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Abstract: In this paper we implement the unified rational expansion methods, which leads to find exact
rational forma polynomial solutions of nonlinear partial differential equations (NLPDES), to the (1+1)-
dimensional dispersive long wave and Clannish Random Walker's parabolic (CRWP) equations. By using
this scheme, we get some solutions of the (1+1)-dimensional dispersive long wave and CRWP equationsin

terms of Jacobi elliptic functions.
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INTRODUCTION

The theory of nonlinear dispersive wave motion is
an interesting areainvestigated in the numerous articles
in which it appears in various subjects. We do not
attempt to characterize the general form of nonlinear
dispersive wave equations [1, 2]. These studies for
nonlinear partial differential equations have attracted
much attention in mathematical physics and play a
crucia role in applied mathematics. Furthermore, when
an original nonlinear equation is directly calculated, the
solution will preserve the actual physical characters of
solutions [3]. Explicit solutions to the nonlinear
equations are of fundamental importance. Also different
methods for acquiring explicit solutions to nonlinear
evolution equations have been suggested. Many explicit
exact methods have been established in [4-32]. We may
list them such as generalized Miura transformation,
Darboux Transformation, Cole-Hopf Transformation,
Hirota' s dependent variable Transformation, the inverse
scattering Transform and the Backlund Transformation,
tanh method, sine-cosine method, Painlevé method,
homogeneous balance method, similarity reduction
method, Kudryashov method,etc. The author presented
a powerful and effective method for obtaining exact
solutions of nonlinear ordinary differential equationsin
[13]. Our am is to find exact solutions of nonlinear
PDE's with the final version of unified rational
expansion method in [13].

In next section we give the analyse of the method
given in [13]. In the following section, we apply the
method given in [13] to the CRWP equation and (1+1)-
dimensional dispersive long wave equation. In the last
section, we give the conclusion.

SUMMARY OF THE
RATIONAL EXPANSION METHOD

In the following we would like to outline the main
steps of our method:

Step 1. Given a system of polynomia NLEEs with
constant coefficients, with some physical fields

u(x,t) = u(x)
Y (U, 4,4, Uy, Uy, Uy,e.) =0 (21

use the wave transformation x = kx-wt wherek, | and k
are constants to be determined later. Then the nonlinear
partial differential system (2.1) is reduced to a
nonlinear ordinary differential equation (ODE)

y (u,- wuG K e, ugud...) =0 (2.2

Step 2: Ansatz in terms of finite rational forma
expansion in the following forms:

m é’ ajﬁ'zFrl (X)Gr2 (X)
u(x) = a0 + g el : 2.3
el(an(x) +mG(x) +1)J @3

where a,,a, ,mvem(i=12..) are constants to be
determined later and the new variables

F=F(x)veG =G(x)
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satisfy

ﬁ: K,(F.G), d—G: K,(F.,G)
dx dx

here K; and K, are polynomial of F and G.

Step 3. Determine the m of the rational formal
polynomia solutions (2.3) by respectively balancing
the highest nonlinear terms and the highest-order partial
derivative terms in the given system eguations [7-12]
and then give the formal solutions.

Step 4: Subdtitute (2.3) into (2.2) and then set all
coefficients of F(x)G(x), (p = 1,2,... and g = 0,1) of
the resulting systems numerator to be zero to get an
over-determined system of nonlinear algebraic

equations with respect to k, a,,a, ,mvem,

Step 5: By solving the over-determined system of
nonlinear algebraic equations by use of symbolic
computation system Maple or Matematica, we end up

with the explicit expressionsfor k, ao,a"rlrz, mvem,

Step 6: According to the general solutions of system
and the conclusions in Step 5, we can obtain rational
formal exact solutions of system (2.1) [13].

JACOBI ELLIPTIC FUNCTION
RATIONAL EXPANSON METHOD

In this section we would like to apply our method
to obtain rational formal Jacobi elliptic function
solutions of NLEEs, i.e., restricting F and G in Jacobi
elliptic functions.

Here sn, cn, dn, sc, ¢s, nc, nd, sd and ns are the
Jacobian elliptic sine function, the Jacobian elliptic
cosine function and the Jacobian elliptic function of the
third kind and other Jacobian functions which is
denoted by Glaishers symbols and are generated by
these three kinds of functions, namely [19],

ns(x)= ! nc(x)= = nd(x) = L xzfn(x)
) sn(x)’ ™) en(x)’ 4 dn(X)’Sd( ) dn(x)
SCiX :sn(x) cs(x _cn(x) s(x :dn(x)
(x) on(x (x) Sn(x)’d (x) =

which are double periodic and posses the following
properties
1. Propertiesof triangular function

sn(x)* +cn?(x) =1

82

mfsn(x)” +dn?(x) =1

2. Derivatives of the Jacabi elliptic functions
L (sn(x) =en(xen(x)
dx
L (en(x))=-(x)en(x)
dx
d

&(dn(x)) =-m?sn(x)cn(x)

where misamodulus.
3. Propertiesof limit

sn(x.0) =sinfx)
sn(x,1)= tanh(x
on(%0) =cos(x)
on(x) =sech ()
dn(x,0) =1
an (x3) =sech(x)

The Jacobi-Glaisher functions for elliptic function
can befound in Ref. [19].

