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Method of Solution and Computational Algorithm for
Mixed Thermo-Mechanics Problem
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Abstract: In this paper we developed a method and a corresponding software system modeling steady-state
thermal stress bearing elements of construction, working under the simultaneous effect of local temperatures,
heat flow, heat transfer and thermal insulation. In addition, full-scale takes into account the dependence of the
thermal expansion coefficient of the temperature. Impose strict energy conservation, minimization methods and
the convergence of the Gauss solution of linear algebraic equations and experimental data to establish the
relationship of the coefficient of thermal expansion of materials bearing structural elements of the field
temperature distribution. Elaborated computational algorithm and approach is relatively universal in the sense
of possibility of computational solution of steady problems of thermostressed condition of construction
bearing components, which operate in condition of simultaneous existence of local temperature, thermal flows,
heat exchange and heat conservation.
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INTRODUCTION the rod right end. Here environment temperature T (°C),

In many technological lines of processing industries Besides lateral area of the rod sections (0 x x )
and in modern gas turbine plants, hydrogen engines and (x x L) is heat-insulated. The rod lateral surface area
steam generators of nuclear power stations, some within section (x x x ) is vented by heat flow q(W/cm )
supporting elements undergo local heat streams changing changing by coordinate according to the sine law [1].
by coordinate following special sinusoidal law at having
simultaneous availability of lateral heat insulation and
heat exchange processes through cross section areas at
both ends. To study regularities of thermomechanical
state of such supporting elements let’s consider a
horizontal rod of a limited length L(cm). Herewith let’s
designate the cross section area as F(cm ) and assume2

that it’s constant by its length. The rod material thermal
expansion coefficient and thermal conductivity coefficient
as (1/°C) and K (W/(cm.°C)) accordingly. Let’s directxx

axis Ox  from  the  left  to  the right. It coincides with the
rod axis. Let’s assume the left end of the rod under
consideration is rigidly fixed whereas the right end is
loose. Heat exchange with the environment takes place
across the area of cross sections of the rod left end.
Herewith environment temperature T (°C), whereas heatoc1

exchange coefficient h (W/(cm .°C)). Similarly heat1
2

exchange takes place  through  areas  of  cross  section  of

oc2

whereas heat exchange  coefficient  h (W/(cm .°C)).2
2

a

b

a b
2

, x x x . where A = const > 0, x  < x .a b a b

Computational model of the problem under study is
shown in Figure 1. Now it’s required to determine
temperature distribution law T = T(x) throughout the
tested rod length taking into account simultaneously
presence of local heat exchange processes, heat
insulation and heat flow changing its flow by coordinate
according to the sine law. Moreover based on found
temperature distribution law throughout the tested rod
length as well as the rod material heat expansion
coefficient value  we need to identify the tested rod
elongation value due to heat expansion effect. At the
same time we need to consider that  may be a constant
value or it may subject to temperature that is  = (T(x)).
This dependency shall be determined for each individual
material through by an experimental approach. To find out
temperature  distribution  law  throughout  the  tested rod
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Fig. 1: Problem computational model

length let’s apply universal energy conservation law. When using this law it’s  guaranteed  that  we  will  be able to
acquire adequate solutions with high accuracy. For these purposes let’s discretise the rod under study by n- quadratic
elements with the  same  length . Herewith within the rod section (0 x x ) number of elements will be .a

Within the rod section (x x x ) it will be  elements. Then within the rod last section (x x L) numberb b b

of elements will be equal to . Hence one can actually prove that throughout the entire rod length the

number of discrete elements will be equal to

Samples and Analytical Methods: As for the first discrete element (on the left) the functional formula which specifies
its total heat energy will have the following appearance [1]

(1)

where V  - volume of 1  discrete element.1
st

As for the rest discrete elements (n  – 1) within the section (0<x x ) analogical functional formula will have thea a

following appearance

(2)

where i1 = (2 ÷ n ).a

Now we shall look into the rod section (x x x ) where the lateral area is vented by heat flow changing its flow bya b

coordinate according to the sine law. For discrete elements within this section the corresponding functional formula will
have the following appearance

