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Abstract: Investigation of various wavelet methods, for its capability of analyzing various dynamic 
phenomena through waves gained more and more attention in engineering research. Starting from ‘offering 
good solution to differential equations’ to capturing the nonlinearity in the data distribution, wavelets are 
used as appropriate tools that provide good mathematical model for scientific phenomena, which are 
usually modeled through linear or nonlinear differential equations. Review shows that the Haar wavelet 
method (HWM) is efficient and powerful in solving wide class of linear and nonlinear differential 
equations. The discrete wavelet transform has gained the reputation of being a very effective signal analysis 
tool for many practical applications. This review intends to provide the great utility of Haar wavelets to 
science and engineering problems which owes its origin to 1910. Besides future scope and directions 
involved in developing Haar wavelet algorithm for solving differential equations are addressed.  
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INTRODUCTION 
 
 Wavelet analysis  is a new branch of mathematics 
and widely applied in signal analysis, image processing 
and numerical analysis etc. The wavelet methods have 
proved to be very effective and efficient tool for solving 
problems of mathematical calculus. In recent years, 
these methods have attracted the interest of researchers 
of structural mechanics and many papers in this field 
are published. In most papers the Daubechies wavelets 
are applied. These wavelets are orthogonal, sufficiently 
smooth and have a compact support. Their shortcoming 
is that an explicit expression is lacking. This obstacle 
makes the differentiation and integration of these 
wavelets very complicated. For evaluation of such 
integrals the connection coefficients are introduced, but 
this complicates the course of the solution to a great 
extent. Among the wavelet families, which are defined 
by an analytical expression, special attention deserves 
the Haar wavelets. In 1910, Alfred Haar [1] introduced 
the notion of wavelets. His initial theory has been 
expanded recently into a wide variety of applications, 
but primarily it allows for the representation of various 
functions by a combination of step functions and 
wavelets over specified interval widths. The Haar 
wavelet transform is one of the earliest examples of 
what is known now as a compact, dyadic, orthonormal 
wavelet transform. Haar wavelets are made up of pairs 

of piecewise constant functions and are mathematically 
the simplest among all the wavelet families. A good 
feature of the Haar wavelets is the possibility to 
integrate them analytically arbitrary times. The Haar 
wavelets are very effective for treating singularities, 
since they can be interpreted as intermediate boundary 
conditions. 
 In the last two decades, the approximation of 
orthogonal functions has been playing an important role 
in the solution of problem such as parameter 
identification analysis and optimal control. The main 
characteristic of this technique is  that it converts the 
differential equation used to describe problem to a set 
of algebraic equations. Chen and Hsiao [2] were the 
first to derive the approximation method via Walsh 
function. Subsequently, the set of orthogonal functions 
have been extensively applied to solve the parameter 
identification of linear lumped time invariant systems 
[3], bilinear systems  [3] and multi-input multi-output 
systems  [4]. The above mentioned orthogonal 
functions, however, are supported on the whole interval 
a≤x≤b. This kind of global support is evidently a 
drawback for certain analysis of work, particularly in 
systems involving abrupt variations or a local function 
vanishing outside a short interval of time or space [5]. 
Haar wavelets have been proved to be a useful 
mathematical tool for overcoming this disadvantage. 
The   pioneering   work   in   system  analysis  via  Haar 
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wavelets was led by Chen and Hsiao [5] who first 
derived a Haar operational matrix for the integrals of 
the Haar function vector and paved the way for the 
Haar analysis of the dynamical systems, later Hsiao [6] 
established the method to find solutions for time-
varying systems  by introducing Kronecker product of 
matrices for avoiding singularities [7] and the time-
varying singular bilinear systems [8]. Kilicman and Al 
Zhour [9] had introduced the Kronecker operational 
matrices for fractional calculations and some 
applications. Some of the books include: C.K.Chui 
(1991), Daubechies (1992), Heller et al. (1992), 
Hernandez and Weiss (1996), Berrus (1997), Goswami 
(1999), Stephane Jaffard et al. (2001), Soesianto et al. 
(2002), Resnikoff et al. (2004) and Ge et al. (2007). 
 When the solution of a system contains 
components which change at significantly different 
rates to give changes in the independent variable, the 
system is said to be “stiff”. Hsiao [10] dealt state 
analysis of linear time delayed systems via Haar 
wavelets and carried out comparative study of the same 
with finite difference method (FDM) 
 Wavelet methods have been applied for solving 
partial differential equations (PDEs) from beginning of 
the early 1990s. Haar wavelets have been applied 
extensively for signal processing in communications 
and physics research and have proved to be a wonderful 
mathematical tool. Hsiao and Wang [11] proposed a 
key idea to transform the time-varying function and its 
product with the states into a Haar product matrix. 
Since then, all related algorithms can be implemented 
easily. All severe mathematical constraints can be met 
perfectly. Chen and Hsiao [5, 12] established Haar 
wavelet method for solving lumped and distributed-
parameter systems and also wavelet approach to 
optimizing dynamic systems. The RH transforms 
preserves all properties of the original Haar wavelet 
transform and can be efficiently implemented using 
digital pipeline architecture. Razzaghi and Ordokhani 
[13] had introduced the solution of differential 
equations via rationalized Haar functions. Hsiao and 
Wu [14] dealt the numerical solution of time-varying 
functional differential equations via Haar wavelets. 
Ohkita and Kobayayashi [15, 16] applied RH functions 
to solve ordinary differential equations and linear first 
and second order partial differential equations. 
Razzaghi and Ordokhani [17] introduced the RH 
functions to solve variational problems and differential 
equations. Maleknejad and Mirzaee [18] presented the 
rationalized Haar wavelet for solving linear integral 
equations. Shamsi et al. [19] used the Haar wavelet 
method for solving Pocklington’s integral equation. 
Chen  and  Wu  [20]  applied  a  wavelet   method   for  
a  class of fractional convection-diffusion equation with  

