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A Model of the Width of an Oval via Differential Equations  
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Abstract: In this paper we produce a model for the width, the perpendicular displacement between the two 
supporting parallel tangent lines, of closed convex curves (ovals) in R2. The modelling uses linear second 
order ordinary differential equations with constant coefficients. We use such a model to deduce some 
results regarding ovals of constant width in R2.  
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INTRODUCTION 

 
 Throughout this paper, we deal with ovals  in R2. 
An oval is a smooth (C∞) convex closed curve C in R2 
[10]. Convexity of curves can be seen in two different 
but equivalent manners. A smooth simple closed curve 
C in R2 is convex if C lies entirely at one side of it's 
tangent at any point chosen on it [5, 11]. Also C is 
convex in R2 if the curvature of C is strictly positive at 
each point on C [1]. Convex curves were studied using 
the  support  function  [6]. For recent work regarding 
the  study  of  convex  domains  using  the  support 
function [2, 3].  
 Two points on a curve are said to be opposite to 
each other provided that tangent lines at the points are 
parallel. Ovals are characterized by the fact that every 
point has an opposite point. Also parallel tangents in 
this case are called supporting lines of the oval. The 
width of an oval is defined as the perpendicular 
distance between the supporting lines. An oval is said to 
be  of  constant  width  if  the  width does not depend on 
the choice of the point on the oval. Ovals of constant 
width in R2 were studied in [7]. Mellish's work was 
explained in [9]. Geometric and analytic properties of 
ovals of constant width were studied in [2] and most 
recently in [4].  
 

GEOMETRY OF CURVES IN R2 
 
 A smooth (C∞) curve C in R2 is a differentiable 
function 2f : RΙ →

v
 where I is an (open) interval. Thus, 

if  t  is  a  parameter of f
v

, t∈I, then we write f
v

 as 
f(t) =
v

 1 2(f (t),f ( t ) )  where ƒ1 and ƒ1 are differentiable 
real   valued   functions   defined   on  I.  The curve C is  

regular provided that f (t) 0′ ≠
v v

 for all t∈I. Now we take 
I = [a,b] and define the arclength along C by  
 

                            
t

a

s(t) f ( t )d t′= ∫
v

 (1) 

 
where f ( t )′

v
 is the norm of f (t)′

v
, usually called the 

speed of f
v

. If C is a regular curve, then f ( t ) 0′ >
v

 for 

all t∈I and so s is a strictly increasing function of t 
which has an inverse. That is, Eq.(1) can be solved for s 
and then C has a reparametrization by arclength.  
 Now take f

v
 with arclength reparametrization and 

let (s) f(s)′Τ =
vv

 be the unit tangent of f
v

 at s. Then the 

curvature of f
v

 is the function (s) T(s) f (s)′ ′′κ = =
vv

. 

Also let N(s)
v

 be the unit normal of f
v

 at s. Then the 
equations 
 
                         T(s) (s)N(s)′ = κ

v v
 (2) 

 
                        N(s) (s)T(s)′ = − κ

v v
 (3) 

 
are called Frenet formulas [8].  
 Let ψ(s) be the slope angle of the tangent line at 
f(s)
v

. Then the unit tangent of f
v

at s is defined by  

 
T(s) (cos (s),sin (s))= ψ ψ
v

 
Now  

k(s) T(s) (s)( sin (s),cos (s))′ ′= = ψ − ψ ψ
v

 

That is  
                             k(s) (s)′= ψ  (4) 
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or 

                           
s

0

(s) k(s)dsψ = ∫  (5) 

 

Now if f(s) (x(s),y(s))=
v

, then 
 

                         
s

0

x(s) cos (s)ds= ψ∫  (6) 

and  

                         
s

0

y(s) sin (s)ds= ψ∫  (7) 

 

Example 1: Let 2

1
k(s)

s 1
=

+
 with f(0) (0,0)=

v
. Then by 

Eq.(5), 
 

s s
1

2
0 0

1
(s) k(s)ds ds tan s

s 1
−ψ = = =

+∫ ∫ . 

