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Abstract: Thenormal trendin Linear Prediction (LP) techniques is fixed frame windowing. In this paper, 
however, dynamic window concept is introduced whereframe size is kept variable in order to achieve 
efficient outcome in terms of computational cost, mean square error and prediction gain. The three famous 
LP techniques namely Normal Equations, Levinson Durbin Algorithm (LDA) and Leroux Gueguen 
Algorithm (LGA) are briefly discusse dusing variable frame windowing and the above mentioned 
parameters are analyzed. Simulation results for the above three algorithms suggest that LDA and LGA have 
shown better performance than Normal Equation method based on reduced prediction error, low 
computational time and high prediction gain. 
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INTRODUCTION 
 
 Linear Prediction (LP) is a system identification 
process of signal reconstructionfrom its previous 
samples [1-3, 17, 20]. It’s the wide spread applications 
of LPsuch as data forecasting, speech coding, video 
coding, speech recognition, signal restoration, model-
based spectral analysis, model-based interpolation and 
impulse/step input detection [4-6], which has gained the 
interest of researchers to work in this field. LP is used 
in the algorithms of speech coding in which the speech 
samples are modeled as a linear combination of the past 
output, present output and past inputs [1]. According to 
authors of [7] redundancy in the information can be 
removed with the help of LP technique. Hence there is 
no need for transmission of a certain amount of data 
which can be predicted [8]. The LP algorithms can help 
in predicting the stock market. Another application of 
LP is the estimation of a signal fundamental frequency 
[8]. LP can be achieved externally or internally based 
on the position of the predicted samples [8]. In external 
LinearPrediction, the signal samples are estimated 
outside the desired frame while in internal linear 
prediction the signal samples are estimated within the 
frame.  
 The basic idea of the Linear Prediction is to 
estimate the future data samples on the basis of the past 
values of the input signal within a signal frame, the 
weights used to compute the linear combination are 

calculated by minimizing the mean square prediction 
error [3, 8]. In internal prediction, Linear Prediction 
Coefficients (LPCs) {also sometimes known as LP 
coding} are computed from the selected data frame by 
using autocorrelation concept for processing of the data 
window. The LPCs of external prediction are 
implemented for predicting the lost samples of data that 
means LPCs associated with external prediction are 
computed fro m the past samples of the signal [8]. The 
conventional  Normal  Equation  method  has  been 
found computationally expensive [3, 6]. Alternatively, 
Levinson Durbin Algorithm (LDA) [16-18] 
considerably reduces this computational cost by 
avoiding the larger matrix inversions involved in the 
computation of LPCs. However, LDA has the drawback 
of a larger dynamic range in the values of LPC [8]. 
Another alternate isLerouxGueguen Algorithm (LGA) 
which eliminates the problem of dynamic range in a 
fixed point environment using the Schwartz inequality 
in computation of the LPC [8]. The LDA and LGA 
utilize the properties of autocorrelation matrix thereby 
decreasing the computational time as compared to the 
Normal Equation method [8]. 
 In [9], performance optimization of the speech 
coding algorithms based on Linear Prediction is done 
through optimization of window size. This approach is 
based on the principle of gradient descent. The 
optimized window improves the system performance 
with   no   computational   complexity  for  many  cases. 
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Fig. 1: Linear prediction 
 
Khan et al. [10] proposes the use of Normal Linear 
Prediction for prediction of the lost samples to improve 
performance of the estimation through Kalman filter. 
Simulation results have shown better performance by 
the compensated closed loop Kalman filter with Normal 
Linear Prediction as compared to open loop Kalman 
filter. In [11], joint control algorithm and attitude 
estimation is discussed and used in space craft 
dynamical mo del in case of loss of observations. The 
lost observations are predicted by Linear Prediction 
techniques in order to use in the measurement update 
step of the Kalman filter. The robust estimation 
proposed in [11] outperforms conventional open loop 
Kalman filter. 
 In this paper, the threeLinear Prediction techniques 
are studied and their performance is analyzedfor both 
internal and external prediction of the signal. 
Furthermore,modification for bounded error 
performance inLinearPrediction techniquesis discussed.  
 The rest of the paper is organized as follows: 
Section II briefly introduces Linear Prediction theory. 
Modified LP techniques i.e. Normal Equation, LDA 
and LGA are explained in section III.State Estimation is 
discussed in section IV.Simulation results are given in 
section V and paper is concluded in section VI. 
 

