25, N = 400, v = 0.1 
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Fig. 5: Graph of condition number versus shape 

parameter  c  at t = 1.0, v = 0.1, δt = 0.005 and 
N = 400  

 
Test  problem:  Consider  the  two  dimensional 
unsteady   Burger’s  equation  (1)  having  domain  set  
[-0.5,0.5]×[-0.5,0.5]. The exact solution of the equation 
is given in [20]  
 

x y tu 0.5 tanh
2

+ − = −  ν 
 

 
 The boundary conditions can be extracted from the 
exact solution. Values of L2 and L∞ error norms 
corresponding to MQ and r7 are listed in Table 9 and 
10. The authors in [21] have reported only graphical 
solutions. Graphical  solution  of  the problem is shown 
in  Fig.  6  and  7.  In  [21] the author have taken the 
grid size 200×200 and v = 0.002. We have restricted 
our  computations  up  to  collocation  points  2500  and 



World Appl. Sci. J., 23 (12): 29-40, 2013 

36 

 

       
 
Fig. 6: Numerical (6a) and Exact (6b) solution at c = 0.1, N = 2500, v = 0.01, δt = 0.001 and t = 0.01  
 

        
 
Fig. 7: Numerical (7a) and Exact (7b) solutions at N = 2500, v = 0.01, δt = 0.001 and t = 0.1 using r7 
 
Reynolds number up to 100 due to limited 
computational resources. 
 
Test problem: Consider the two dimensional unsteady 
Burger’s equation with a steep oblique shock defined 
on the domain set -0.1≤x≤0.1 and -0.05≤y≤0.05 with 
the following Dirichlet boundary conditions [8, 18]:  
 

0.1 0.4yu( 0.1,y, t) tanh
2

− − − = −  ν 
 

 
0.1 0.4yu(0.1, y , t ) tanh

2
+ = −  ν 

 

 
x 0.02u(x, 0.05,t) tanh

2
+ − = −  ν 

 

x 0.02u(x,0.05,t) tanh
2

− = −  ν 
 

 
 The shape parameter c is chosen as 0.025, v = 
0.002, t = 0.1 and collocation points N = 200, 800 (grid 
sizes 20×10 and 40×20). Figure 8(a) and 8(b) show 
numerical and exact graphical solutions corresponding 
to collocation points N = 200 respectively. Figure 9(a) 
and 9(b) show numerical and exact graphical solutions 
corresponding to collocation points N = 800 
respectively. From these figures it is clear that MQ-
dependent meshfree method is capable of producing 
convergent and stable solution on relatively coarse grid. 
In [8], the authors have solved the problem with high 
Reynolds numbers 5000 and 10000 on finer grids 
200×100×400×200  (N  =  20000,  80000)  respectively. 
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Fig. 8: Numerical (8a) and Exact (8b) solutions at c = 0.025, v = 0.002, t = 0.1 and N = 200 
 

        
 
Fig. 9: Numerical (9a) and Exact (9b) solutions at c = 0.025, v = 0.002, t = 0.1 and N = 800 
 
We have not implemented these cases because in the 
meshfree approach a single processor runs out of 
memory due to large size of collocation matrices. The 
graphical solution shown in Fig. 8 and 9 resembles the 
previous published papers [8, 18].  
 
Test problem: We consider the Burger’s equation (1) 
defined on the domain set (x,y) 0,1 0,1 ,∈ ×        with the 

periodic boundary conditions and the corresponding 
initial condition 
 

u(x,y,0) sin(2 x)cos(2 y)= π π  
 
 The exact solution of this problem is unknown [8]. 
We  compute  meshfree  solution  by  using spline basis 
r7  and  MQ RBFs for the total time t = 1/8, v = 0.002, 
δt  =  0.025  and  collocation points N = 2500 (grid size 

 
 
Fig. 10: Graph  at v  =  0.002, δt = 0.025 and t = 1/8 

using r7 
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Table 6: Maximum and minimum eigenvalues of the matrices R and Z for problem 4.1 corresponding to v = 0.1, N = 400 and t = 0.25 using MQ 

 Maximum eigenvalue Minimum eigenvalue Maximum eigenvalue Minimum eigenvalue Maximum 
c of the matrix R of the matrix R of the matrix Z of the matrix Z error 

0.02 9.2101×102 0 0 -9.2160×102 1.0279×10-2 
0.04 7.9395×102 0 0 -7.9468×102 3.3552×10-3 
0.06 7.7823×102 0 0 -7.7912×102 2.2099×10-3 

0.08 7.7369×102 0 0 -7.7470×102 1.5815×10-3 
0.10 7.7041×102 0 0 -7.7162×102 1.1542×10-3 
0.12 7.6723×102 0 0 -7.6860×102 8.6134×10-4 

0.14 7.6401×102 0 0 -7.6553×102 6.4385×10-4 
0.16 7.6071×102 0 0 -7.6237×102 4.8876×10-4 
0.18 7.5729×102 0 0 -7.5910×102 3.7201×10-4 

0.20 7.5376×102 0 0 -7.5571×102 2.8352×10-4 

 
Table 7: Maximum and minimum eigenvalues of the matrices R and Z for Problem 4.1 corresponding to v = 0.1, N = 400 and t = 0.25 using 

seventh degree spline 

 Maximum  Minimum Maximum Minimum Maximum 
N eigenvalue of R eigenvalue of R eigenvalue of Z eigenvalue of Z error 

25 3.7203×10 0 0 -3.7971×10 3.4323×10-3 
100 1.8384×102 0 0 -1.8481×102 3.1858×10-4 
400 7.7870×102 0 0 -7.7974×102 3.2710×10-5 

625 2.6278×103 0 0 -2.4601×103 1.4320×10-5 
1600 0 -3.8384×106 3.7524×106 0 6.4900×10-6 