 
Now by Eq.(6), we have  
 

1x(s) cos(tan s)ds−= ∫ 1
12

1
ds sinh s c

s 1
−= = +

+
∫  

 

 But x(0) = 0 and so 1x(s) sinh s−= . Also by Eq.(7), 
we have 
 

1y(s) sin(tan s)ds−= ∫ 2
22

s
ds s 1 c

s 1
= = + +

+
∫  

 

 But y(0) = 0 and so 2y(s) s 1 1= + − . So 
1 2f(s) (sinh s, s 1 1)−= + −

v
 

 
THE FOCAL CURVE OF A CURVE IN R2 

Definition 1: [8] The focal curve of a regular curve f
v

 

is the curve 
1

g f= + Ν
κ

v vv .  

 Similarly, the focal point with base f( t )
v

 is the 

point 
1

g(t) f ( t ) (t)
(t)

= + Ν
κ

v vv . 

 Now let 
2

p (t) f(t) pΛ = −v
v v

 be the distance function 

whose domain is the curve C with parametrization f
v

. 
 
Theorem 1: The point pv  is a focal point of C with base 

f( t )
v

 iff pp (t) 0′Λ =vv  and p (t) 0′′Λ =v . 
 
Proof: Recall that  
 

2

p (t) f(t) pΛ = −v
v v

(f(t) p) (f(t) p)= − ⋅ −
v vv v  

 
Thus 

p (t) 2(f(t) p) f (t)′ ′Λ = − ⋅v
v vv  

and  

p (t) 2(f(t) p) f (t) 2f (t) f (t)′′ ′′ ′ ′Λ = − ⋅ + ⋅v
v v v vv  

 
 If pv  is a focal point of C with base f( t )

v
, then 

1
p f(t) (t)

(t)
= + Ν

κ

v vv . Thus,  

 

p

1
(t) 2(f(t) f(t) (t)) f ( t )

(t)
′ ′Λ = − − Ν ⋅

κ
v

v v vv 2
(t) f ( t ) 0

(t)
− ′= Ν ⋅ =
κ

vv  
 

Also  
 

p

1
(t) 2(f(t) f(t) (t)) f (t) 2f ( t ) f (t)

(t)
′′ ′′ ′ ′Λ = − − Ν ⋅ + ⋅

κ
v

v v v v vv
 

             2
(t) f (t) 2f ( t ) f (t)

(t)
′ ′ ′ ′= Ν ⋅ + ⋅

κ

v v vv  

                2f( t ) . f ( t ) 2f (t).f(t) 0′ ′ ′ ′= − + =
v v v v

 
 
 Conversely, the equation p (t) 0′Λ =v  implies that 

f ( t ) p m− = Ν
v vv . Now put p f(t) m= − Ν

v vv  in the equation 

p (t) 0′′Λ =v  to get m f (t) f ( t ) f ( t ) 0′′ ′ ′Ν ⋅ + ⋅ =
r v v v

, which is 

equivalent to  
 

m f ( t ) f ( t ) . f ( t ) 0′ ′ ′ ′− Ν ⋅ + =
r v v v

 
or  

m (t)f( t ) f (t) f (t) f (t) 0′ ′ ′ ′κ ⋅ + ⋅ =
v v v v

 
 

 Thus, 
1

m
(t)

= −
κ

. So 
1

p f(t) (t)
(t)

= + Ν
κ

v vv , i.e. pv  is a 

focal point of C with base f( t )
v

.  
 
Example 2: Let 2f(t) (t,t )=

v
. Then f (t) (1,2t)′ =

v
 and 

f (t) (0,2)′′ =
v

. So 2f ( t ) 1 4t′ = +
v

 and f ( t ) f (t) 2′ ′′× =
v v

s. 

As in [8], the curvature at f( t )
v

 is  
 

3

f (t) f (t)
k(t)

f ( t )

′ ′′×
= =

′

v v
v  

2 3

2

( 1 4t )+
 

 
By solving the equation  
 

2

2 2 2 3

4t (1,2t) 2
(0,2) (1 4t ) (t)

1 4t 1 4t ( 1 4t )
= + + Ν

+ + +

v
 

 
for (t)Ν

v
, we get 

2

( 2t,1)
(t)

1 4t

−
Ν =

+

v
. Thus,  
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2 3

2

2

( 1 4t ) ( 2t,1)
g(t) (t,t )

2 1 4t )

+ −
= +

+

v 3 21
( 4t , 3t )