LINEAR PREDICTION 
 
 Linear prediction refers to a technique in which 
coefficients of an auto regressive model are computed 
making useof the input signal [21]. The calculated 
coefficients are then employed to regenerate thesignal. 
The predicted signal is given by: 
 

                           (1) 
 
where represents the predicted signal, represents the 
input signal,  is the ithcoefficient weight of the signal.  
Figure 1 outlinesthe working principle of Linear 
Prediction. The operation of LP is based on 
minimization   of  mean  square  error.  A  mathematical 

Z[n-p-(p-2)] •••••• Z[n-p-1] Z[n-p] •••••• Z[n-3] Z[n-2] Z[n-1] Z[n]

Window for the prediction of the 
first of the frame from left

Window for the prediction of 
initial Z[n] sample

Window for the prediction of Z [n-1]

 
 
Fig. 2: Showing the sliding window concept in internal 

prediction 
 
expressionto compute these predictive coefficients is 
derived with the condition resulting inminimum mean 
square error. The signal error can be calculated by the 
following equation: 
 
                              (2) 
 
 Linear predication can be categorized into Internal 
and External Predication, detailed below. 
 
Internal prediction:  In internal prediction, the LPCs of 
a certain frame of data are determinedusing the data 
inside the frame. Hence, the resulting LPCs capture the 
statistics of the frame accurately. A longer frame size 
reduces computational complexity, since the LPCs are 
calculated and transmitted less frequently;however, the 
coding delay grows largeras the system has to wait 
longer to collect many samples [8]. In addition, due to 
the changing nature of non-stationarysystems, the LPCs 
of a long frame might not produce good prediction gain. 
On the other hand, a shorter data frame calls for more 
frequent update of the LPCs, which leads to a more 
accurate portrayal of the signal statisticsin comparison 
with the longer data frame. Most internal prediction 
mechanisms depend on non-recursive autocorrelation 
estimation methods, where a finite length window is 
used to obtain the signal samples.In internal prediction 
no real prediction of the signaloccurs, rather the 
coefficients of the given signal frame are worked out. 
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Fig. 3: Sliding window nature of the external prediction 
 
 In this paper, the sliding window concept is 
employedas depicted in Fig. 2. The stationary and 
sliding window approaches differ inthe update process. 
In sliding window concept, thewindow update isin the 
backward direction.While in stationary window,the 
same window is constantly used forcomputingall 
sample values [3]. 
 
External prediction: In external prediction, the 
derived LPCs are used in a future frame; that is 
theLPCs associated with the frame are not derived from 
the data locatedinside theframe;instead they are 
calculated frompast values of the signal [8]. External 
prediction is effective in caseof slow variation in the 
signal’s statistical properties. The frame size should be 
large enough so that in case of a problem, maximum 
amount of data loss is recovered. The LP filter order is 
determined from the following relation [9]. 
 

 
 
where denotes the starting timeinstant of loss of 
measurements, is the sampling time ofthe system and 
‘p’ is Linear Prediction filter order or LPFO.Conceptual 
viewof the external Linear Prediction and the sliding 
window used is shown in Fig. 3. In this  paper,some 
modifications are made in the Linear Prediction 
algorithms in order to reduce error in the prediction 
process. 
 
