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Abstract: An accurate and efficient Homotopy Analysis Method (HAM) to find the analytical/approximate 
solutions for wave-type and fractional wave-type equations arising in biology is proposed. This method 
provides the solutions in rapid convergence series with computable terms. To the best of our knowledge, 
until now there is no rigorous HAM solutions have been reported for the above mentioned equations. 
Finally, we have given some numerical examples to demonstrate the validity and applicability of the 
method. Moreover, the use of HAM is found to be accurate, efficient, simple, low computation costs and 
computationally attractive. 
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INTRODUCTION 

 
 In mathematics a hyperbolic partial differential 
equation of order n is a partial differential equation 
(PDE) that has a well-posed initial value problem for 
the first n-1 derivatives. Many of the equations of 
mechanics are hyperbolic and so the study of 
hyperbolic equations is of substantial contemporary 
interest. In recent years, notable contributions have 
been made to the applications of fractional differential 
equations (FDEs). These equations are increasingly 
applied to efficient model problems in research areas as 
diverse as machanical systems, dynamical systems, 
control, chaos,continuous time random walks, 
anomalous diffusive and subdiffusive systems, wave 
propagation and son on. The fractional calculus and its 
applications (that is, the theory of integrals and 
derivatives of any arbitrary real or complex order) has 
gained considerable popularity and importance during 
the past three decades or so, mainly due to its 
applications in diverse fields of science and 
engineering. Mathematical modeling of complex 
processes is a major challenge for contemporary 
scientist. In contrast to simple classical systems, where 
the theory of integer order differential equations is 
sufficient to describe their dynamics, fractional 
derivatives provide an excellent and an efficient 
instrument for the description of memory and 
hereditary properties of various complex materials and 
systems. Recently, the nonlinear oscillation of 
earthquakes has been modeled with fractional 
derivatives  [1]. The  Homotopy   analysis   method  has  

been implemented for nonlinear equations arising in 
heat transfer [2], Burgers-Huxley equation [3] and the 
convergence analysis of HAM [4].  
 
(i) In one spatial dimension, the wave equation is of 

the form  
  

                         
2 2

2 2
u u 0

t x
∂ ∂− =
∂ ∂

 (1) 

 
(ii) One dimensional hyperbolic-like (wave-like) 

equation is of the form 
 

                        
2 2

2 2
u uf(x) 0

t t
∂ ∂− =
∂ ∂

 (2)  

 
(iii) The time fractional diffusion equation is of the 

form 
 

           
2 2 2 2

2 2
u(x,t) (u(x,t)) (u(x,t))

t x y
u(x,t),t 0,0 1

α

α
∂ ∂ ∂= +

∂ ∂ ∂
+ > < α ≤

 (3) 

 
 These equations have the property that, if u and its 
first time derivative are arbitrarily specified initial data 
on the initial line t = 0 (with sufficient smoothness 
properties), then there exists a solution for all time. 
Partial differential equations play a crucial role in 
applied mathematics and physics. The results of solving 
those   equations   can  guide  the  authors  to  know  the  
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described process deeply. Recently, various 
approximate methods are applied for getting numerical 
and analytical solutions of linear and non linear partial 
differential equations [5-7]. Besides some iterative 
methods are applied for getting numerical and 
analytical solutions of hyperbolic and hyperbolic-like 
equations  [8-12].  HAM  was   introduced   by  Liao 
[13,  14]. This proposed  method  has  been  used  by 
many mathematicians and engineers to solve various 
equations based on homotopy, which is a basic concept 
in topology. In recent years, HAM has been 
successfully employed to solve many types of nonlinear 
homogeneous or nonhomogeneous equations and 
systems of equation as well as problems in science and 
engineering [15, 16]. Mustafa [17] solved the Laplace 
equation with Dirichlet and Neumann boundary 
conditions by Homotopy analysis method. Barari et al. 
[18] used the variational iteration (VIM) and 
parameterized perturbation (PPM) methods have been 
used to investigate non-linear vibration of Euler-
Bernoulli beams subjected to the axial loads. Yasir 
Nawaz [19] applied the variational iteration method and 
homotopy perturbation method for linear and nonlinear 
boundary value problems for fourth-order fractional 
integro-differential equations. Kaliji et al. [20, 21] have 
investigated the dynamic behavior of two mechanical 
structures via analytical Methods and free vibration of 
Cantilever beams. Recently, Muhammet Kurulay [22] 
established the homotopy analysis method for solving 
the fractional nonlinear Klein-Gordon equation. 
 The validity of the HAM is independent of whether 
or not there exist small parameters in the considered 
equation. HAM provides us with a simple way to adjust 
and control the convergence of solution series..It 
provides us with freedom to use different base functions 
to approximate a nonlinear problem. Especially, it 
provides us with freedom of replace a nonlinear partial 
differential equation of first order n into an infinite 
number of linear Differential equations of order k, 
where the order k is even unnecessarily to be equal to 
order n. When the base functions are introduced the 
H(r,t) is properly chosen using the rule of solution 
expression, rule of coefficient of ergodicity and rule of 
solution existence. By plotting h curves the proper h is 
chosen. Thus as long as h, H(r,t), u0(r,t) and linear 
operator L are properly chosen the solution expression 
converges to exact solution in the convergence region. 
Homotopy analysis method provides us the great 
freedom to choose all of them. 
 