2
= − +  

 
Now 2 2 2

p (t) (t a) (t b)Λ = − + −v  with p (a,b)=v . So  

 
3

p (t) (2 4b)t 4t 2a′Λ = − + −v  

and  
2

p (t) 2 4b 12t′′Λ = − +v  

 
Equating the last two equations to zero, we get 
 

2b 1 2 3t= +  and 3a 4t= −  
 

THE WIDTH OF AN OVAL IN R2 
 
 Now assume that C is a smooth closed curve in R2 
parametrized by the arclength s. That is, C is defined by 

1 2f(s) (f (s),f (s))=
v

 where the parameter s belongs to [a,b] 

such that f(a) f(b)=
v v

. In fact we take C as a simple 
closed curve, i.e. C doesn't join up except at the end 
points. Then we restrict our point of research to convex 
simple closed curves in  R2. As in the introduction, 
convexity of curves in R2 leads to ovals.  
 Assume that f

v
 parameterizes C in an 

anticlockwise direction so that the bounded component 
of R2-C is on the left. Let T

v
 and N

v
 be respectively the 

unit tangent and the unit normal fields acting on C. 
Thus, at each point f(s)

v
 on the oval there is a unique 

unit tangent vector T(s)
v

 in the direction of the oval and 

a unique inward-pointing unit normal vector N(s)
v

. In 
the case of an oval, the angle ψ between T

v
 and the 

positive x-axis is a strictly increasing function of s. 
Hence there is an orientation preserving 
diffeomo rphism :[a,b] Rδ →  that assigns to each s∈R 
the unique s*∈R such that T(s) T(s ) 0∗+ =

v v
 and then 

N(s) N(s ) 0∗+ =
v v

. It is natural to say that p f(s )∗ ∗=
v

 is 

opposite to p f(s)=
v

. 
 Let Taff and Naff denote the affine lines in R2 
tangent and normal to C at p and let aff

∗Τ  and aff
∗Ν  

denote the corresponding lines at p*. Let g: R→R be the 
function that assigns to each s∈R the perpendicular 
displacement between Taff and aff

∗Τ  and h: R→R the 

function that assigns to each s∈R the perpendicular 
displacement between Naff and aff

∗Ν . Now consider the 

vector equation  
 

                  p p h(s)T(s) g(s)N(s)∗ = − +
v v

 (8) 
 
In functional notation 

 
                        f f hT gNδ = − +

v v v vo  (9)  
 
 Differentiating both sides of Eq.(9) with respect to 
s leads to 
 
               f ( ) T hT h T g N gN′ ′ ′ ′ ′ ′δ δ = − − + +

v v v v v v
 (10) 

 
Using Frenet formulas, Eq.(10) reduces to  
 
              T (1 h kg)T (g kh)N′ ′ ′−δ = − − + −

v v v
 (11) 

Then 
                            1 h kg′ ′+ δ = +  (12) 
and 
                              g kh 0′ − =  (13) 
By Eq. (4), we have  
 
                        ds ds dh gd∗+ = + ψ  (14) 
and  
                            dg hd 0− ψ =  (15) 
Let  

                          ds dsu( )
d d

∗

ψ = +
ψ ψ

 

Then  

                           dh
g u( )

d
+ = ψ

ψ
 (16)  

and  

                               dg
h

d
=

ψ
 (17) 

Thus  

                          
2

2

d g g u( )
d

+ = ψ
ψ

 (18) 

 
 Eq.(18) is a linear second order ordinary 
differential equation with constant coefficients. 
Moreover, the equation is nonhomogeneous, which 
means that the general solution of it is affected by the 
behavior of u(ψ). The general solution of Eq.(18) has 
the form 
 
               1 2g( ) c cos c sin Q( )ψ = ψ + ψ + ψ  (19) 
 

where  Q  is  a  particular  solution. Now let g1 = cosψ, 
g2 = cosψ and then the wronskian W(g1,g2) = 1, is never 
zero. Using the method of variation of parameters [12], 
the particular solution is Q = u1g1+u2g2 where u1 and u2 
are smooth real valued functions satisfying  
 

1u sin u( )′ = − ψ ψ  and 2u cos u( )′ = ψ ψ  

Thus 

1
0

u sin u( )d
ψ

= − η η η∫  and 2
0

u cos u( )d
ψ

= η η η∫  
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So  

    
0 0

Q( ) cos sin u( )d sin cos u( )d
ψ ψ

ψ = − ψ η η η + ψ η η η∫ ∫  (20) 