 
variable coefficients. Cattani [21, 22] showed Haar 
wavelet spline. In the Haar wavelet method for solving 
PDEs, the pioneering work by Cattani [21] is very 
important. Mehdi Rashidi Kouchi et al. [23] had solved 
the homogeneous and inhomogeneous harmonic 
differential equation using the Haar Wavelet method. 
Schwab and Stevenson [24] developed the adaptive 
wavelet algorithms for elliptic PDE's on product 
domains. 
 In the last two decades this problem has attracted 
great attention and numerous papers in this topic have 
been published. Lepik [25-38] introduced numerical 
solution of differential equations with higher order, 
integral equations and two dimensional partial 
differential equations using Haar wavelet method. 
Majak et al. [39] dealt weak formulation based Haar 
wavelet method for solving differential equations. Due 
to the simplicity the Haar wavelets are very effective 
for solving differential and integral equations [40-42]. 
Lepik [25-38] introduced the Haar wavelet method for 
solving differential, fractional differential, integral 
equations and integro-differential equations. The same 
author solved nonlinear integro-differential equations 
and fractional integral equations by the Haar wavelet 
method in which HW has been compared with other 
numerical methods [31, 38].  
 In recent years, the integral equations provide an 
efficient tool for modeling a numerous phenomena and 
processes  and for solving boundary value problems for 
both ordinary and partial differential equations. The 
wavelet method was first applied to solving differential 
and integral equations in the 1990s. A survey of early 
results in this field can be found in [27]. Babolian et al. 
[43] presented the numerical solution of nonlinear 
fredholm integral equations of the second kind using 
Haar wavelets. Lately the number of respective papers 
has greatly increased and it is not possible to analyze 
them all here, but some are discussed in the following 
sections. Hesam-aldien Derili et al. [44] had developed 
the two-dimensional wavelets for integral equations. 
Adefemi Sunmonu [45] developed the Maple codes for 
Haar wavelets.  
 Hariharan et al. [46] introduced the Haar wavelet 
method for solving Fisher’s equation. In the year 2010, 
the same author(s) [47-56] showed the superiority Haar 
wavelet method for solving FitzHugh-Nagumo 
equation, Cahn-Allen equation, finite length beam 
equation, Convection-Diffusion equation, some 
nonlinear parabolic equations, one-dimensional 
reaction-diffusion equations, some traveling wave 
equations, Klein-Gordon equation, over the other 
methods in application domain. Some Bratu-type 
equations and other partial differential equations in 
which  the  equations have been solved by Haar wavelet 
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method and the numerical solutions have been 
compared with other methods like Aomain 
Decomposion Method (ADM), Restrictive Taylor’ s 
series (RT) method, Homotopy perturbation method, 
Finite difference method and Upwind scheme. The 
same authors (s) have established Haar wavelet in 
estimating depth profile of soil temperature [47].  
 For applications of the Haar wavelet transform in 
logic design, efficient ways of calculating the Haar 
spectrum from reduced forms of Boolean functions are 
needed. Such methods were introduced for calculation 
of the Haar spectrum from disjoint cubes and different 
types of decision diagrams.  
 Optimal control theory is certainly the field of most 
extensive applications of Haar wavelets since its 
appearance, in view of its ability to model hereditary 
phenomena with long memory. This theory has also 
several applications, e.g. in structural dynamics, space 
flights, chemical engineering, economy. There is a 
significant interest in applications, which includes: 
process and manufacturing, aerospace and defence, 
marine and automotive systems, structural and 
mechanical design, robotics and manufacturing 
systems, chemical, petrochemical and industrial 
processes, electric power generation and distribution 
systems, energy systems and management, operations 
research and business, socio-economic models, 
biological and biomedical systems, environmental 
control, water treatment and ecology management, 
electrical and electronic systems and health care and 
support. It also covers a wide range of interdisciplinary 
and complex systems problems, where multi-agent 
software solutions, intelligent sensors and either 
dynamic or static optimization plays a major role. For 
more details on this, see thesis like state analysis and 
optimal control of linear time-varying systems via Haar 
wavelets. But we could refer to other applications like 
finance, stochastic processes and many branches of 
applied sciences and engineering, as proved by the 
increasing number of articles, congresses and treaties 
involving Haar wavelets (HW). In our opinion to cite 
review-survey papers on the applications of HW we 
have the risk to forget some because the list is long. 
Karimi et al. [57-61] illustrated the Haar wavelet-based 
approach for optimal control problems with linear 
systems in time domain. The same author(s) 
implemented a Haar wavelet-based robust optimal 
control for vibration reduction of vehicle engine-body 
system [58]. Hsiao and Wang [8] had solved the 
optimal control of linear time-varying systems via Haar 
wavelets. 
 In spite of great theoretical interest in applications 
of the discrete Haar transform in switching theory and 
logic  design,  exponential  complexity  of FHT in terms  