DEFINITIONS OF FRACTIONAL  
DERIVATIVES AND INTEGRALS 

 

 In this section, we have given some notations, 
definitions   and   preliminary   facts  that  will  be  used  

 
further in this work. The Caputo fractional derivative 
allows the utilization of initial and boundary conditions 
involving integer order derivatives, which have clear 
physically interpretations. Therefore, in this paper we 
shall use the Caputo derivative Dα proposed by Caputo 
in his work on the theory of viscoelasticity. In the 
development of theories of fractional derivatives and 
integrals, it appears many definitions such as Riemann-
Liouville and Caputo fractional differential-integral 
definition as follows. 
(1) Riemann-Liouville definition: 
 

( )

( )

( )
( )

( )

m

m
R

ta t m

m 1m
a

d f t
, m N

dt
D f t

f Td 1
dT, 0 m 1 m

dt m t T

α

α− +


α = ∈

= 
 ≤ − < α <
 Γ −α −

∫
 

 
Fractional integral of order α is as follows: 
 

( ) ( ) ( ) ( )
t

1R
a t

0

1
I f t t T f T dT, 0

−α−α = − α <
Γ −α ∫  

 
(2) Caputo definition: 
 

( )

( )

( )

( ) ( )
( )

m

m
c

ma t t

m 1
a

d f t
, m N

dt
D f t

f T1
dT, 0 m 1 m

m t T

α

α− +


α = ∈

= 
 ≤ − < α <Γ − α −

∫
 

 
APPLICATIONS 

 
Let us consider the homogeneous hyperbolic 
equation 
 

                         
2 2

2 2

u u
3u 0

t x
∂ ∂

− + =
∂ ∂

 (4) 

 
With initial conditions 
 
                        u(x,0)=0, ut(x,0)=2sinx (5) 
 
 Now we will apply the Homotopy analysis method 
(HAM) to solve Eq. (4) subject to the initial condition 

Eq.(5) 
 Here we choose the initial approximation 

u0(x,t)=2tsinx 

We define the nonlinear operator as: 
 

    
[ ]

2 2

2 2

(x,t;q) (x,t;q)
N (x,t;q) 3 (x,t,q)

t x
∂ φ ∂ φ

φ = − + φ
∂ ∂  (6) 
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and linear operator 

 

                    [ ] (x,t;q)
L (x,t;q)

t
∂φ

φ =
∂  (7) 

 
With the property 
 
                                L(c1(x)) = 0 (8) 
 
where c1(x) is the integration constant. Now by using 
Eq.(63) we have 
 

    
2 2

m m 1 2 2

(x,t;q) (x,t;q)
R U 3 (x,t,q)

t x−

∂ φ ∂ φ  = − + φ  ∂ ∂  (9) 
 
and the solution of the mth order deformation Eq.(11) 
for m=1 becomes 
 
   1

m 1 m m 1 m m 1u (x,t) U (x,t) hH(r,t)L R (U )−
− − − = χ +  

 (10) 
 