Prediction gain:  The formula for calculating the 
prediction gain(PG) is given by [8] 
 

      (3) 
 
 Equation (3) indicates that prediction gain is the 
ratio between the variance of the input signal and the 
variance of the prediction error expressed in decibel 
units. As such, prediction gain is ameasure of the 
performance of a predictor. Smaller value of prediction 
error results in a higher value of prediction gain. So a 
predictor  having  a  higher prediction gainis better than 

 
one with lower prediction gain. One way to find out the 
optimum frame size of the predictor for maximized 
prediction gain is to plot the prediction gain as a 
function of the prediction order. In the resulting plot a 
saturation point will reach when further increase in the 
frame size will have no significant effect on the 
prediction gain. 
 

LINEAR PREDICTION TECHNIQUES 
 
Normal equation: The Normal Equation is based on 
minimum mean square error (e = original signal - 
predicate). InNormal Equation method the predicted 
signal is given by [8]: 
 

                          (4) 
 
 In what follows, a mathematical approach for 
reduction of error between actual and predicted signals 
has been explained.The cost function is defined as [8]. 
 

       (5) 
 
 ‘J’ is the cost function which is precisely a second 
order function of LPCs.To get the sub-optimal value of 
LPC, the cost function ‘J’ is differentiated with respect 
to ‘ ’ and equated to zero, as [8]. 
 

(6) 
 
Rearranging Equation(6) gives: 
 

    (7) 
Now 
              k=1, 2, 3... p (8) 
 
This leads to Equation (9) 
 

                        (9) 
 
The auto-correlation matrix  is given by: 
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From Equations (8) and Equation (9): 
 

                                    (10) 
 
 The variable rz  represents the transpose of the array 
formed by the elements Rz[0] to Rz[p-1] of the 
autocorrelationarray.The resulting matrix in 
Equation(10) is a Toeplitz matrix having same diagonal 
elements. This property of Toeplitz matrix allows the 
linear equations to be solved by the Levinson-Durbin 
algorithm [12] or the Schur algorithm [13]. 
 
Modified levinson durbin technique: Normal 
Equation method has been found computationally 
expensive becauseevery iterationof lossof observation 
involves large matrix inversion [8]. In orderto avoid 
this problem, Levinson Durbin Algorithm (LDA)is 
normally employed.Levinson-Durbin algorithm (LDA) 
considerably reducesthe computational time by using 
the Toeplitzsymmetry property of the autocorrelation 
matrix [15]. The autocorrelation array found in Eq. (10) 
serves as the starting input of this algorithm. The 
coefficients that we arrive at in LDA technique are not 
LPCs but are in fact, Reflection Coefficients (RCs) 
[12]. The Reflection Coefficients found through this 
algorithm have one to one correspondence with LPC 
coefficients because the input signal is Wide Sense 
Stationary (WSS) in nature. For ‘L’ number of 
iterations and frame size‘P’, LDA algorithm can be 
described as follows: 
 
Initialization:First iteration (L=0), set 
 
Jo = R [0] 
Threshold limit for the error eth =0.5 
 
Recursion: For L=1, 2, 3...P 
 
Step 1: Compute the values of Lth RC [12] 
 

 
 
Step 2: Now Calculate LPCs for the Lth order predictor 
as: [12] 

 
 

 
 
Stop: when L=P 
 
Step 3: Calculating the minimum mean square 
prediction error as [8] 

 

 
 
Check: the value of threshold error and compare with 
J:IfJ<= eth 
 
No: LàL+1; go to step 1 
Yes: Store the corresponding values of mean square 
error, computation time and predicted signal. 
 
Modified leroux gueguen technique: LDA has 
beenfound suffering from a larger dynamic range in the 
valuesof LPC. An alternate method-LerouxGueguen 
Algorithm (LGA) eliminates the problem related to 
dynamic range in afixed-point environment by taking 
the application of Schwartzinequality in computation of 
this method [13]. This techniquealso reduces the 
computational time by avoiding large matrix inversion 
as happens in Normal Equation (10). 
 
Initialize:Loop for sub-optimal size for range of frame 
size 
 
ForT=10à20  
 
Define the threshold value for error ethas 0.5 
 
Initialization:L=0, set 
 

 
 
Recursion: for L=1, 2, 3... P. 
 