 
of both space and time was a restrictive factor for wider 
practical applications of the Haar transform. Due to its 
low computing requirements, the Haar transform has 
been mainly used for pattern recognition and image 
processing [62]. Hence, two dimensional signal and 
image processing is an area of efficient applications of 
Haar wavelet transforms due to their wavelet-like 
structure. In this field, it is usually reported that the 
simplest possible orthogonal wavelet system is 
generated from the Haar scaling function and wavelet. 
Moreover, wavelets are considered as a generalization 
of the Haar functions and transforms. Hence, HW is 
also well suited in communication technology for data 
coding, multiplexing and digital filtering. It is 
nowadays recognized the advantage of using Haar 
wavelet for solving differential equations which is 
demonstrated by the increasing number of papers and 
special issues in journals. 
 In recent decades the field of Haar wavelets for 
solving differential equations has attracted interest of 
researchers in several areas including mathematics, 
physics , chemistry, biology, engineering, statistics and 
even finance and social sciences. 
 But why Haar Wavelets are important?  
 For real time applications, hard-ware based fast 
Haar chips have been developed. Haar wavelet 
functions used in image processing [62], digital speech 
processing, voice controlled computing devices and 
robotics. The control system based on Haar spectrum 
has been used in military airplane. Indeed, at present, 
applications and/or activities related to Haar wavelet 
method for solving differential equations have appeared 
in at least the following fields. Schneider [63] used the 
matrix compression scheme. 
 

APPLICATIONS OF HAAR WAVELET 
METHOD FOR SOLVING DIFFERENTIAL 

EQUATIONS 
 
 The Haar wavelet method exhibits several 
advantageous features. 
 
(i) High accuracy is obtained already for a small 

number of grid points. 
(ii) Possibility of implementation of standard 

algorithms. For calculation the integrals of the 
wavelet functions, universal subprograms can be 
put together. Another time consuming operation is 
the solving of high-order systems of linear 
equations and calculating high-order determinants; 
here the matrix programs of MATLAB are very 
effective. 

(iii) The method is very convenient for solving 
boundary value problems since the boundary 
conditions are taken care of automatically. 
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Table 1: Applications of Haar wavelets for differential equations 

S. No Application  Field 

1 Estimating depth profile of soil temperature, Modeling of Soil moisture Civil Engineering 
2 Advancement of calculus of variations and optimal control problems,  
 lightning stroke problems, Lumped and distributed parameter systems Electrical Engineering 
3 Analytical and numerical tools and techniques Mathematical Sciences 
4 Image digital and signal processing Computer Science and Engineering 
5 Quantum field theory  Physics 
6 Solving Ordinary, Partial, Integral and fractional order differential equations.  Mathematical Sciences 
7 Bioengineering, Biomedical applications and Modeling of Biosensors Biotechnology 
8 Vibration problems, Heat and mass transfer problems, Fluid-flow problems Mechanical Engineering 
9 Reaction and Diffusion problems, Chemical kinetics problems Chemical Engineering 

 
(iv) Singularities can be treated as intermediate 

boundary conditions; this circumstance to a great 
extent simplifies the solution. 

(v) The obtained solutions are mostly simpler 
compared with other known methods.  