Example 1. The six main steps of the Jacobi elliptic
function (here just consider the condition F(x) = sn(X)
and G(X) = cn(x) rational expansion method are
illustrated with Clannish random walkers parabolic
equation (CRWP),

u- u +2uu,-u,=0 (31

According to the Step 1 in Section 2, we make the
following travelling wave transformation

u(x,t)=yf) ,x=x- ct

where c is constant to be determined later and thus (3.1)
becomes

-cu- u'+2uu- u"=0 (32
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According to Step 2 in Section 2, we expand the solution of equation (3.2) in the form for m® 0

. & asin'(x) +bsin'*(x)cos(x)
1o =20 |al (wsin (x) + p,cos(x) +1) 33

According to Step 3 in Section 2, by balancing uu¢and u2 in equation (3.2) we can obtain that m = 1. So we have

a,sin(x) +bgos(x) (34)

uix) =ag + psin(x) +p,cos(x) +1

According to Step 4 in Section 2, with the aid of Maple, substituting (3.4) into (3. 2) yields a set of algebraic

equations for sin' (Y)cos (¥ (i = 0,1,2,...) Setting the coefficients of these terms sin' (X)cos (x) of the resulting
equation numerator to be zero yields a set of over-determined algebraic equations with respect to

30, &, b1, Iy and .
According to Step 5 in Section 2, by use of the Matematica, solving the over-determined algebraic equations,

we get explicit expressionsfor a0, &, &, by, Hs.
According to Step 6 in Section 2, we get following algebraic equations system of CRWP equation

b(1- 2bj,- 24, + (1- 28, +C)HM,) - &(L+cC- 2bj, - 2up, + W2 + 0,7 - 28 (1+4,%) =0
1
§(3qu1+3b1“1' 630b1“'1+ 3@“1' 331112 +6aoajl'lz +3b1p~2 - 3§CH)+

%(bl((- 1+2a, - Q- W,) +a(4b +p, +(- 1+ 28, - O,)) =0 @5

2a, + 2b, - 4asb, + 2bc- 4gby, +2bj? - dap,u® +2bcp,? + 4a’, - 2ap, + da@p i, +AbgL, - 2acip, - 4ap,” =
2a7- 2b7- ap, +2aa, - by, - acy, - ap, +by, - 2app, +bey, =0

From the solution of the algebraic equations (3.5) we have

1. Family
a,= 1711(2+J§ +2c). b = +Em = ((2‘;131 +Za())£;i:_a°2 qz))
a’ Oul—-—(-al+2aoa1+b a0,- 2a,+4a@ +b, - 23ct 0 (36)
2. Family
a0=1711(2- J2+ 2c), a,=0,b —+—,u1—-4?b1 H, :g(bl- 2ab, +bc) (37
3. Family
a,=0,b, == ( 2+4a, - 4a,’ - 2c+4a,C- c)bllo,ulzl 39)
H, :(-l+2a0 -€),1-8a0 +8a0” + 4c- 8a0c +2¢°* 0.
4. Family
aO:J_rjll(Z- N2+ 20), blzir%r 9- 16a°,a, ! O,M:%(Zﬁaﬁm)
(39

_2a1+4a0a1+b - 231(: 10 I —ﬂ
' "7 8a,+4f18- 3237

and from these coefficients we have the following solutions respectively.
83
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Solution
1o o asifx- ct)- boogx- d (310
U 1)= 552 & +2ci— L AB (BP0
e arma- - s ) L CBPC T O oy
- 28 +43,@ + - 7b, - 28C)
Solution
1(2- J2+20)- Ecos(x- ct)
u(x,t) = 2 3 3 4 3 11
sin(x- e+ = (- 7 +2(2 V2+20) - Z0c0s(x - ct) +1 (40
Solution
i %(-24.430- 4302- 2c+4a,c- ¢®)cos(x - ct)
MO = e+ (- T 23, - c)cos(x- ) +1 (312
Solution
u(x,t) =711(2- J2+20)+ apin(x-)- bp;i(:eagt) (313