Step 1: Calculate the Lth Reflection Coefficient [13] 
 

 
Stop if k=P 
 
Step 2: Calculate the epsilon parameters [8] 
 

 
where  

 
 
Calculate the error ‘e’ as: 
 
                 E[n]= z[n]-  

                          
                          
 
Check if e<=eth 

No: Up T=T+1 
Yes: Save all the required values and stop the loop. 
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 The epsilon parameters values are used for 
calculating the LPC coefficients. 
 

STATE ESTIMATION 
 
 Filtering process is used to extract information 
from noise contaminated data. If noise and signal are in 
different frequency regions, then a conventional low-
pass, band-pass, band-stop or high-pass filter would be 
enough for extraction of information signal. But if the 
spectra of noise and signal overlap then a conventional 
filter design will be a difficult task. In such situations 
the useful information is obtained through estimation, 
prediction or smoothing [3]. Kalman filter is a best tool 
for the state estimation of LTI systems. Kalman filter 
accurately estimates the state of a system based on the 
noisy measurement [3]. So Kalman filter need accurate 
knowledge of system dynamics. Actually Kalman filter 
predict the system state and then updates the predicted 
signal by using observations, recursively.  
 Many control and communication systems have the 
problem of data loss. Some of the reasons of data loss 
may be sensor faults, buffer overflow, communication 
errors or insufficient bandwidth of the channel [10]. In 
case of loss of measurements, the conventional Kalman 
filter shows poor performance because of the 
unavailability of data at measurement update state. For 
this reason another approach called Open Loop 
Estimation (OLE) is used in case of data loss. In OLE 
only prediction step is performed. Update step cannot 
be performed to tune the predicted signal because of 
loss of measurement data. In OLE the estimation error 
becomes unbounded if data loss happens for an 
adequate time period. Recently another technique called 
Zero Order Hold (ZOH) is introduced. In ZOH the last 
data sample is stored and updated throughout the 
estimation. But this technique has certain shortcomings. 
Because if a single data sample is used for 
measurement update step then it may not be useful 
when data loss is longer. This technique also requires 
that the signal samples must be strictly correlated [15].  
 In this paper Linear Prediction techniques are used 
for reconstruction of the missing data in state estimation 
through Kalman filter. The predicted signal is then 
employed in the Kalman filtering at the step of 
measurement update.  
 Consider the following discrete time LTI system 
 

 
 

 
 
where , , , ,  is 
the  state  transition matrix, is the input matrix, 

 
 is the output matrix and ( ) are 

Gaussian, uncorrelated white noise sequences with 
mean ( ) and covariance ( ) respectively. 
The estimation through Kalman filter is summarized as 
follows. 
 
1. Initialize  
 

 

 
2. Prediction cycle: 
 

 State estimation 

 
 Error covariance 

 
3. Time-step update: k→k+1 
4. Sense measurements: zk+1 = Hxk+1+θk+1 
5. Innovation vector calculation: 
 

 
 
6. Then calculate the innovation covariance matrix: 
 

 
 
7. Now calculate the gain matrix:  
 

 
 
8. Perform update cycle: 
 
 ; 

 State estimation 
 
 ; 

 Error covariance 
 
 It is clear from the above algorithm that update step 
completely relies on measurements. When the output 
data (zk) is not available, KF will not result in optimal 
estimation. For this reason we have used Linear 
Prediction techniques to predict the missing output data 
for the update step.  
 

SIMULATION RESULTS 
 
Model description: For evaluation of the above 
analysis an example of space craft is employed which is 
discussed in this section. Consider a space craft 
accelerated with random gas bursts. It will follow an 
LTI system model as follows: 
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 In eqn. x,  is comprised of position 
and speed of the spacecraft. Here  show noise 
contaminated observation vector and  is a square 
matrix. By using Kalman filter the state of the system 
can be estimated if the characteristics of the noise 
sequence are known. The above equationcan also be 
written as: 
 

 
 

 
 
where  representspeed and position of the 
spacecraft respectively. Here  and  show the 
process noise sequences in the two states. Sampling 
frequency is selected to be 10 Hz. Acceleration and 
measurement noise is 0.02 and 0.1 respectively.  
 