 Since m=1, χm=1, we set h=-1 and H(r,t)=1 and we 
successively obtain  
 

u1(x,t)=2tsinx-(2t)3/3!sinx 
 
u2(x,t)=2tsinx-(2t)3/3!sinx+(2t)5/5!sinx 
................ 
            u(x,t) = 2tsinx-(2t)3/3!sinx 
                      +(2t)5/5!sinx-(2t)7/7!sinx+............ 
 
The final solution in a closed form is  
 
                              u(x,t) = sinxsin2t (11) 
 
Now we consider the inhomogeneous non linear 
hyperbolic equation 
 

          
2 2

2 2 4
2 2

u u
u u x t x t 2t 0

t x
∂ ∂

− − − + + + =
∂ ∂

 (12) 

 
With initial conditions 
 
                        u(x,0)=0, ut(x,0)=x2 (13) 

 
 We apply homotopy analysis method to Eq. (12) 
and Eq.(13), as follows: 

 Since m=1, χm=1 set h=-1 and H(r,t)=1, L== 
2

2t
∂
∂

 

in Eq.(11), then it becomes 
 

um(x,t)=um-1(x,t)-L-1(Rm(um-1,x,t)) 

  
Where 

            ( )
2 2

m 1 m 1
m m 1 m 12 2

2 2 4
m 1

u uR u ,x,t u
t x

u x t x t 2t

− −
− −

−

∂ ∂= − −
∂ ∂

− + + +
 (14)  

 
and solution for u0:  
Now we can select  
 
                                      u0 = x2 t (15) 
 
 Using HAM, the successive approximations are 
given by 
 

u1(x,t)=x2t 
u2(x,t)=x2t 
u3(x,t)=x2t 

………. 
 
The final solution in a closed form is  
 
                                     u(x,t)=x2t (16) 
 
Consider the one dimensional hyperbolic-like 
equation 
 

                          
2 2 2

2 2

u x u
0

t 2 x
∂ ∂

− =
∂ ∂  (17) 

 
With initial conditions 
 
                            u(x,o)=0, ut(x,0)=x2 (18) 

 
 We apply homotopy analysis method to Eq. (17) 
and Eq.(18) as follows: 

 Since m=1, χm=1 set h = -1 and H(r,t)=1, L == 
2

2t
∂
∂

 

in Eq.(63). It becomes 
 
                 Um(x,t)=um-1(x,t)-L-1(Rm(um-1,x,t)) (19) 
Where 

               ( )
2 2 2

m 1 m 1
m m 1 2 2

u x u
R u ,x,t

t 2 x
− −

−

∂ ∂
= −

∂ ∂
 (20) 

 
Rm(um-1,x,t) = ∂2um-1/∂t2-x 2/2 ∂2um-1/∂x2 

 

and solution for u0: 
Now we can select  
 
                                     u0(x,t)=x2 (21) 
 
 Applying Eq.(20) in Eq.(21) we obtain the 
following successive approximations 
 

u1(x,t)= x2+x2t2/2! 
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u2(x,t)= x2+x2t2/2!+x2t4/4! 

................ 
u(x,t)= x2+x2t2/2!+x2t4/4! + x2t6/6!+ 

…………. 
 
The final solution in a closed form is  
 
                                 u(x,t)=x2cosht (22) 
 
Consider the two dimensional hyperbolic-like 
equation 
 

2 2 2 2 2

2 2 2

u x u y u 0
t 20 x 20 y

∂ ∂ ∂− − =
∂ ∂ ∂

 

 
             utt(x,y,t)=x2/20uxx(x,y,t)+ y2/20uyy(x,y,t) (23) 
 
With initial conditions 
 
                        u(x,y,0)=x5, ut(x,y,0)=y5 (24) 

 
 We apply HAM to Eq. (23) and Eq.(24), as 
follows: 