 
 Yuanlu Li and Weiwei Zhao [64] dealt the Haar 
wavelet operational matrix of fractional order 
integration and its applications in solving the fractional 
order differential equations Bujurke et al. [65, 66] 
applied the single-term Haar wavelet series (STHWS) 
in the solution of nonlinear oscillator equations and stiff 
systems from nonlinear dynamics. Chang and Phang 
Piau [67] presented Haar wavelet matrices designation 
in numerical solution of ordinary differential equations. 
Chen et al. [68] established Haar wavelet method for 
solving a class of fractional convection-diffusion 
equation with variable coefficients. Li and Zhao [69] 
introduced the Haar wavelet operational matrix of 
fractional order integration and applications in solving 
the fractional order differential equations. Zhi Shi et al. 
[70] showed Haar wavelet method for solving wave 
equations and convection-diffusion equations. Li and 
Wang [71] solved a nonlinear fractional differential 
equations using Haar wavelet method. Goswami et al. 
[72] had solved first-kind integral equations using 
wavelets on a bounded interval. Gao and Lao [73] had 
established the discretization algorithm for fractional 
order integrals by Haar wavelets. Wanhai Geng et al. 
[74] used the wavelet method for nonlinear partial 
differential equations of fractional order. Xiao-Yan Lin 
et al. [75] introduced a Haar wavelet solution to 
Fredholm equations. Gu and. Jiang [76] had derived the 
Haar  wavelets  operational  matrix  of  integration. 
Siraj-ul-Islam et al.  [77-79] applied the Haar wavelet 
method  for  second  order  boundary  value  problems 
in  which  the  performance  of  the Haar wavelets has 
been compared with other methods like Walsh 
wavelets, semi-orthogonal B-Spline wavelets, spline 
functions, Adomain Decomposition Method (ADM), 
Runge-Kutta (RK) method and nonlinear shooting 

method. Kazuhiro and Kazuhisa Abe et al. [80] 
presented the application of Haar wavelets to time-
domain BEM for the transient scalar wave equation. 
Fazal-i-Haq et al. [81-84] had implemented a 
collocation  method  based  on  Haar  wavelets  for 
solving  eight-order  boundary  value  problems  in 
which the accuracy and efficiency of the Haar wavelet 
method  was  established  through  comparison  with 
the existing non-polynomial Spline based technique, 
modified decomposition method and homotopy 
perturbation method. Bayati et al.  [85] established a 
modified   wavelet   algorithm   to  solve  boundary  
value problems with an infinite number of boundary 
conditions. Hein and Feklistova [86] presented free 
vibrations of non-uniform and axially functionally 
graded beams using Haar wavelets. Celik [87] 
established the Haar wavelet method for solving 
generalized  Burgers-Huxley  equation.  He  proved  
that  the  Haar  wavelet  method  is a very reliable, 
simple, small computation costs, flexible and 
convenient alternative method. Shi Zhi and Cao Yong-
yan [88] addressed for solving 2D and 3D Poisson 
equations and biharmonic equations by the Haar 
wavelet method. Miaomiao Wang and Fengqun Zhao 
[89] had solved the two-dimensional Burgers’ equation 
using Haar wavelet method. Kazuhiro Koro and 
Kazuhisa Abe [90] applied the Haar wavelets to time-
domain BEM for the transient scalar wave equation. 
Kazuhisa Abe et al. [91] introduced the h-hierarchical 
Galerkin BEM using Haar wavelets. Beylkin et al. [92] 
established the wavelet-based boundary element 
method. More recently, hariharan et al. [93, 94] 
introduced the Haar wavelet method to film-pore 
diffusion model for methylene blue adsorption onto 
plant leaf powders and some wave-type equations. 
 

HAAR WAVELET PRELIMINARIES 
 
 Haar wavelet was a system of square wave; the 
first curve was marked up as h0(t), the second curve 
marked up as h1(t) that is  
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h t

0, otherwise
≤ <
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

 

 

( )1

1, 0 x 1 / 2
h t 1, 1 /2 x 1

0, otherwise

≤ <
= − ≤ <



 

 
where h0(t) is scaling function, h1(t) is mother wavelet. 
In order to perform wavelet transform, Haar wavelet 
uses dilations and translations of function, i.e. the 
transform make the following function. 
 

( ) ( )j j j
n 1h t h 2 t k , n 2 k, j 0, 0 k 2= − = + ≥ ≤ <  

 
 Chen and Hsiao [2] raised the ideology of 
operational matrix in 1975 and Kilichman and Al Zhour 
[95] investigated the generalized integral operational 
matrix, that is, the integral of matrix φ(t) can be 
approximated as follows: 
 

                         ( ) ( )
t

0

t dt Q tφφ ≅ φ∫  (5) 

 
where Qφ is an operational matrix of one-time integral 
matrix φ(t), similarly, we can get operational matrix nQ φ  

of n-time integral of φ(t). Hsiao [6, 7, 10] proposed a 
uniform method to obtain the corresponding integral 
operational matrix of different basis. For example, the 
operational matrix of Φ(t) can be expressed by 
following: 
 
                          1

BQ Q −
Φ = Φ Φ  (6) 

 
 Here QB is the operational matrix of the block 
pulse function. 
 

                
mB
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L
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where  m  is  the  dimension of matrix Φ(t) and usually 
m = 2α, α is positive integer. 
 If Φ(t) is a unitary matrix, then T