Optimum frame sizefor internal prediction 
techniques: Theoptimum frame size is selected from 
among a range of different frame size values. Optimum 
frame size is chosen based on the values of prediction 
error, prediction gain and computation time required for 
the execution of the algorithm. Table 1 shows the 
resulting values of computational time, prediction error 
and prediction gain for different frame sizes for the 
Normal Equation method. 
 Table 1 clearly shows that the frame size affects 
the output of the Normal Equation Linear 
Predictiontechnique. Table 1 also reveals that 
increasing the LPF order does not always result in 
smaller prediction error. Prediction gain has a direct 
relation with the system performance. The sub-
optimum  frame  size  for  Normal  Equation  technique 
is  60  as  can  be  seen  in  Table 1. Simulation results 
for the LDA technique for different frame sizes are 
shown in the Table 2. 
 Table 2 showsthe effect of frame size on the 
prediction gain, prediction error and computational time 
and it is clear that the optimum frame size is 50. The 
difference in the computational time of Normal 
Equation scheme and LDAis not considerable but it 
becomes significant only when larger matrix inversion 
is confronted in Normal Equation technique. By 
comparing Table 1 and 2 it is clear that LDA has a 
better performance than the Normal Equation 
method.Simulation results for the LGA technique for 
different frame sizes are shown in Table 3. 

 
Table 1: Performance of normal equation technique for internal 

prediction 

Frame Prediction  Computational 
size gain Error time (sec) 

10 -3.5498 1.0392 0.0039 
20 -5.2507 1.0297 0.0159 
30 -10.2498 1.7267 0.0187 
40 7.8378 0.4245 0.0198 
50 15.9393 0.0672 0.0214 
60 14.9677 0.0391 0.0245 
70 4.3889 1.3576 0.0278 
80 -3.6686 1.3371 0.0322 
90 -5.3421 1.3876 0.0366 

 
Table 2: Performance of levinson durbin technique for internal 

prediction 

Frame Prediction  Computational 
size gain Error time (sec) 

10 -2.7505 1.8611 0.0107 
20 5.4930 0.7571 0.0110 
30 9.7875 0.5883 0.0141 
40 10.9400 0.1690 0.0159 
50 17.4751 0.0544 0.0106 
60 5.2654 0.0597 0.0169 
70 -6.6353 0.6805 0.0170 
80 -12.7612 0.6515 0.0184 
90 -11.4513 0.6504 0.0186 

 
Table 3: Performance of leroux gueguen technique for internal 

prediction 

Frame Prediction  Computational 
size gain Error time (sec) 

10 4.9666 0.4.321 0.0235 
20 4.1984 0.2922 0.0072 
30 5.1718 0.4204 0.0081 
40 3.0053 0.4568 0.0085 
50 0.7011 0.4932 0.0090 
60 -3.0359 0.5001 0.0095 
70 8.7850 0.0123 0.0126 
80 -13.6948 4.1451 0.0129 
90 -9.8877 0.6910 0.0218 

 
 From Table 3 it can be seen that the optimum 
frame size for LGA  is 70. The computational time 
required for the LDA technique is smaller as compared 
to the computational times of Normal Equation and 
LGA methods but the main drawback of this technique 
is the large dynamic range of the resulting coefficient 
values. 
 