 Since m=1, χm=1 set h=-1 and H(r,t)=1, L= 
2

2t
∂
∂

in 

11 then 11 becomes 
 
              um(x,y,t)=um-1(x,y,t)-L-1(Rm(um-1,x,y,t)) (25) 
 
 Where 
 

       ( )
2 2 2 2 2

m 1 m 1 m 1
m m 1 2 2 2

u x u y uR u ,x,t
t 20 x 20 y

− − −
−

∂ ∂ ∂= − −
∂ ∂ ∂

 (26) 

 
and solution for u0: 
Now we can select  
 
                                u0(x,t)=x5+y5t (27) 
 
 Applying Eq. (27) in Eq. (26) we get the following 
successive approximations 
 

u1(x,t)= x5+y5t+x5t2/2!+ y5t3/3! 
 

u2(x,t)= x5+y5t+x5t2/2!+ y5t3/3!+ x5t4/4!+ y5t5/5! 
.......................... 

The final solution is  
 

u(x,t)= x5(1+t2/2!+t4/4!+........)+ y5(t+t3/3!+ t5/5!+......) 
 
The final solution in a closed form is  
 
                        u(x,t)= x5cosht+y5sinht (28) 

 
Consider the three dimensional hyperbolic-like 
equation 
 

           
2 2 2 2 2 2 2

2 2 2 2

u x u y u z u 0
t 6 x 6 y 6 z

∂ ∂ ∂ ∂− − − =
∂ ∂ ∂ ∂

 (29) 

 
With initial conditions 
 
           u(x,y,z,0)=0, ut(x,y,z,0)=(x3+y3+z3) (30) 
 
We apply HAM to Eq. (29) and Eq.(30), as follows: 

 Since m=1, χm=1 set h=-1 and H(r,t)=1, L== 
2

2t
∂
∂

 

in Eq.(63)  
 
       um(x,y,z,t)=um-1(x,y,z,t)-L-1(Rm(um-1,x,y,z,t)) (31) 
 
Where  
 

( )
2 2 2 2 2 2 2

m 1 m 1 m 1 m 1
m m 1 2 2 2 2

u x u y u z u
R u ,x,t

t 6 x 6 y 6 z
− − − −

−
∂ ∂ ∂ ∂

= − − −
∂ ∂ ∂ ∂

 (32) 

 
and solution for u0: 
Now we can select  
 
              u0(x,t)= (x3+y3+z3)+ (x3+y3+z3)t (33) 
 
 Now applying Eq.(33) in Eq. (32) we will get the 
following successive approximations 
 
           u1(x,t) = (x3+y3+z3)+ (x3+y3+z3)t 
                   +(x3+y3+z3)t2/2!+ (x3+y3+z3)t3/3!  
 
        u2(x,t) = (x3+y3+z3)+ (x3+y3+z3)t 
                    +(x3+y3+z3)t2/2!+ (x3+y3+z3)t3/3!  
                    +(x3+y3+z3)t4/4!+ (x3+y3+z3)t5/5! 

....................... 
 
The final solution is given by 
 
      u(x,t) = (x3+y3+Z3)(1+t+t2/2!+t3/3!+........)  
                = (x3+y3+z3)et (34) 
 
We consider another three dimensional hyperbolic-
like equation 
 

( )
2 2 2 2

2 2 2 2 2 2
2 2 2 2

u 1 u u ux y z x y z 0
t 2 x y z

 ∂ ∂ ∂ ∂− + + − + + = ∂ ∂ ∂ ∂ 
 (35) 

 
With initial condition 
 
               u(x,y,z)=0, ut(x,y,z) =(x2+y2-z2)t (36) 
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 We apply homotopy analysis method to Eq. (35) 
and Eq. (36), as follows: 

 Since m=1, χm=1 set h=-1 and H(r,t)=1, L== 
2

2t
∂
∂

 

in Eq.(63).then Eq.(63) becomes 
 
      um(x,y,z,t)=um-1(x,y,z,t)-L-1(Rm(um-1,x,y,z,t)) (37) 
 
Where  

    
( ) ( )

