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Abstract: In this paper, the Generalized Differential Transform Method (GDTM) is used to solve fractional 
hyperbolic partial differential equations. The idea is to modify the differential transform method used to 
solve fractional partial differential equation. The calculated results due to using the GDTM are given in 
tabulated form in order to give a good comparison with the exact solution.  
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INTRODUCTION 
 
 Fractional order partial differential equations, as 
generalizations of classical integer order partial 
differential equations, are increasingly used to model 
problems in fluid flow, finance and other areas of 
application. Fractional derivatives provide an excellent 
instrument for the description of memory and 
hereditary properties of various materials and 
processes. Half-order derivatives and integrals prove to 
be more useful for the formulation of certain 
electrochemical problems than the classical models 
[22]. Fractional differentiation and integration operators 
are also used for extensions of the diffusion and wave 
equations [23]. A great deal of effort has been expended 
over the last 10 years or so in attempting to find robust 
and stable numerical and analytical methods for solving 
fractional partial differential equations of physical 
interest. Numerical and analytical methods have 
included finite difference method [6, 7, 24], Adomian 
Decomposition Method (ADM) [1, 8-12, 17], 
Variational Iteration Method (VIM) [5, 13, 14, 18] and 
Homotopy Perturbation Method (HPM) [5, 15, 19]. The 
VIM and the ADM have been extensively used to solve 
fractional partial differential equations, because they 
provide immediate and visible symbolic terms of 
analytic solutions, as well as numerical approximate 
solutions to both linear and nonlinear differential 
equations without linearization or discretization. 
 The present authors have written a series of papers 
solving linear partial differential equations and 
nonlinear partial differential equations of fractional 
order  [1,  8-15,  17-19].  Recently  they  developed  a 

semi-numerical method for solving linear partial 
differential equations of fractional order [20]. This 
method is named as Generalized Differential Transform 
Method (GDTM) and is based on the two dimensional 
Differential Transform Method (DTM) [2, 4, 25] and 
the generalized Taylor’s formula [21]. The present 
paper may be regarded as an extension of the later 
paper [20] on nonlinear partial differential with space-
and time-fractional derivatives of the form  
 

    f

u u
N (u(x,y)), m 1 m,

t x
 n 1 n  ,  n,m N

µ ν

µ ν

∂ ∂
= + − < µ ≤

∂ ∂
− < ν ≤ ∈  

(1.1) 

 
where µ and v are parameters describing the order of 
the fractional time-and space-derivatives in the Caputo 
sense, respectively and Nƒ is a nonlinear operator which 
might include other fractional derivatives with respect 
to the variables x and t. The function u(x,t) is assumed 
to be a causal function of time and space, i.e., vanishing 
for t<0 and x<0. The general response expression 
contains parameters describing the order of the 
fractional derivatives that can be varied to obtain 
various responses.  
 There are several definitions of a fractional 
derivative of order α>0 [3, 22]. The two most 
commonly used definitions are the Riemann-Liouville 
and Caputo. The Riemann-Liouville fractional 
integration of order µ is defined as 
 

        
x 1

a a

1
J f ( x ) (x t) f(t)  dt, 0, x 0

( )
µ µ −= − µ > >

Γ µ ∫
 

(1.2) 
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The next two equations define Riemann-Liouville and Caputo fractional derivatives of order µ, respectively, 
 

                                                                           
m

m
a am

d
D f ( x ) (J f(x))

dx
µ − µ=

 
(1.3) 

 

                                                                          
m

m
a a m

d
D f(x) J f(x)

dx
µ −µ
∗

 
=  

 
 

(1.4) 

 
where m-1<µ≤m and m∈N. For now, the Caputo fractional derivative will be denoted by aDµ

∗  to maintain a clear 

distinction with the Riemann-Liouville fractional derivative. 
 The Caputo fractional derivative is considered here because it allows traditional initial and boundary conditions 
to be included in the formulation of the problem. In this paper, we consider the one-dimensional space-and time 
fractional nonlinear partial differential equation (2.1), where the unknown function u = u(x,t) is a assumed to be a 
causal function of space and time, respectively and the fractional derivatives are taken in Caputo sense as follows. 
 