BQ Q , QΦ Φ= Φ Φ  is 

a matrix with characteristic of briefness and profound 
utility. 
 For x∈[0,1], Haar wavelet function is defined as 
follows: 
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 Integer m = 2j (j = 0,1,2,…J) indicates the level of 
the wavelet; i = 0,1,2,…m-1 is the translation 
parameter. Maximal level of resolution is J. The index i 
is calculated according the formula i = m+k-1; in the 
case of minimal values m = 1, k = 0 we have i = 2, the 
maximal value of i is  i = 2M = 2J+1. It is assumed that 
the value i = 1 corresponds to the scaling function for 
which h1 ≡ 1 in [0,1]. Let us define the collocation 
points lt (l 0.5)/2M,(l 1,2....2M)= − =  and discretise the 

Haar function hi(x); in this way we get the coefficient 
matrix H(i, l) = (hi(xl)), which has the dimension 
2M×2M. 
 The operational matrix of integration P, which is a 
2M square matrix, is defined by the equation 
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 Chen and Hsiao [2] showed that the following 
matrix equation for calculating the matrix P of order m 
holds 
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where O is a null matrix of order 
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i 1

t i
m m

≤ < +  and 

 
1 T

mxm mxm
1

H H diag(r)
m

− =  

 
 It should be noted that calculations for P(m) and 
H(m) must be carried out only once; after that they will 
be applicable for solving whatever differential 
equations. First eight Haar functions and their integrals 
are presented in [46, 48]. 
 
Function approximation: Any square integrable 

function ( )2y(x) L 0,1 0,1∈ ×        can be expanded by a 

Haar series of infinite terms  
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where the Haar coefficients cij are determined as 
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are coefficients, discrete y(x,t) by choosing the same 
step of x and t, we obtain 
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where Y(x,t) is the discrete form of y(x,t) and 
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 C is the coefficient matrix of Y and it can be 
obtained by formula: 
 

                           ( ) 1T 1C H YH
− −=  (10) 

 
H is an orthogonal matrix, then 
 

                             1C H.Y.H−=  (11) 
We even find  

                              TC HYH=  (12) 
 

COMPARISON BETWEEN FOURIER 
TRANNSFORM (FT) AND WAVELET 

TRANSFORM(WT) 
 
 Wavelet transforms have advantages over 
traditional Fourier transforms for representing functions 
that have discontinuities and sharp peaks and for 
accurately deconstructing and reconstructing finite, 
non-periodic and/or nonstationary signals. Any 
numerical scheme for solving differential equations 
must adequately represent the derivatives and non 
linearities of the unknown function. In the case of 
wavelet bases, these approximations give rise to certain 
L2 inner products of the basis functions, their 
derivatives and their translates, called the connection 
coefficients. In Fourier-based methods, since the 
products of the basis elements are also basis elements, 
the procedure does not face any difficulty. The 
numerical approximation of the connection coefficients 
which appear with the wavelet bases is unstable since 
the integrands are highly oscillatory [96]. Excellent 
discussions between the wavelet transform and the 
Fourier transform are presented in [96].  
 The most interesting dissimilarity between these 
two kinds of transforms is that individual wavelet 
functions are localized in space. Fourier sine and cosine 
functions are not. This localization feature, along with 
wavelets'    localization    of   frequency,   makes   many  
 
Table 2:Comparison of algorithmic complexity of the of the 

proposed method with FFT and WT [50] 

 Numbers  Numbers of 

Series of additions multiplications 

Haar Transform (HT) 2m-2 m 

Walsh Transform (WT) mlog2m m 

Fast Fourier Transform (FFT) mlog2m M (log2m+1)  
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A FEW JOURNAL ARTICLES AND APPLICATIONS 

 

Table 3: A few journal articles and applications 

S.No Title of the paper Year Author (s) Application Advantage 

1 Haar wavelet method for solving lumped  1997 Chen, C.F., Hsiao,C.H Haar Analysis of dynamic systems Derived the Haar operational matrix for 
 and distributed-parameter systems    integrals of the Haar function vector 
2 State analysis of linear time delayed  1997 Chen, C.H., Dynamic system Product matrix and coefficient matrix were 
 systems via Haar wavelets    applied to solve time-delayed systems. 
3 State analysis and optimal control of linear  1997 Hsiao., C.H Wang, W.J Dynamic systems to transform the 
 time-varying systems via Haar wavelets    time-varying function and its product with 
     the states into a Haar product matrix 
4 Wavelet approach to optimizing  1999 Chen, C.F., Hsiao,C.H Haar Analysis of dynamic systems A simple and complete procedure for 
 dynamic systems    optimizing a dynamic system is formulated 
5 State analysis and parameters estimation  2000 Chen, C.F., Hsiao,C.H., Wang, W.J Dynamic systems Derived Haar product 
 of bilinear systems via Haar wavelets    matrix and a coefficient matrix 
6 Haar wavelet approach  2001 Hsiao,C.H., Wang, W.J Dynamic systems Haar wavelet method was 
 to nonlinear stiff systems    compared with Runge-Kutta-Fehlberg approach. 
7 An application of rationalized Haar  2001 Razzagi, M., Ordokhani, Y Rationalized Haar  A direct method for solving variational 
 functions for variational problems   function was introduced problems using rationalized Haar method established 
8 The Haar wavelet transform:  2003 Stankovic, R.S. Falkowski,B.J Applications of Haar wavelets in Engineering 
 its status and achievements    Various applications and generalized definitions 
     of Haar wavelets were addressed 
9 Haar wavelets based technique  2004 Cattani, C Haar wavelet method was applied   Applications of HW 
 in evolution problems    for solving for solving 
    application driven PDEs nonlinear PDE are addressed 
10 Haar wavelet direct method    Extremization of a The variational problems are 
 for solving variational problems 2004 Hsiao, C.H functional sy stems solved by Haar wavelet method 
11 Numerical solution of evolution equations  2007 Lepik, U It is used in fluid dynamics Haar wavelet for solving some nonlinear PDEs 