2
2 2 2m 1

m m 1 2

2 2 2 2 2 2
m 1 m 1 m 1
2 2 2

u
R u ,x,t x y z

t
x u y u z u
2 x 2 y 2 z

−
−

− − −

∂
= − + +

∂
∂ ∂ ∂

− − −
∂ ∂ ∂

 (38) 

 
and solution for u0: 
Now we can select  
 
                            u0(x,t)= (x2+y2-z2)t (39) 
 
 Applying Eq. (39) in Eq. (38) we will get the 
following successive approximations 
 

u1(x,t)= (x2+y2-z2)t+ (x2+y2+z2)t+(x2+y2-z2)t3/3! 
 

u2 (x,t)= (x2+y2-z2)t+ (x2+y2+z2)t2/2! 
+(x2+y2-z2)t3/3! + (x2+y2+z2)t4/4! +(x2+y2-z2)t5/5! 

................... 
 
The final solution is  
 
  u(x,t) = (x2+y2+z2)(t2/2!+t4/4!+t6/6!..............) 
               + (x2+y2-z2)(t+t3/3!+t5/5!+......)  
            = (x2+y2+z2)cosht+(x2+y2-z2)sinht-)-(x2+y2+z2) 
 
               u(x,t) = (x2+y2)et+z2e-t-(x2+y2+z2) (40) 
 
Consider a nonhomogeneous nonlinear wave 
equation.The equation of the form 
 

                
2 2

2 2
2 2

u u
u 2 2t 2x 0

x t
∂ ∂

− − + + =
∂ ∂

 (41) 

 
With initial conditions 
 

                    
2

2
x

u(x,0) x

u(0,t) t ,u (0,t) 0

=

= =
 (42) 

 
We apply HAM to Eq. (41) and Eq.(42), as follows: 

 Since m=1, χm=1 set h=-1 and H(r,t)=1,L== 
2

2x
∂
∂

 

in Eq.(63), then it becomes 
 
                um(x,t)=um-1(x,t)-L-1(Rm(um-1,x,t)) (43) 

 
Where 
 

   ( )
2 2

2 2m 1 m 1
m m 1 m 12 2

u u
R u ,x,t u 2 2t 2x

x t
− −

− −

∂ ∂
= − − + +

∂ ∂
 (44) 

 
and solution for u0: 
Now we can select  
 

                      
4

2 2 2 2
0

x
u x t x t

6
= + − −  (45) 

 
 Applying Eq. (45) in Eq. (44) we obtain the 
following successive approximations: 
 

4 4 2
2 2 6 6 2 8

1

x x t 7 2 1
u(x,t) = x t x x t x

6 3 90 15 168
+ − − + +  

 

u2(x,t)= 
4 2

6 6 2 8x t 7 2 1
x x t x .........

3 90 15 168
+ − + −  

 
and so on. 
 The noise terms appear in the various components 
will get cancelled themselves. 
Then the final solution in a closed form is  
 
                                  u(x,t)= x2+t2 (46) 

We consider another time fractional diffusion 

equation which is known as biological population 

equation as follows  
 

           
2 2 2 2

2 2

u(x,t) (u(x,t)) (u(x,t))
t x y

u(x,t),t 0,0 1

α

α

∂ ∂ ∂
= +

∂ ∂ ∂
+ > < α ≤

 (47) 

 
with initial condition 
 

                           u(x,y,0)= x y+  (48) 

 

 Now we will apply the HAM to solve Eq. (47) 

subject to the initial condition Eq.(48) 

We define the nonlinear operator as 
 

      
[ ]

2 2

2

2

2

(x,y,t;q) ( (x,y,t;q))
N (x,t;q)

t x
( (x,y,t;q))2

(x,y,t;q)
y

α

α

∂ φ ∂ φ
φ = −

∂ ∂
∂ φ

− − φ
∂

 
(49)  

and linear operator 
 

                  
[ ] (x,y,t;q)

L (x,t;q)
t

α

α

∂ φ
φ =

∂  (50) 
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With the property 
                                   L(C1(x))=0 (51) 
 
Where C1 (x) is the integration constant. Now by using 
Eq. (63) we have 
 

       