(3)
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where i2 = ((n  + 1)÷ n )a ab

where

(4)

Now let’s consider the rod last section (x x L). The lateral area of this section is heat-insulated. But heat exchangea

with surrounding environment takes place through the cross sections of the rod right end (x = L). But this element will
be the last n-th discrete element. Then for the internal elements within this section the corresponding functional formula
will have the following appearance

(5)

where i3(n  + 1) ÷ (n–1).ab

Finally for the last n discrete element the corresponding functional formula will have the following appearance

(6)

Then functional formula for the tested rod on the whole which specifies its total heat energy will look like this:

(7)

Now let’s approximate temperature distribution field within each discrete element length using a complete polynomial
of the second kind that is

(8)

Or using terms of finite elements method for a discrete element we have [2]

(9)

where (x), (x) and (x) are form functions for quadratic discrete elements with three knots. They have the followingi j k

appearance [2]

(10)

Then within the length of each element the temperature gradient shall be identified as follows:

(11)
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where i,j,k- local numbers of one discrete element. Herewith their local coordinates x =0,  x = . Now substitutingi k

(11) instead of (7) and minimizing J by T (i = 1÷(2n + 1)) us will acquire a resolving system in the form of linear algebraici

equations:

(12)

Upon resolving the system (9) by Gauss method the temperature pivotal values may be found T (i = 1÷(2n+1)).i

Based on them temperature distribution law T = T(x) throughout the tested rod length is built. Whereupon based on heat
insulation laws [1] the rod elongation value due to heat expansion may be determined [3].

(13)

There may be two cases:

1)  = const. Then the rod elongation value will be determined by the following formula:

(14)

2)  = (T(x)). Then the rod elongation value will be determined by the following formula:

(15)

Having correlations (9-11) we shall analytically integrate integral by volume using expressions (1-3) and (5-6).

(16)

Here it’s worth to mention that the sum of coefficients before temperature pivot values T  = T(x ) = T(0);i i

; T  = T(x ) = T( ) will be equal to zero. Indeed . In our opinion this equation is

indication on energy conservation law.
Now we shall similarly consider integrals throughout the cross section of the rod left and right ends.

(17)

where T(x = 0) = T . In this expression the sum of coefficients before T  and T  also will be equal to zero, that is (1-1) =0.i i oc

Now let’s likewise consider the next integral throughout the lateral area for one discrete element.
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(18)

In this expression for all discrete elements within the rod section x x x  the sum of coefficients before pivotala b

values will be equal to 2 [2].2

RESULTS AND DISCUSSION

For approbation of the foregoing model let’s assume the following as reference data: L = 30(c), n=300 discrete
elements,      length     of     each     discrete     element,   m,   F   = r    = (cm ),  K   =  72(W/(cm°C)),2 2

xx

h  =  10(W(cm .°C)), T   =  20(°C),  h   =  10(W/(cm .°C)),  T   =  20(°C), ,  (x x x )1 co1 2 co2 a b
2 2

 = 125×10  (1/°C).7

In this case the number of knots will be equal to 2n+1=2*300+1=601. So the number of equations in the system of
resolving equations will also be 601. Temperature distribution field for this problem is shown in Figure 2.

Under effect of such temperature distribution law across the tested rod length it elongates due to heat expansion
to the extent of 

Now let’s assume that both ends of tested rod are firmly fixed. Then naturally the rod under study is not able to
elongate. Due to heat expansion in this case a compressive force R(kg) as well as corresponding field of strain and stress
distribution appear. In this case to find the appeared field of shifting, strains and stress let’s use minimization technique
of elastic deformation potential energy at having available temperature field by shift pivotal values u = u(x). Having said
so let’s take shifting field within each discrete element as:

(19)

Fig. 2: Temperature distribution field across the rod length
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where

(20)

Formula for specifying the foregoing elastic deformation potential energy at having available temperature field will
look like this [3].