Definition 1.1: For m to be the smallest integer that exceeds µ, the Caputo time-fractional derivative operator of 
order µ>0 is 
  

                               

t m
m 1

m
0

*t
m

m

1 u(x, )
(t ) d   for  m 1 m

u(x,t) (m )D u(x,t)
t u(x, )

                                         for  m
t

−µ−
µ

µ
µ

 ∂ τ
− τ τ − < µ <

∂ Γ −µ ∂τ= = 
∂ ∂ τ µ = ∈ Ν ∂

∫

 

(1.5) 

 
and the space-fractional derivative operator of order ν > 0 is defined as 
 

                               

x m
m v 1

m
0

*x
m

m

1 u( , t )
(x ) d   for  m 1 m

u(x,t) (m )D u(x,t)
x u(x,t)

                                         for  m
x

− −
ν

ν
ν

 ∂ θ
− θ θ − < ν <

∂ Γ − ν ∂θ= = 
∂ ∂ ν = ∈Ν ∂

∫

 

(1.6) 

 
 For mathematical properties of fractional 
derivatives and integrals one can consult the mentioned 
references. 
 

GENERALIZED TAYLOR'S FORMULA 
 
 In this section we present the generalized Taylor's 
formula that involves Caputo fractional derivatives. 
This generalization is presented in [21]. Suppose that 

k
*a(D ) f(x) C(a,b]α ∈  for k = 0,1,…,n+1 where 0<α≤1, 

then the generalized taylor's formula is  
 

 
n 1in

i ( n 1 )*a
*a

i 0

((D ) f)( )(x a )
f(x) ((D ) f ) (a ) (x a)

(i 1) ((n 1) 1)

α +α
α + α

=

ξ−
= + + −

Γ α + Γ + α +∑  (2.1) 

 

with α≤ξ≤x, for each x ? (a,b] and *aDα  is the Caputo 

fractional derivative of order α, where 
 

k
*a *a *a *a(D ) D D Dα α α α= L

 
 

 In case of α = 1, the generalized Taylor's formula 
(2.1) reduces to the classical Talyor's formula. 

Theorem 2.1: [21] Suppose that k
*a(D ) f(x) C(a,b]α ∈  for 

k = 0,1,…,N+1 where 0<α≤1. If x∈[a,b], then  
 

                  
iN

i
*a

i 0

(x a)f(x) ((D )f ) (a )
(i 1)

α
α

=

−− +
Γ α +∑%

 
(2.2) 

 

 Furthermore, there is a value ξ with α≤ξ≤x, so that 
the error term NR (x)α has the form 
 

             
N 1

(N 1)*a
N

((D ) f)( )R (x) (x a)
((N 1) 1)

α +
α + αξ= −

Γ + α +
 

(2.3) 

 

 The accuracy of f(x) x g(x) where  1λ= λ > −  
increases when we choose large N and decreases as the 
value of x moves away from the center a. Hence, we 
must choose N large enough so that the error does not 
exceed a specified bound. In the following theorem, we 
find precise conditions under which the exponents hold 
for arbitrary fractional operators. This result is very 
useful on our approach for solving differential 
equations of fractional order.  



World Appl. Sci. J., 23 (12): 89-96, 2013 

91 

 
Theorem 2.2: [16] Suppose that f(x) x g(x)λ=  where 
λ>-1 and g(x) has the generalized power series 
expansion 
 

n

nn 0
g(x) a (x a)

α∞

=
= −∑

 
 
with radius of convergence ℜ>0, where 0<α≤1. Then 
 
                           *a *a *aD D f(x) D f(x)γ β γ+β=

 
(2.4) 

 
for all x∈(0,R) if one of the following conditions is 
satisfied: 
 
(a) β<λ+1 and γ arbitrary, 
(b) β≥λ+1, γ arbitrary and ak = 0 for k = 0,1,…,m-1, 

where m-1<β≤m. 
 
 The proof of Theorem 2.1 is given in [20] and the 
proof of Theorem 2.2 is given in [21]. 
 

THE GENERALIZED DIFFERENTIAL 
TRANSFORM METHOD 

 
 The  Differential  Transform  Method  (DTM) was 
first applied in the engineering domain by [25]. In 
general,  the  DTM  is  applied  to  the  solution  of 
electric circuit problems. The DTM is a numerical 
method based on the Taylor series expansion which 
constructs an analytical solution in the form of a 
polynomial. The traditional high order Taylor series 
method  requires  symbolic  computation.  However, 
the  DTM  obtains  a  polynomial  series  solution  by 
means of an iterative procedure. The method is well 
addressed in [16-18].  
 In  this  section  we  shall  derive  the  generalized 
two-dimensional  DTM  that  we  have  developed  for 
the   numerical   solution   of  linear  partial  differential 

 
equations with space-and time-fractional derivatives 
[20]. The proposed method is based on the combination 
of the classical two-dimensional DTM [17, 18] and 
generalized Taylor’s formula [21]. Consider a function 
of two variables u(x,y) and suppose that it can be 
represented as a product of two single-variable 
functions, i.e., u(x,y) = ƒ(x)g(y). Based on the 
properties of the generalized two-dimensional 
differential transform [2, 4], the function u(x,y) can be 
represented as 
 