7o

"
Fig. 1: Graph of the reel part of (3.13) for 4. u(x,t)
corresponding to thevaluesa; =i andc=2

Fig. 22 Graph of the imaginary part of (3.13) for 4.
u(x,t) corresponding to the values a; =i and
c=2

%(2\/25\1 +4b)sin(x- ct) +(

A T -a)+1
831+Jr328f)mx ) +

Example 2: The (1+1)-dimensional dispersive long
wave equation

_ 1 _
u +uu +v, =0,v +vu + uvx+§uxxX =0

(3.14)

According to the Step 1 in Section 2, we make the
following travelling wave transformation

u(x,t)=yf) ,x=x- ct

where ¢ is constant to be determined later and thus
(3.14) becomes

-cubt uu® ve=0 - cve+vult uv¢+%u¢= 0 (315

Integrating the second equation of equations (3.15)
once with regard tox, we obtain

_Cu+%u2+v :o,-(,\/+uv+%u ¢=0 (316)

with the integration constants taken to be zero.
According to Step 2 in Section 2, we expand the

solution of equation (3.16) in the form for m® O

u(x) = a0+ é"‘ asin'(x) +bsi ni'l(x)cos('x)

31
=1 (psin(x) + pcos(x) +1) (317

According to Step 3 in Section 2, by balancing uv
and u? inequation (3.16) we can obtain that m =1 and
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by balancing v and u? in equation (3.16) we can obtain that n = 2. So we have

s hsin(x) +k,cos(x)
u(x) =h Hsin(x)+ugos(x) +1
asin(x) +bgos(x) a,sin(x)* +bsin(x)cos(x)
usin(x)+ugos(x)+1  (usin(x)+p,cos(x) +1)*

(319

According to Step 4 in Section 2, with the aid of Matemarica, substituting (3.18) into (3.16), yields a set of
algebraic equations for sin' (X)cos (¥) (i = 0,1,2,...) Setting the coefficients of these terms sin' (X)cos () of the
resulting equation numerator to be zero yields a set of over-determined algebrai c equations with respect to hg, hy, kg,
M1, M2, 80, 1, &, by and b.

According to Step 5 in Section 2, by using of the Matematica and solving the over-determined algebraic
equations, we get explicit expressionsfor hg, hy, ki, Y, Uz, &, a1, @, by and bo.

According to Step 6 in Section 2, we get following algebraic equations system of (1+1)-dimensional dispersive
long wave equation

-24Qhy,- 6bh,u, +8ky, - 24ak,, - 6ak,u, +24cky, - 6Bhu’ - 6hhu’ - 6aky,’ - 6bhp’
-16kp’ - Gak’ +6¢cky’ +24ahu, - 8hy, +24ahu,+18ahu, - 24chy, +6bk u, +12ah iy,
+12th“]“2 - 12qkﬂ~l}12 +6 QhJHZUZ +16h”12FI2 * 6a0hl“fl’l2- 6Ch]“12|-12 +6 Qhouzz"' lehj}lzz +6 quJJ'z2
-6 g hyuy,? - 16KUH,? - Bak i+ 6Ckp? +6 ghgt,® +16hu,® +6ah,,° - 6¢hp,® =

3k, +6ai; -30hkyy, 18BN, - 30Qh, +10ku, - 30ak i, +30Ckip, +h, (-4+9, - 12c
4230 - S0 +18bp, +13," - 33047 + A+ T+ 10u9) + 3, (2N, + Bkt +No(4+u + 1)) =0

6ak, +4kp, +6ak,k, + 3K, - 6CKL, +3ak 1’ - 4kp, +3ak, - 3ckp,’ +6ghyl, +4hy
+63,n.1L, - 9ah - 6chy, - 6ahgiy, - 6ahpuy, -3 ah i, +4hu i, - 3ah wi, +3chiy’y,
+3qk1“22 +4k1|~11}122 - 3a0|ﬂ“1}122 + 301(1“1“22 + 3511ho|~123 - 4th[23 + 330h1U23 - 3CHH23 + 3b2(hp1 + k1U2
+hy( 2+p7 +11,7)) +3Q(h(2+p2 +p )+ ¢ 2k, + ho(2+ 17 - 1,7)) =0

-9a,h, +9bk, - 6a,hg, - 6ahp, +6Qkp -3ah? +hyp? - 3ah,p,® + 3chul, +6b,hou, +6hhy,
+6 qkj“z +6 klh)MUz - 2k1“1“2 + GaJ(]u:IHZ - GCkll'l:ll'lZ + 3a1h0p22 - hnpzz +3aoh1UZ2 - 3(:?’5'_122 =