 by the Haar wavelet method   teaching and in engineering as a  like Burgers’ equation, Sine-Gordon equation 
    simplified model for turbulence,  
    boundary layer behavior, shock  
    wave formation and mass transport.  
12 Application of the Haar wavelet transform to  2007 Lepik, U Engineering and Science Haar wavelet method for solving 
 solving integral and differential Equations    integro-differential equations 
13 Wavelets approach to time-varying  2008 Hsiao, C.H The linear time-varying systems The unknown wavelet coefficient matrix 
 functional differential equations    solved accurately by  Haar wavelet method has found in the generalized 
     Lyapunov equation 
14 Haar wavelet method for  2009 Hariharan, G., Kannan,K Chemistry, biology and medicine Haar wavelet method for solving differential equations 
 solving Fisher’s equation    with nonlinearity. HW has compared with ADM 
15 Solving fractional integral equations  2009 Lepik, U Modeling and control of  HW method established for solving 
 by the Haar wavelet method   many dynamical systems fractional integral equations 
16 The numerical solution of second-order  2010 Siraj-ul-Islam, Mathematical modeling of Haar wavelet method has compared with R-K, 
 Boundary vaue problems by   Imran Aziz, Bozidar Sarler deformation of beams and ADM, FDM and Nonlinear shooting methods 
 collocation with the Haar wavelets    plate deflection theory  and the convergence analysis of HW method  
     was also addressed 
17 Application of Haar wavelets to time-domain  2010 Kazuhiro Koro, BE wave propagation analysis The time variation of the unknown 
 BEM for the transient scalar wave equation   Kazuhisa Abe   potential and flux is approximated  

18 Solving fractional Riccati differential  2010 Yuan-lu Li, Li Hu Modeling and control of Fractional Riccati equations are solved. 
 equations using Haar wavelet    many dynamical systems  
19 A Comparative Study of a Haar Wavelet Method 2010 Hariharan, G., Kannan, K Computational hydraulics and fluid HW method established for solving a 
 and a Restrictive Taylor's Series Method   dynamics to model convection- few Convection-Diffusion equations 

 for Solving Convection-diffusion Equations   diffusion of quantities such as  and the solutions are compared 
    mass, heat, energy, vorticity  with Restrictive Taylor’s series method  
     and the conventional methods 
20 Solving Finite Length Beam Equation  2010 Hariharan, G., Kannan, K Elastic Mechanics HW method established for solving 
 by the Haar Wavelet Method     finite length beam equation. 

21 Haar wavelet method for solving  2010 Hariharan, G., Kannan, K Mathematical modeling with HW scheme derived for some nonlinear PDEs 
 some nonlinear parabolic equations    gene propagation and  biological modeling and the solutions 
     are compared with other solutions  
22 Solving PDEs with the aid of  2011 Lepik, U Engineering applications HW established for solving two-dimensional problems 

 two-dimensional Haar wavelets 

 
functions and operators using wavelets  “sparse" when 
transformed into the wavelet domain. This sparseness, 
in  turn,  results  in  a  number  of  useful applications 
such  as  data  compression, detecting features in 
images  and  removing  noise  from  time  series. One 
way to see the time-frequency resolution differences 

between the Fourier transform and the wavelet 
transform is to look at the basis function coverage of 
the time-frequency plane. 
 An advantage of wavelet transforms is that the 
windows vary. In order to isolate signal discontinuities, 
one  would like to have some very short basis functions.  
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Fig. 1: Comparison between the years and no. of publications (1982-2013) 
 
At the same time, in order to obtain detailed frequency 
analysis, one would like to have some very long basis 
functions. A way to achieve this is to have short high-
frequency  basis  functions  and long low-frequency 
ones.  This  happy  medium  is  exactly what you get 
with  wavelet  transforms. One thing to remember is 
that  wavelet  transforms  do  not have a single set of 
basis functions like the Fourier transform, which 
utilizes just the sine and cosine functions. Instead, 
wavelet  transforms  have  an  infinite set of possible 
basis functions. Thus wavelet analysis provides 
immediate access to information that can be obscured 
by other time-frequency methods such as Fourier 
analysis. Table 1 shows the comparison of algorithmic 
complexity of the Haar Wavelet Method (HWT), Walsh 
Transform  Method (WTM) and Fast Transform 
Method (FFM). 
 