       

k h
0 0

k 0

k h
, 0 0

k 0 h 0

u(x,y) F (k)(x x ) G (h)(y y )

          U (k,h)(x x ) (y y )

∞
α β

α β
=

∞ ∞
α β

α β
= =

= − −

= − −

∑

∑∑
 

(3.1) 

 
where 0<α, β≤1, ,U (k,h) F (k)G (h)α β α β=  is called the 

spectrum of u(x,y). The generalized two-dimensional 
differential transform of the function u(x,y) is given by 
 

 
0 0 0 0

k h
, x y ( x , y )

1
U (k,h) [(D ) ( D )u(x,y)]

( k 1) ( h 1)
α β

α β ∗ ∗=
Γ α + Γ β +

 
(3.2) 

 
where  

0 0 0 0

k
x x x x(D ) D D Dα α α α

∗ ∗ ∗ ∗= L
 

 
k-times. In this paper, the lowercase u(x,y) represents 
the original function while the uppercase Uα,β(k,h) 
stands  for  the  transformed  function. In case of α = 1, 
β = 1 the generalized two-dimensional differential 
transform (3.1) reduces to the classical two-dimensional 
differential transform. Based on Eq(3.1) and Eq(3.2), 
we have the following results.  
 
Theorem 3.1: Suppose that Uα,β(k,h), Vα,β(k,h) and 
Wα,β(k,h) are the differential transformations of the 
functions u(x,y), v(x,y) and w(x,y), respectively, then 

 

, , ,(a) if  u(x,y) v(x,y) w(x,y) , then U (k,h)   V (k,h) W (k,h)α β α β α β= ± = ±  

, ,(b) if  u(x,y) a v(x,y) , a R  then U (k,h)  aV (k,h)α β α β= ∈ =   
k h

, , ,r 0 s 0
(c) if  u(x,y) v(x,y)w(x,y) , then  U (k,h)  V (r,h s)W (k r,h)α β α β α β= =

= = − −∑ ∑  
n m

0 0 ,(d) if  u(x,y) (x x ) (y y )  , then  U (k,h)  (k n) (h m)α β
α β= − − = δ − δ −  

 
Theorem 3.2: Let 

0xu(x,y) D v(x,y),   0 1α
∗= < α ≤  Then  

 

                                                               , ,

( (k 1) 1)
U (k,h) V (k 1,h)

( k 1)α β α β

Γ α + +
= +

Γ α +
 

(3.3)  

Proof: By (3.2) we have 

0 0 0 0 0 0 0 0 0

0 0 0 0

k h k 1 h
, x y x ( x , y ) x y ( x , y )

k 1 h
x y ( x , y )

1 1
U (k,h) [(D ) (D ) D v(x,y)] [(D ) (D ) v(x,y)] ,

( k 1) ( h 1) ( k 1) ( h 1)
( (k 1) 1)

                [(D ) (D ) v(x,y)]
( k 1) ( h 1) ( (k 1) 1)

α β α α + β
α β ∗ ∗ ∗ ∗ ∗

α + β
∗ ∗

= =
Γ α + Γ β + Γ α + Γ β +

Γ α + + Γ
= =

Γ α + Γ β + Γ α + + ,

( (k 1) 1)
 V (k 1,h)

( k 1) α β

α + +
+

Γ α +
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Theorem 3.3: Let u(x,y) = ƒ(x)g(y) and ƒ(x) = xλh(x), where λ>-1,h(x) has the generalized Taylor series expansion  
 

k
n 0n 0

h(x) a (x x )
∞ α

=
= −∑

 
and 
(a) β<γ+1, α arbitrary, 
(b) β≥λ+1, α arbitrary and ak = 0 for k = 0,1,…,m-1, where m-1<β≤m. 
 