-12bhy- 3o,h, + 4k, - 1280k, - 3a,k, +12ck, - 18hhy,- 18hhy, - 183k, - 33'&”3”12 - 13k1|~112 h 33a0k1|J’12 + 33Cklpf
+30a,h 1, +30ahy, - 6hkj, +30alhgip, - 10h1pp, +308h1pu, - 30chlu , - 3 qho“zz - 23"1“22' 33-(}(1“22 + 3CK|.122 =0

12a,h, +12ah, - 12k, +12ahgy, +8hy, +123hw, - 12chyy, - 12Bky, - 129"1“12 -12Qhu, +12hhy,
- 8K, - 12ak 1, + 128kl + 12¢kp, - 12 thUZ +16k1“12U2 - 12%k1l-112“2+ 120"1“5“2 "':1-2":)2hoUz2 + 12a1h1”22
+12a1h&11“22 -16 hl“l“zz + 12%*1“1“22' 120*]“1}122 =0

- 301yl + 3ckiy1 - 3nOk1pl + 3alp2 - 3chip2 + 3h0h1p2 =0

(2b, + 2hk, + by, - ckpy +hkp, +a, - chy, +heh,) =0
('2b1 +2€K - 2h0k1' 2bz”1' 2h1kll~ll' 2b1“'12 +20k1u12 - 2h0k1“12
+4a,p, +2h W, +23u41, - 2chup, +2hhp,) =0

2a2 + hlz_ k12 +aly 'Chl“1+ h(h:l“l_ blp-z +Ck1“2' hoklp-z =0

(319

From the solution of the algebraic equations (3.19) we have
85
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Family
2 1 5 )
pﬂ.:lxuzz-l,azz-g,aﬂ =E(-4- 3b2+ 6c - 6Ch0+6h0 )’C_ h0 0
320
3+4/3,[3+8ch, - 8h,? 320
= 6(c- ho) 'k, =08, =b, +chh - hsh, b, =-Db,,h,* O
Family
— _ _ _2__1
W =L, =-1.0=h,,8, =- 2.3 _E('A" 3b, +6h,)
2h (321)
h, ='To’k1 =0,a,=b, b =-b,,h,2 0
Family
— _ _ _ 2 __1
W =14, =-1h, =0,8,=- =,a,=—(- 4- 3b, +6c)
1 ° ° (322
ct O,hl:E'k1 =0,a=b,+ch,b =-b,
Family
=1y, =-18,=- %ao = %(‘4- 3b, + 6¢- bch, + 6h,7)
(323

3+4/34/3+8ch, - 8h,’

c- hyt 0,h, = 6(c- )
0

,b, =-b,,k,= 0,8 =b, +ch, - hh;

From these coefficients we get following solutions of (1+1)-dimensional dispersive long wave equation with

respectively.
Solution
, _ 2
3iJ§63+ 8:]h° all sin[x- ct]
u(x,t) = h, + —— (c- ho) 324
sin[x - ct] - cogx- ct] +1
1 - 2Sih[x- c]® +bsin[x - ctjcogx - cf]
v(x,1) =2 (- 4- 3, +6c- Beh, +6h;?) +—3— !
6 (sin[x- ct] - cogx - ct]+1)
(b, +%(3- «/§1I3+8c:h0 - 8hoz))sin[x - ct]- b,cogx- ct]
* 3.2
sin[x- ct]- cos{x- ct] +1 (3.25)
Solution

2C .
- —sin[x - ct
3 [ ]

uix.g)=c+ sin[x - ct] - cogx - cf] +1 (320

- %sin[x- of? +bsin[x - ctlcosix - ct]

v(x.1) =£(_4_ 3b, + 60) + bsin[x - ct] - bgos[x - ct] 3.27)
"6 2 sin[x - ct] - cos[x - ct] +1 (sin[x - ct] - cog[x - ct]+1)*
Solution
%sin[x- ct]
u(x,t) =— - - (3.28)
psin[x - ct]+ p,cosx - ct] +1
2. A
V) :l(_4- 3.+ 60) ¢ (b, +Dsin[x - cff - b,cos[x - cf] +-§sm[x- ct]® +bsin[x - ctjcog[x - ct] 329
' 6 : sin[x - ct] - cog[x - ct] +1 (sin[x- ct] - cogx - ct] +1)? '
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method is efficient and practically well suited to use in
finding exact travelling wave solutions for the CRWP
equation and system of (1+1)-dimensional dispersive
long wave equation. By using Mathematica, we have
provided the correctness of the obtained solutions by
putting them back into the original equation. These
solutions will be useful for further studies in applied
sciences.
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