 

Table 8: Condition number versus shape parameter c at  t = 1.0, v = 0.1, δt = 0.005, N = 400 for problem 4.1 

 ondition number    ondition number 
C of the matrix T  L∞ error LR error c of the matrix T  L∞ error LR error 

0.02 2.4288×104 1.2509×10-2 9.6401×10-2 0.22 7.6419×1010 9.3660×10-5 9.6764×10-4 
0.04 7.2001×104 2.5293×10-3 2.3104×10-2 0.24 4.0241×1011 6.4868×10-5 6.7208×10-4 
0.06 2.4473×105 1.1895×10-3 1.2658×10-2 0.26 2.1222×1012 4.4483×10-5 4.5426×10-4 

0.08 9.4258×105 8.7006×10-4 8.9349×10-3 0.28 1.1194×1013 3.0198×10-5 2.9492×10-4 
0.10 4.2398×106 6.3817×10-4 6.5786×10-3 0.30 5.8977×1013 1.9876×10-5 1.8009×10-4 
0.12 2.0792×107 4.7046×10-4 4.8650×10-3 0.32 3.1004×1014 1.2520×10-5 1.0128×10-4 

0.14 1.0488×108 3.4864×10-4 3.5839×10-3 0.34 1.6345×1015 7.5948×10-6 5.9176×10-5 
0.16 5.3772×108 2.5584×10-4 2.6229×10-3 0.36 8.8764×1015 7.2237×10-6 5.9532×10-5 
0.18 2.7873×109 1.8557×10-4 1.9035×10-3 0.38 3.6117×1016 1.0213×10-5 7.8407×10-5 

0.20 1.4557×1010 1.3283×10-4 1.3667×10-3 0.40 3.0299×1019 1.9094×104 4.0603×104 

 

 
 
Fig. 11: Graph of Problem 4.4 at v = 0.002, δt = 0.025 

and t = 1/8 
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Fig. 12: Contour  graph  at  v  =  0.002,  δt  =  0.025 and 

t = 1/8 using r7 
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Table 9: L2 and L∞ errors at different viscosities, c = 0.1, δt = 0.001 

and t = 0.1 using MQ for problem 4.2 
Reynolds’s  Collocation 
number points N (Grid)  L∞-error LR error 

50 100(10×10) 6.8664×10-1 2.4916×10-1 
 400(20×20) 5.6976×10-2 1.4246×10-2 
 625(25×25)  1.6570×10-3 1.4477×10-4 
 1600(40×40) 1.6751×10-3 1.4478×10-4 
 2500(50×50)  8.5264×10-4 5.1064×10-5 
75 100(10×10) 2.0799×100 7.6995×10-1 
 400(20×20) 3.4852×10-1 8.6102×10-2 
  625(25×25) 5.6839×10-2 8.5390×10-3 
 1600(40×40) 1.4951×10-2 2.0516×10-3 
 2500(50×50) 8.6537×10-3 5.8278×10-4 
100 100(10×10) 4.9638×100 1.8367×100 

 400(20×20) 1.0958×10 2.1046×10-1 
  625(25×25) 4.2997×10-1 4.3134×10-2 
 1600(40×40) 1.1912×10-1 1.0705×10-2 
 2500(50×50) 5.2733×10-2 3.3677×10-3 
 
Table 10:L2  and  L∞ errors at  different  viscosities,  δt  =  0.001  and 

t = 0.1 using seventh degree spline for problem 4.2 
Reynolds’s  Collocation 
number points N (Grid)  L∞-error LR-error 

50 100(10×10) 8.3293×10-1 2.9692×10-1 
 400(20×20)  8.7849×10-2 1.6642×10-2 
 625(25×25)  3.982 ×10-2 3.6980×10-3 
 1600(40×40)  9.0810×10-3 4.9316×10-4 
 2500(50×50) 4.7320×10-3 2.0895×10-4 
75 100(10×10) 3.2960×100 1.1038×100 
 400(20×20)  4.6264×10-1 8.8256×10-2 
 625(25×25)  1.0323×10-1 1.1860×10-2 
 1600(40×40)  2.848×10-2 2.2677×10-3 
 2500(50×50) 1.1610×10-2 6.2848×10-4 
100 100(10×10) 1.3610×101 4.3248×100 
 400(20×20)  1.3752×100 2.3737×10-1 
 625(25×25)  4.9658×10-1 4.7720×10-2 
 1600(40×40)  8.1025×10-2 1.0077×10-2 
 2500(50×50) 3.0953×10-2 2.7972×10-3 
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Fig. 13: Contour  graph  at  v  =  0.002,  δt  =  0.025 and 

t = 1/8 using MQ 

 
50×50). The  value  of  shape parameter is c = 0.025 for 
MQ only. Surface plots of the numerical solution are 
shown in Fig. 10 and 11. Contours graphs are shown in 
Fig. 12 and 13. It is clear from these figures that 
contours as well as surface plots agree with the results 
of the previous papers [8, 21] for small grid size. 
 

CONCLUSIONS 
 
 A numerical scheme based on collocation method 
using different types of RBFs, has been presented for 
the solution of the two dimensional Burger’s equation 
with different sets of initial and boundary conditions. 
This approach is generally more applicable than the 
traditional methods like finite difference and finite 
element methods as it can be scaled up to higher 
dimensions in convenient way and does not require 
nodal or elements connectivity. The accuracy is 
examined in terms of L∞,  LR and L2 error norms. The 
advantage of using spline basis (r7) is that it is 
independent of shape parameter c. The problems 
presented in this paper suggest that meshfree 
approximation methods should be considered as one of 
possible ways of solving these kinds of nonlinear partial 
differential equations.  
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