Then the generalized differential transform (3.2) becomes 
 

                                                    
0 0 0 0

k h
, x y ( x , y )

1
U (k,h) [D (D ) u(x,y)]

( k 1) ( h 1)
α β

α β ∗ ∗=
Γ α + Γ β +

 
(3.4) 

 
Proof: This  follows  immediately  from  the  fact  that  1 2 1 2

0 0 0x x xD D f(x) D f(x)γ γ γ + γ
∗ ∗ ∗= , under the conditions given in 

Theorem 2.2.  
 
Theorem 3.4: Let 

0xu(x,y) D v(x,y),  m 1 mγ
∗= − < γ ≤  and v(x,y) = ƒ(x)g(y) where the function ƒ(x) satisfies the 

conditions given in Theorem 2.2. Then 
 

                                                              , ,

( k 1)
U (k,h) V (k / ,h)

( k 1)α β α β

Γ α + γ +
= + γ α

Γ α +
 

(3.5) 

 
Proof: Using Theorem 3.3, we have 
 

0 0 0 0 0

k h
, x y x ( x , y )

1
U (k,h) [(D )(D ) D v(x,y)]

( k 1) ( h 1)
α β γ

α β ∗ ∗ ∗=
Γ α + Γ β + 0 0 0 0

k h
x y ( x , y )

1
[(D )(D ) v(x,y)]

( k 1) ( h 1)
α + γ β
∗ ∗=

Γ α + Γ β +
 

     
0 0 0 0

k h
x y ( x , y )

( k 1)
[(D )(D ) v(x,y)]

( k 1) ( h 1) ( k 1)
α + γ β
∗ ∗

Γ α + γ +
=

Γ α + Γ β + Γ α + γ + ,

( k 1)
V (k / ,h)

( k 1) α β

Γ α + γ +
= + γ α

Γ α +
 

  
 Now, if the function u(x,y) = ƒ(x)g(y), ƒ(x) and g(y) satisfy the conditions given in Theorem 2.2, then the 
generalized differential transform (3.2) becomes 
 

                                                    
0 0 0 0

k h
, x y ( x , y )

1
U (k,h) [(D )(D )u(x,y)]

( k 1) ( h 1)
α β

α β ∗ ∗=
Γ α + Γ β +

 
(3.6) 

 
 Therefore, in this case, if 

0 0x yu(x,y) D D v(x,y)γ µ
∗ ∗= , where m-1<γ≤m, n-1<µ≤n and the functions ƒ(x) and g(y) 

satisfy the conditions given in Theorem 2.2, then we have the following result: 
 

                                              , ,

( k 1) ( h 1)
U (k,h) V (k / ,h / )

( k 1) ( k 1)α β α β

Γ α + γ + Γ β + µ +
= + γ α + µ β

Γ α + Γ α +
 

(3.7) 

 
ANALYSIS OF THE METHOD 

 
 In this section we shall use the analysis presented in the previous section to construct our numerical method for 
solving the following nonlinear partial differential equation with space and time-fractional derivatives 
 

                                                f

u u
N (u(x,t), m 1 m,n 1 n,  n,m N

t x

µ ν

µ ν

∂ ∂
= + − < µ ≤ − < ν ≤ ∈

∂ ∂  
(4.1) 

 
where  Nƒ  is  a  nonlinear  operator  which  might  include  other  fractional  derivatives  with  respect  to  the 
variables x and t. 



World Appl. Sci. J., 23 (12): 89-96, 2013 

93 

 
 First of all, if 0<µ≤1 and 0<v≤1, then we suppose that the solution of the nonlinear equation (4.1) can be written 
as  a  product  of  single-valued  functions  u(x,t) = v(x)w(t), where  the  function  w(t) satisfies the conditions given 
in Theorem 2.2. In this case, selecting α = µ, β = v and applying Theorem 3.2 on both sides of Eq. (4.1), it 
transforms to 
 

                                     , , ,

( (h 1) 1) ( (k 1) 1)
U (k,h 1) U (k 1,h) F (k,h)

( h 1) ( k 1)α β α β α β

Γ α + + Γ β + +
+ = + +

Γ α + Γ β +
 

(4.2) 

 
where Fα,β(k,h) is the generalized differential transformation of Nƒ(u(x,y)). 
 Secondly, if 1 2m 1 m / m m− < µ = ≤  and 0<v≤1, then we suppose that the solution the nonlinear equation (4.1) 

can be written as a product of single-valued functions u(x,t) = v(x)w(t), where the function w(t) satisfies the 
conditions given in Theorem 2.2. In this case, selecting α = 1/m2, β = v and applying Theorem 3.2 on both sides of 
Eq. (4.1), it transforms to 
 