Comparison of internal prediction techniques: In 
this  subsection,  performance  comparison  of  the  
three Linear Prediction techniques based on the 
optimumframe size has been made. 
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Table 4: Internal linear prediction techniques comparison for different frame sizes 

Technique used Prediction gain Prediction error Computational time (sec) 

Normal equation technique (60) 14.9677 0.0391 0.0245 

Levinson Durbin technique (50) 17.4751 0.0544 0.0106 

Leroux Gueguen technique (70) 8.7850 0.0123 0.0126 

 
Table 5: Performance of normal equation for external prediction 

Frame Prediction  Computational 

size gain Error time (sec) 

10 -16.8324 1.1147 1.0196 
20 -11.0153 0.7274 1.0169 

30 4.1065 1.4197 1.0386 
40 12.7607 0.0704 1.1910 
50 8.2341 0.0914 1.4704 

60 7.8660 0.6489 1.5291 
70 -1.2619 1.0570 1.5638 
80 -8.6143 0.8018 1.6859 
90 -14.8672 1.2543 1.8685 

 
Table 6: Performance of levinso durbin technique for external 

prediction 

Frame Prediction  Computational 
size gain Error time (sec) 

10 -6.5087 0.6885 0.1032 

20 -16.0595 3.4087 0.1867 
30 11.0452 1.2399 0.1892 
40 11.1587 0.0520 0.1769 
50 5.0668 0.6758 0.1851 

60 8.7199 1.1707 0.1911 
70 -10.1204 1.6853 0.1971 
80 -8.3033 0.6913 0.2001 

90 -7.3087 0.7524 0.2186 

 
Table 7: Performance of leroux gueguen technique for external 

prediction 

Frame Prediction  Computational 
size gain Error time (sec) 

10 -15.5512 0.3953 0.0918 
20 -9.4328 1.1821 0.0647 
30 5.7453 1.1890 0.0622 
40 7.0579 0.4559 0.0597 

50 13.5689 0.0397 0.0634 
60 8.3390 3.0770 0.0698 
70 -10.2531 1.5026 0.0722 

80 -21.7538 2.7585 0.0745 
90 -6.6728 7.8200 0.0815 

 
 From Table 4, it is clear that prediction error is 
small for the LGA but is high for the Normal Equation 
technique. The computational time is also greater for 
Normal  Equation  technique  as  compared to LDA and  

LGA. The cause of this delay is the larger matrix 
inversion involved in Normal Equation technique. LDA 
and LGA reduce this computational time by avoiding 
the larger matrix inversion involved in the calculation 
of LPCs. It is also clear that prediction gain is greater 
for the LDA technique.The LGA has the min imum 
prediction error of all the three algorithms. And the 
computational time for LGA is also smaller as 
compared to the LDA and Normal Equation method. 
However the computational gain value is higher for the 
Levinson Durbin method as given in Table 4.  
 
Optimum frame size for external prediction 
techniques: External prediction is usually used in cases 
where low coding delay is the major concern [8]. 
Therefore in external prediction techniques smaller 
frame size is preferable in order to avoid larger 
computational delay. Table 5 shows the results of the 
Normal Equation technique when different frame size 
values are considered. Prediction error, computational 
time and prediction gain are shown for each value of 
frame size. 
 From Table 5 it is observed that different frame 
size values influence the output of the linear predictor. 
And by increasing the frame size computational time 
increases gradually. It can be noted that prediction gain 
shows the system performance. Greater value of 
prediction gain indicates higher performance of the 
system. The sub-optimal frame size for Normal 
Equation  is  40. Table  6  enlists  the  results  obtained 
for LDA: 
 From Table 6 it is obvious that the sub-optimal 
frame size for LDA is 40 due to smaller prediction error 
value and less computational time as compared to other 
values of frame sizes.By comparing the results in Table 
5 and 6 it can be concluded that computational time for 
LDA is much less than that for Normal Equation 
method. The following table shows the values of 
computational time, prediction error and prediction gain 
for different frame sizes for LGA technique. 
 Table 7 shows that the sub-optimal frame size for 
LGA technique is 50. The computational time increases 
with increase in the frame size. Prediction gain gives an 
insight into the performance of the system. 
 