2 2

m m 1 2

2 2

2

(x,y,t;q) ( (x,y,t;q))
R U

t x
( (x,y,t;q))

(x,y,t;q)
y

α

− α

∂ φ ∂ φ  = −  ∂ ∂
∂ φ

− − φ
∂

 (52) 

 
and the solution of the mth order deformation becomes 
 

    
1

m 1 m m 1 m m 1u (x,t) U (x,t) L hH(r,t)R (U )−
− − − = χ +    (53) 

 
since m=1, χm=1,we set h=-1, H(r,t)=1and also the 
equation has sub diffusive behavior we obtain the final 
solution as 
 

                     ( )k 0

t
u(x,t) x y

k 1

α∝

=

= +
Γ α +∑

 (54) 
 

CONCLUSION 
 
 In this paper, the homotopy analysis method 
(HAM) has been successfully applied to obtain the 
approximate/analytical solutions of the various 
hyperbolic and fractional PDEs arising in various fields. 
This work shows that HAM has significant advantages 
over the existing techniques. It avoids the need for 
calculating the Adomain polynomials which can be 
difficult in some cases. The reliability of the method 
and reduction in the size of computational domain give 
this method wider applicability. The results show that 
HAM is a powerful mathematical tool for finding the 
exact and approximate solutions of the nonlinear 
equations. 
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Appendix 
 
Basic idea of Homotopy Analysis method (HAM): 
 In this section the basic ideas of the homotopy 
analysis method are presented. Here a description of the 
method is given to handle the general nonlinear 
problem. 
 
                        ( )0Nu t 0, t 0= >  (55) 

 
where N is a nonlinear operator and u0(t) is unknown 
function of the independent variable t. 
Zero-order deformation equation  
 Let u0(t) denote the initial guess of the exact 
solution of Eq. (1)-Eq.(3), h≠0 an auxiliary parameter, 
H(t)≠0 an auxiliary function and L is an auxiliary linear 
operator with the property. 
 
                            L(f(t)) = 0, f(t) = 0 (56) 
 
 The auxiliary parameter h, the auxiliary function 
H(t) and the auxiliary linear operator L play an 
important role within the HAM to adjust and control the 
convergence region of solution series. Liao [15, 16] 
constructs, using q∈[0,1] as an embedding parameter, 
the so-called zero-order deformation equation. 
 

 (57) 
 
where ∅(t;q) is the solution which depends on h, H(t), 
L, u0(t) and q. When q=0, the zero-order deformation 
Eq. (63) becomes  
 
                               (58) 
 
and when q = 1, since h≠0 and H(t)≠0, the zero-order 
deformation Eq.(1) reduces to,  
 
                               (59) 
 
 So, ∅(t;1) is exactly the solution of the nonlinear 
equation. Define the so-called mth order deformation 
derivatives. 
 

                         (60)  

 
 If the power series Eq. (57) of ∅(t;q) converges at 
q=1, then we gets the following series solution: 
 
                  (61) 
 
where the terms um(t) can be determined by the so-
called high order deformation described below. 
High-order deformation equation 
Define the vector, 
 
                (62) 
 
 Differentiating Eq. (63) m times with respect to 
embedding parameter q, the setting q=0 and dividing 
them by m!, we have the so-called mth order 
deformation equation. 
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            (63) 

 
where 

                       =  (64) 

and 

             (65) 

 
 For any given nonlinear operator N, the term 

 can be easily expressed by Eq.(65). Thus, 

we can gain u1(t), u2(t) … … by means of solving the 
linear high-order deformation with one after the other 
order in order. The mth-order approximation of u (t) is 
given by 
 

                        ( ) ( )m
kk 0

u t u t
=

= ∑  (66) 

 
 ADM, VIM and HPM are special cases of HAM 
when we set h = -1 and H(r,t) = 1. We will get the same 
solutions for all the problems by above methods when 
we set h=-1 and H(r,t) = 1. When the base functions are 
introduced the H(r,t) = 1 is properly chosen using the 
rule of solution expression, rule of coefficient of 
ergodicity and rule of solution existence. 
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