                                 1
, 1 , ,

( (h 1) m ) ( (k 1) 1)
U (k,h m ) U (k 1,h) F (k,h)

( h 1) ( k 1)α β α β α β

Γ α + + Γ β + +
+ = + +

Γ α + Γ β +
 

(4.3) 

 
 Finally, if 1 2m 1 m / m m− < µ = ≤  and 1 2n 1 n / n n− < ν = ≤ , then we suppose that the solution of the nonlinear 

equation (4.1) can be written as a product of single-valued functions u(x,t) = v(x)w(t), where the functions v(x) and 
w(t) satisfy the conditions given in Theorem 2.2. In this case, selecting α = 1/m2, β = 1/n2 and applying Theorem 3.2 
on both sides of Eq. (4.1), it transforms to: 
 

                                1 1
, 1 , 1 ,

( (h 1) m ) ( (k 1) n )
U (k,h m ) U (k n , h ) F (k,h)

( h 1) ( k 1)α β α β α β

Γ α + + Γ β + +
+ = + +

Γ α + Γ β +
 

(4.4) 

 
 In all the above cases, the solution of the nonlinear space and time-fractional equation (4.1), using Definition 
(3.1), can be written as: 

                                                                         k h
,

k 0 h 0

u(x,y) U (k,h)x y
∞ ∞

α β
α β

= =

= ∑∑
 

(4.5) 

 
FRACTIONAL HYPERBOLIC PARTIAL DIFFERENTIAL  

EQUATIONS WITH BOUNDARY VALUE PROBLEMS 
 
We will study the simplest form of hyperbolic PDE of the form: 
 

                                                       
2 q

2 q

u(x,t) u(x,t)
, L x R, 0 t T,1 q 2

t x
∂ ∂

= ≤ ≤ ≤ ≤ ≤ ≤
∂ ∂  (5.1) 

 
together with the initial and zero Dirichlet boundary conditions:  
 

u(x,0) f(x)      for   L x R  ,  0 t T= ≤ ≤ ≤ ≤  

 

                                                                    
u(x,0)

g(x)    for   L x R
t

∂
= ≤ ≤

∂  
(5.2) 

 
u(L,t) 0            for   0 t T= ≤ ≤ ,  

 
u(R,t) 0            for   0 t T= ≤ ≤  

 
As a numerical example consider the fractional order hyperbolic partial differential equation: 
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2 1.5

1 / 2 2 3 2 2 2
2 1.5

u 1 d ux 4x   2x -2.546 x t   2.546 xt    , 0  x 2,  0  t 1
t (0.5) dx

∂ = − + + ≤ ≤ ≤ ≤
∂ Γ

 

(6.1)  

 
together with initial and zero Dirichlet boundary conditions: 
 
                        2

tu(x,0) 0  ,   u(x,0) 0  for  0  x 2,    u(0, t) 0  , u(1,t) t ,u (2 , t ) 0   for  0  t 1 = = ≤ ≤ = = − = ≤ ≤
 

(6.2) 
  
 Suppose that the solution u(x,t) can be represented as a product of single-valued functions, u(x,t) = v(x)w(t) 
where the function v(x) satisfies the conditions given in Theorem 2.2 Selecting α = 1, β = 0.5 and applying Eq. 
(4.3), the recurrence relation for the hyperbolic partial differential equation (6.1) is given by 
 

      
1,1/2

k h
1,1/2

r 0 s 0

k r 5
( ) (h 1)(h 2)U (k,h 2) 2 (h)(2 (k 4) (k 6))2 2F(r) ( h s) U (k r 3,s) (0.5)  

k r               2.546 (h 2)( (k 4) (k 2))( 1)
2

= =

−
Γ + + + + + δ δ − − δ − 

δ − − + = Γ  − + δ − δ − − δ − Γ +
∑∑

 

(6.3) 

where 

                                                                           

1
r 2

r

x 1

1 d (x )
F(r)

r! dx
=

 
 =  
  

 

(6.4) 

 
The generalized two-dimensional differential transform of the initial and zero Dirichlet boundary conditions (6.2) is  
 
                       

1,1/2 1,1/2 1,1/2 1,1/2 1,1/2
U (k,0) 0  ,  U (k,2) 0  , U (0,h) 0, U (2,h) 0  ,  U (1,h)    -  (h 2) = = = = = δ −