Comparisons of linear prediction techniqes for 
external  prediction: Table  8  depicts a comparison of  
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Table 8: External Linear Prediction schemes comparison for different frame sizes 

Technique used Prediction gain Prediction error Computation al time (sec) 

Normal Equation Technique (40) 12.7607 0.0704 1.1910 

Levinson Durbin Technique (40) 11.1587 0.0520 0.1769 

LerouxGueguen Technique (50) 13.5689 0.0397 0.0634 
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Fig. 4: Actual signal and estimated signals using linear prediction techniques (normal equation, Levinson Durbin 
algorithm and Leroux Gueguen algorithm) 
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Fig. 5: Actual signal and estimated signals using linear prediction techniques (normal equation, Levinson Durbin 

algorithm and Leroux Gueguen algorithm) 
 
all  the  three  techniques  for   different   parameters  
i.e. Prediction Gain, Error and Computation Time 
foroptimum frame size of each technique.  
 From Table 8 it is clear thatdegradation in 
prediction errorperformance is in the following 
ascending order i.e. LGA, LDA and Normal Equation 
method. The performance in terms of computational 
time is in the following descending order (worst to best) 

i.e. Normal Equation method, LDA and LGA. 
Itisconcluded that LerouxGueguen technique is the 
optimumprediction technique giving sub-optimal values 
over all the three parameters for external Linear 
Prediction. 
 In Fig. 4, the solid line represents the actual signal. 
The rest of the lines represent the signal estimated 
through  Kalman filter, where the missing data (samples 
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Fig. 6: Error signals by normal equation, Levinson Durbin algorithm and Leroux Gueguen algorithm 
 
160…190) is predicted through different Linear 
Prediction techniques. The dotted line represents the 
signal estimated through Kalman filter in which the 
missing portion is predicted by LerouxGueguen 
Algorithm. The dashed line shows the estimated signal 
in which the missing data is predicated by Normal 
Equation. Similarly the signal predicted by Levinson 
Durbin Algorithm is given by the solid green line. 
Thedash-dot line is the signal estimated by open loop 
Kalman filtering.  
 From Fig. 4, it is clear that the best estimation is 
achieved when the missing data is predicted by 
LerouxGueguenAlgorithm, while the worst estimation 
of the signal happens when open loop Kalman filtering 
is applied.  
 Figure 5 shows a clear view of the region of lost 
samples. It is clear that the estimated signal is more 
deviated in the region of lost samples (samples 160… 
190) and the prediction techniques can be easily 
compared by looking at this region. From worst to best 
are OLKF, Normal Equation technique, LDA and LGA. 
 Figure 6 shows the estimation errors for different 
techniques. The dot-dash line shows the error by open 
loop Kalman filtering. The dashed line, dotted line and 
solid line represent the estimation when Normal 
Equation, LGA and LDA are employed in the state 
estimation  respectively. The open loop Kalman 
filtering  results  in  larger  error  as compared to the 
other techniques. Minimum estimation error occurs 
when LerouxGueguen technique is used for prediction 
of the missing samples in the process of state 
estimation. Normal Equation and Levinson Durbin 
technique show better performance than open loop 
Kalman filtering but they result in lager value of error 
than LerouxGueguen Algorithm. 

CONCLUSIONS 
 
 In this paper,three different Linear Prediction 
techniquesare  presented  and  analyzed  for both 
internal  and  external  prediction  of  a signal. The 
Linear Prediction algorithms are modified by 
emp loying  variable  frame  sizes.  A  threshold  limit 
for prediction error is set in order to keep the error 
bounded. The effect on different performance 
parameters  due  to  variable  frame  sizeis  also 
discussed. Anoptimum frame size is chosen for each 
Linear Prediction technique based onreduced prediction 
error, low  computational  time  and  high  prediction 
gain to decideefficient (optimum) Linear Prediction 
filter order.All the three LP algorithms are then 
compared  forprediction  gain,  computational  time  
and prediction error values attheir optimum frame 
sizes.It is concluded that LDA and LGA show much 
better performance than the conventional Normal 
Equation method.  
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