COMPARISON BETWEEN HAAR  
WAVELETS AND OTHER WAVELETS 

 
 A shortcoming of the Daubechies wavelets is that 
they do not have an explicit expression and therefore 
analytical differentiation or integration is not possible. 
Legendre multi-wavelets are a mutation of Haar’s 
wavelet; they are piecewise linear and have short 
support, but they lack smoothness and are 
discontinuous. Moreover Legendre multi-wavelets are 
localized in time but not in frequency due to their 
discontinuity. Smooth multi-wavelets have the 
advantage of being mostly simultaneously localized in 
time and frequency, of course within the limit imposed 
by Heisenberg’s uncertainty principle. Ghasemi et al. 
[97] obtained the solution of time-varying delay 
systems is obtained by using Chebyshev wavelets. They 
proved that the Chebyshev wavelets provide an exact 
solution for the cases when the exact solutions are 

polynomials . Cattani et al. [21, 22] established the 
wave  propagation  of  Shannon wavelets and Harmonic  
wavelet analysis method for Fredholm equation of the 
second kind. Habibollah Saeedi et al. [98] and Siraj-ul-
Islam et al. [78, 79] have established the convergence 
analysis   of   the   Haar   wavelet  method.  In  order  to 
analyze the convergence of Haar wavelet method, they 
have defined the error function and showed that the 
method is convergent for a special class of functions in 
the sense that the corresponding error tends to zero as m 
tends to infinity. Mehmet Sezer et al. [99] had solved 
the high-order linear differential equations by a 
Legendre  matrix  method  based  on  hybrid Legendre 
and Taylor polynomials. Mohammadi and Hosseini 
[100] introduced a new Legendre wavelet operational 
matrix of derivative and its applications in solving the 
singular ordinary differential equations. Mujeeb ur 
Rehman and Rahmat Ali Khan [101] presented a 
numerical method for solving boundary value problems 
for fractional differential equations. Razzaghi and 
Yousefi [102] introduced the Legendre wavelets 
method for the solution of nonlinear problems in the 
calculus of variations. 
 
Preliminary note: Clearly, lists such as those 
assembled in this article, can never be complete and, 
besides, there must be selective decisions. We do 
apologize for all omissions. Moreover, we do not give 
any judgment on the references: we limit ourselves to 
cite (possibly/hopefully) most of them. 
 

BOOKS 
 
 Charles Chui, 1991. Wavelet theory, Academic 
Press. Cambridge, MA. 
 Daubechies, L., 1992. Ten Lectures on Wavelets .' 
SIAM, Philadelphia. 
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 Hernandez, E. and G. Weiss, 1996. A First Course 
on Wavelets . CRC Press. 
 Berrus, C.S., R.A. Gopinath and H. Guo, 1997. 
Introduction to Wavelets and Wavelet transforms . A 
Primer. Prentice Hall, Upper Saddle River, NJ. 
 Heller, P.N., H.L. Resnikoff and R.O.Jr. Wells, 
1992. Wavelet matrices and the representation of 
discrete functions. In wavelets-A Tutorial in Theory 
and Applications, C.K. Chui, Ed. Academic Press, 
Cambridge, MA, pp: 15-50.  
 Goswami, G.S. and Chan, 1999. Fundamentals of 
Wavelets. Theory, algorithms  and applications, John 
Wiley & Sons, New York. 
 Stephane Jaffard, Yves Meyer and Robert D. Ryan, 
2001. Wavelets, Tools for Science and Technology, 
SIAM ISBN: 0-89871-448-6, pp: 256. 
 Howard, L. Resnikoff and Raymond O.Jr. Wells, 
1998. Wavelet Analysis, The Scalable Structure of 
information, Springer-Verlag, New York, ISBN 81-
8128-226-4.  
 First Indian Reprint 2004. 
 Ge, Z. and W. Sha, 2007. Wavelet Analysis Theory 
and MATLAB Application, Electronic Industrial 
Publication, Beijing. 
 Soesianto, F., F., Soesianto and Ismail Ibraheem, 
Kais, On Wavelet-Based Algorithm for Solving 
Parabolic Differential Equations. KOMMIT 2002. 
ISSN 1411-6286. 
 