 
Thus, the general solution is  
 

  1 2
0 0

g( ) (c sin u( ) d )cos (c cos u( ) d )sin
ψ ψ

ψ = − η η η ψ + + η η η ψ∫ ∫  (21) 

Also 

1 2
0 0

dg (c sin u( ) d ) s i n (c cos u( ) d ) c o s
d

ψ ψ

= − − η η η ψ + + η η η ψ
ψ ∫ ∫  

 
Observe that g(π) = g(0). Also  
 

dg dg
( ) h( ) h(0) (0)

d d
π = π = =

ψ ψ
 

Thus 

1
0

1
c sin u( )d

2

π

= η η η∫  and 2
0

1
c cos u( )d

2

π

= − η η η∫  

 
Thus, the width of a convex curve has the form  
 

0 0

1
g( ) ( sin u( )d sin u( )d )cos

2

ψ π

ψ = − η η η − η η η ψ∫ ∫  

               
0 0

1
( cos u( )d cos u( )d )sin

2

ψ π

+ η η η − η η η ψ∫ ∫  (22) 

 
Another way to look at g(ψ) and h(ψ) is to take 
 

            
0 0

1
A( ) sin u( )d sin u( )d

2

ψ π

ψ = η η η − η η η∫ ∫  (23) 

and  

            
0 0

1
B( ) cos u( )d cos u( )d

2

ψ π

ψ = η η η − η η η∫ ∫  (24) 

Then  
                 g( ) B( )sin A( )cosψ = ψ ψ − ψ ψ  (25) 
and 
                 h( ) B( )cos A ( )sinψ = ψ ψ + ψ ψ  (26) 
 

OVALS OF CONSTANT WIDTH IN R2 
 
 Here we introduce different proofs for the results in 
[7] regarding the concept of ovals of constant width in 
R2, as well a new equivalent statement for such a 
concept. First of all, we state the formal definition of an 
oval of constant width in R2. 
 
Definition 2: [7] An oval C in R2 is of constant width if 
the perpendicular distance between tangent lines at 
opposite points p and p* is independent of p, i.e. g = a 
constant.  

 
Theorem 2: An oval C in R2 is of constant width a iff 
the affine normal lines at opposite points coincide. 
 
Proof: Observe that C is of constant width g = a iff 

∀s∈R, 
dg

0
ds

=   

iff ∀s∈R, h = 0 (Eq. (13))  
iff ∀s∈R, Naff and *

affΝ  coincide.  
 

Theorem 3: Let ρ(s) and ρ(s*) be the corresponding 
radii of curvature at p and p*. Then the oval C in R2 is 
of constant width a iff ∀s∈R, ρ(s)+ρ(s*) = a. 
 

Proof: Recall that 
1

(s)
k(s)

ρ =  and *
*

1
(s )

k ( s )
ρ = . Then 

by Eq. (14), C is of constant width a  
 
iff ∀s∈R, ds ds ad∗+ = ψ   

iff ∀s∈R, 1 1
a

d d

ds ds

+ =
ψ ψ

∗

  

iff ∀s∈R, *

1 1
a

k(s) k ( s )
+ =  (Eq.(4)) 

iff ∀s∈R, ρ(s)+ρ(s*) = a 
 
Theorem 4: An oval C in R2 is of constant width a iff 
opposite points have the same focal point. 
 
Proof: Recall that the focal point based at s is 

1
f(s) N(s)

k(s)
+

v v
 and the focal point based at s* is 

1
f ( s ) N(s )

k(s )
∗ ∗

∗+
v v

. By Theorem 3, C is of constant 

width a iff 
1 1

a
k(s ) k(s)∗ + =  

iff 
1 1

aN(s) N(s) 0
k(s ) k(s)∗

 
− + = 

 

v v
  

iff 
1 1

f ( s ) f(s) N(s) N(s) 0
k ( s ) k(s)

∗
∗− − − =

v v v v
 

iff 
1 1

f(s ) f(s) N(s ) N(s) 0
k(s ) k(s)

∗ ∗
∗− + − =

v v v v
 

iff 
1 1

f ( s ) N(s ) f(s) N(s) 0
k(s ) k(s)

∗ ∗
∗

 
+ − + = 

 

v vv v
 

iff opposite points have the same focal point.  
 