 

(6.5) 

 
Utilizing the recurrence relation (6.3) and the transformed initial conditions (6.5), we have 
 

      
1,1/2

k h
1,1/2

r 0 s 0

k r 5
( ) (h 1)(h 2)U (k,h 2) 2 (h)(2 (k 4) (k 6))2 2F(r) ( h s) U (k r 3,s) (0.5)

k r               2.546 (h 2)( (k 4) (k 2))( 1)
2

= =

−
Γ + + + + + δ δ − − δ − 

δ − − + = Γ  − + δ − δ − − δ − Γ +
∑∑

 

(6.6)  

 

 Therefore, the approximate solution of the nonlinear fractional hyperbolic equation (6.1) with 
1

1,
2

α = β =  can be 

derived as 
 

 
 
Fig. 1: A comparison between the approximate 

solutions for Eq. (6.1) using the GDTM and the 
corresponding values out of the exact solution 

                 
k

h2
1,1/2

k 0 h 0

U (k,h) x tu(x,t)
∞ ∞

= =

= ∑∑  (6.7) 

 
and using the inverse transformation rule in Eq. (3.2), 
u(x,t) is evaluated as 
 
                           2 2u(x,t) x (x 2)t= −  (6.8) 
 
that is the exact solution of Eq. (6.1) 
 Using Matlab, Table 1 shows a comparison 
between  the  approximate  solutions  for  Eq. (6.1) 
using   the   GDTM   and  the  corresponding  values  
out  of  the  exact  solution.  From  the  numerical 
results in Table 1, it is clear that the approximate 
solution obtained using the GDTM is in good 
agreement  with  the  exact  solution  for  all  values  of 
x and t (Fig. 1). 
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Table 1: Numerical  values  for  Eq. ( 6.1) at t = 0.1,t = 0.2,t = 0.3 and 

t = 0.4 

 t  = 0.1  t  = 0.2 

 ---------------------------------- -------------------------------- 
x uGDTM Exact  uGDTM Exact  

0.0 0.00000000 0.0000 0.000000000 0.0000 

0.1 -0.000189998 -0.00019 -0.000759992 -0.00076 
0.2 -0.000719992 -0.00072 -0.002879968 -0.00288 
0.3 -0.001529983 -0.00153 -0.006119933 -0.00612 
0.4 -0.002559972 -0.00256 -0.010239887 -0.01024 

0.5 -0.003749959 -0.00375 -0.014999835 -0.01500 
0.6 -0.005039945 -0.00504 -0.020159778 -0.02016 
0.7 -0.00636993 -0.00637 -0.025479719 -0.02548 

0.8 -0.007679915 -0.00768 -0.030719662 -0.03072 
0.9 -0.008909902 -0.00891 -0.035639608 -0.03564 
1.0 -0.009999890 -0.01000 -0.039999560 -0.04000 

 t  = 0.3  t  = 0.4 
 ---------------------------------- ------------------------------- 
x uGDTM Exact  uGDTM Exact  

0.0 0.000000000 0.0000 0.000000000 0.0000 
0.1 -0.001709981 -0.00171 -0.003039967 -0.00304 
0.2 -0.006479929 -0.00648 -0.011519873 -0.01152 
0.3 -0.013769848 -0.01377 -0.024479730 -0.02448 

0.4 -0.023039746 -0.02304 -0.040959549 -0.04096 
0.5 -0.033749628 -0.03375 -0.059999339 -0.06000 
0.6 -0.045359501 -0.04536 -0.080639112 -0.08064 

0.7 -0.057329369 -0.05733 -0.101918878 -0.10192 
0.8 -0.069119239 -0.06912 -0.122878647 -0.12288 
0.9 -0.080189117 -0.08019 -0.142558430 -0.14256 

1.0 -0.089999009 -0.09000 -0.159998238 -0.16000 

 
CONCLUSIONS 

 
 In this paper a new generalization of the two 
dimensional differe-ntial transform method has been 
developed for fractional partial differential equations 
with boundary value problems. The new generalization 
is based on the generalized Taylor’s formula and 
Caputo fractional derivative.  
 Comparison of the results obtained by using the 
GDTM with that obtained by other existing methods 
reveals that the present method for solving fractional 
partial differential equations is a very effective and 
convenient technique in finding numerical solutions for 
wide classes of problems and it increases the accuracy 
of the solutions. 
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