A FEW CONFERENCE PAPERS  
RELATED TO HAAR WAVELETS 

 
 Zhi Shi., Li-Yuan Deng, Qing-Jiang Chen, 2007. 
Numerical  solution  of  differential  equations  by  
using Haar wavelets. Wavelet Analysis and Pattern 
Recognition (ICWAPR '07), 1039-1044, Beijing, 
ISBN:978-1-4244-1065-1. 
 Chiang, I.T. and S.K. Jeng, 2002. Haar wavelet 
scale domain method for solving the transient response 
of dispersive transmission lines with nonlinear loads. 
IEICE Transactions on Communications, E85-B (3): 
641-651. 
 Wu, J.L. and C.H. Chen, 2003. A new operational 
approach for solving fractional calculus and fractional 
differential equations numerically, ISBN: 0889863946, 
Proceedings of the Seventh IASTED International 
Conference on Software Engineering and Applications; 
Marina del Rey, CA; 3 November 2003 through 5 
November 2003; Code 62498. 
 Karras, Sotiropoulos and K. Panagiotis , Analysis of 
singular systems using the Haar wavelet transform, 
ISBN: 0907776205, IWSSIP 2005-12th International 
Workshop on Systems, Signals and Image Processing 
(SSIP-SPI, 2005); Chalkida; 22 September 2005 
through 24 September 2005; Code 66610. 

 
 Lynch, R.T and J.J. Reis, 1976. Haar transform 
image  coding.  In:  Proceedings   of  the   Conference  
on National Telecommunication, Dallas, TX, 1976, 
44.3-1-44.3. 
 Zhi Shi and Junli Han, 2009. Numerical solution of 
one-dimensional biharmonic equations using Haar 
wavelets. Proceedings of the 2009 International 
Conference on Wavelet Analysis and Pattern 
Recognition, Baoding, 12-15, July 2009. 
 Zhi Shi and Li-Yuan, 2007. Numerical solution of 
differential equations by using Haar wavelets. 
Proceedings of ICWAPR [C], 3: 1039-1044. 
 Yuanlu-Li and Li Hu, 2010. Solving Riccati 
differential equations using Haar wavelet. Third 
International Conference on Information and 
Computing. 
 Oishi, M., S. Moro and T. Matsumoto, 2009. A 
modified method for circuit analysis using haar wavelet 
transform with adaptive resolution. For circuits with 
waveform with sharp convex ranges, Circuit Theory 
and Design, 2009. ECCTD 2009. European Conference  
Issue Date: 23-27 Aug. 2009, Antalya,ISBN: 978-1-
4244-3896-9, pp: 299-302. 
 Zhang Chengke, 2008. Sun Peihong and Bin Ning, 
Haar wavelets basis method for Nash Equilibrium 
Strategies. Proceedings of the 2008 international 
conference on Wavelet Analysis and Pattern 
Recognition, Hong-Kong, 30-31 Aug. 2008. 
 Oleg Kravchenko and Dmitriy Churikov, 2012. 
Wavelet Approximation of Discontinuous Solutions in 
EHD Model of Charged Jet Flow, PIERS Proceedings, 
Moscow, Russia. 
 

IMPORTANT THESES 
 
 Anna C. Gilbert, 1997. Multiresolution 
homogenization schemes for differential equations and 
applications. Ph.D Thesis. 
 Hariharan Seetharaman, 2007. Heatlet solutions of 
diffusion equation on Unbounded domains. Ph.D 
Thesis , Melbourne, FL. 
 Masafumi Fujii, 1999. A Time-domain Haar-
Wavelet-Based Multi-resolution Technique for 
Electromagnetic Field Analysis . Ph.D Thesis , 
University of Victoria. 
 Min Xu, 2006. Function Approximation Methods 
for Optimal Control Problems . D.Sc Thesis, Saint 
Louis, Missouri. 
 

FUTURE SCOPE AND DIRECTIONS 
 
 The main advantages of this method are its 
simplicity and less computation costs: it is due to the 
sparcity   of   the transform  matrices  and  to  the  small 
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number of significant wavelet coefficients. In 
comparison with existing numerical schemes used to 
solve the differential equations, the Haar wavelet 
method is an improvement over other methods in terms 
of accuracy. It is worth mentioning that Haar solution 
provides  excellent  results  even  for  small  values  of 
m (m = 16).  
 For  larger  values  of  m  (ie.,  m  =  32,  m  =  64, 
m = 128, m = 256), we can obtain the results closer to 
the real values. The reason of use Haar wavelets is Haar 
wavelet method (HWM) are sparse matrix 
representation, fast transformation and possibility of 
implementation of fast and efficient algorithms. The 
method with far less degrees of freedom and with 
smaller CPU time provides better solutions than 
classical ones. The method is also very convenient for 
solving the boundary value problems, since the 
boundary conditions are taken care of automatically. 
Another benefit of our method is that the model 
equations including more mechanical, physical or 
biophysical effects, such as nonlinear convection, 
reaction, linear diffusion and dispersion can be solved 
easily. 
 The review of literature shows that there is still 
scope for applying Haar wavelet method for solving 
differential equations that will yield better quality 
solutions by addressing some of the issues as follows: 
 
1. Eigen value problems of partial differential 

equations (PDEs). 
2. Non-rectangular domains and nonlinear problems. 
3. Fractional differential equations. 
4. Application of differential equations arising in 

astrophysics. 
5. Electrochemical modeling problems  
6. Buckling and vibrations of elastic structures 
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