 Now we introduce a new result regarding the 
function u(ψ) in Eq.(18). 
 
Theorem 5: An oval C in R2 is of constant width a iff 
∀ψ∈[0,2π], u(ψ) = a. 
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Proof: The oval C in R2 is of constant width a iff 
∀ψ∈[0,2π], g(ψ) = a 
 

iff ∀ψ∈[0,2π], h(ψ) = 0 (Eq.(17)). 
 
 Solving Eq.(25) and Eq.(26) together, we arrive to 
the fact that C is of constant width a iff ∀ψ∈[0,2π],  
 

A( ) acosψ = − ψ  and B( ) asinψ = ψ  
 
 Now  substitute  ∀(ψ)  =  -acos(ψ)  in  Eq. (23), 
then  differentiate  both  sides  with  respect  to  ψ  to 
get the fact that C is of constant width a iff ∀ψ∈[0,2π], 
u(ψ) = a. 
 
Example 3: Consider the oval C in R2 defined by  
 

f(t) (25cost costcos5t 5sintsin5t,

25sint sintcos5t 5costsin5t),t [0,2 ]

= + +

+ − ∈ π

v
 

Since  
f (t) (25 24cos5t)( sint,cost)′ = − −
v

 
we have  

T(t) ( sint,cost)= −
v

 
Since  

T(t ) (sint, cost) T(t)+ π = − = −
v v

 
we have  

t [0,2 ],T(t) T(t ) 0∀ ∈ π + + π =
v v

 
 
and so the points p f(t)=

v
 and p f ( t )∗ = + π

v
 are opposite 

points.  
 If d(p,p*) denotes the Euclidean distance between p 
and p*, then ∀t∈R, d(p,p*) = 50 and so the curve is of 
constant width 50.  
A unit normal vector to f

v
 at f( t )

v
 is  

 
N(t) ( cost, sint)= − −
v

 
and so  

N(t ) (cost,sint) N(t)+ π = = −
v v

 

 
 If Naff is the affine normal line of f

v
 at f( t )

v
 and 

affq ∈Νv , then 

 
              q f(t) N(t), R= + λ λ ∈

v vv  

f(t ) 50N(t ) N(t )= + π + + π − λ + π
v v v

 

                f(t ) (50 )N(t )= + π + − λ + π
v v

 

 
 Hence *

affq ∈Νv , the affine normal line of f
v

 at 

f ( t )+ π
v

. Similarly, if *
affq ∈Νv , then  

 
q f(t ) N(t ), R= + π + λ + π λ ∈

v vv  

                     f(t) 50N(t) N(t)= + − λ
v v v

 

                     f(t) (50 )N(t)= + −λ
v v

  
 
 Hence affq ∈Νv . Thus, the affine normal lines at 

f( t )
v

 and f ( t )+ π
v

 coincide (Theorem 2).  

The curvature of f
v

 at f( t )
v

 is  
 

3

f (t) f (t) 1
k(t)

25 24cos5tf ( t )

′ ′′×
= =

−′

v v
v  

 
Thus, (t) (t ) 50ρ + ρ + π =  (Theorem 3).  
Now let p (a,b)=v . Then 
 

2
p

2

(t) (25cost costcos5t 5sintsin5t a)

(25sint sintcos5t 5costsin5t b)

Λ = + + −

+ + − −

v
 

So  
p (t) 2(25 24cos5t)( 5sin5t asint bcost)′Λ = − − + −v  

 

p (t) 2(25 24cos5t)( 25cos5t acost bsint)

240sin5t( 5sin5t asint bcost)

′′Λ = − − + +

+ − + −

v
 

 
Equating the last two equations to zero, we get 
 

5sin5t asint bcost 0− + − =  
and 

25cos5t acost bsint 0− + + =  
 
Solving the last two equations together, we get 
 

a 25costcos5t 5sintsin5t= +  
and  

b 25sintcos5t 5costsin5t= −  
 
Thus, the focal point of f

v
 with base f( t )

v
 is  

 
(25costcos5t 5sintsin5t,25sintcos5t 5costsin5t)+ −  

 
which is the focal point of the curve based at the 
opposite point f ( t )+ π

v
 (Theorem 4). By Eq.(18), we 

have ∀ψ∈[0,2π], u(ψ) = 50 (Theorem 5). 
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