(21)

where  elastic component of strain;

 Elastic component of stress;

For one discrete element the integrated type of functional (21) will have the following form:

(22)

where r = 1÷n; n - total number of discrete elements in the rod under study. Here it’s worth to mention that for the 1st

discrete element i=1; j=2; k=3; for the 2  discrete element i=3; j=4; k=3 and so on. For n-th discrete element i=2n–1;nd

j=2n; k=2n+1. Now using (22) let’s write down formula for potential energy of elastic deformations taking into account
availability of temperature field for the rod under study on the whole which will have the following appearance:

thermoelastic component of strain across the length of
(23) each element may be identified using the following

Now minimizing  by shift pivot values u (r =r

1÷(2n+1)) we will acquire a resolving system of equations  =  + 
in the form of linear algebraic equations relative to

stress may be determined across the lelngth of each
(24) discrete element: ,  and .

Resolving system (24) shift pivot value u may be
found and using (19) shifting field across the rod length
is restored. After this using formula

 within each discrete

element field of elastic component of strain shall be
d r a w n .  U s i n g  f o r m u l a

field of

temperature component of strain is built within each
composing element limits. Then distribution field of

formula:

x T

Analogically distribution field of components of

Now that we have the foregoing reference data for
the rod under study we might as well determine shift
distribution field u = u(x) and corresponding components
of strain and stress.

First of all let’s vary the rod length value in the
problem under research according to the following
pattern:

L  [25;26;27;28;29;30]cm. Table -1 show that if one end of
the rod is retained and the other is free, then due to heat
expansion the  rod  elongation  value  increases as theT
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Table 1:
No. L (cm)  =  +  =  + RT x T x T

1 25 0,0428818987 -0,0017152759 -3430,55189425 10777,3966342
2 26 0,0453363138 -0,0017437044 -3487,40875218 10956,0177211
3 27 0,0478459774 -0,0017720732 -3544,14647241 11134,2645261
4 28 0,0504108895 -0,0018003889 -3600,77781967 11312,1771510
5 29 0,0530310501 -0,0018286569 -3657,31379806 11489,7901659
6 30 0,0557064592 -0,001856882 -3713,76394448 11667,1335320

a)

b)
Fig. 3: Temperature distribution and shift field across the

tested rod length depending on its length,
u;(x)x100;

rod length is increased. As you can see from this Table in
the problem under consideration at increasing the rod
length for 20% the elongation value correspondingly
increases for 29,9%. This process is motivated by the fact
that more quantity of heat will concentrate in a longer rod
in comparison with that in a shorter one. Because at
increasing the rod length its cross section remains a
constant value. Apart from this, at any length of the rod
a part  of its lateral area will be heat-insulated. If both

ends of the tested rod are firmly fixed then a compressive
force R (kg) and field of components of strain and stress
appear. Here it should be noted that all of them have
compressive nature. As you can see from Table -1 at
increasing the tested rod length for 20% the value R of of strain and stress. In case if one end of the rod is firmly
compressive force, thermoelastic  components  of  strain
 and stress  tend to increase to the same extent by

8,25%.  Figure  -3 ) shows temperature  distribution  field

T = T(x) across the tested rod length for length values
range L  [25;26;27;28;29;30]cm. As you can see from this
Figure that regardless increasing the rod length in all 6
variants the temperature values within the rod section

 will be almost the same. But as the rod

length increases the temperature value at the rod middle
point  will grow. Apart from this as the rod length

naturally increases the temperature amplitudes also shift
to the right. Figure -3 b) shows distribution field of the rod
sections’ shifting. Since both rod ends are firmly fixed,
those ends do not shift. In all 6 variants the rod lengths,
cross sections located within its first quarter that is

shift to the left, i.e. against the Ox axis direction.

The rod central cross section  doesn’t shift

anywhere in all 6 variants that is in all 6 variants
. Due to symmetry of cross section in the

problem under research this section  of the rod

shifts to the right so far as the rod section  shift to

the left;
Apart from this, amplitudes of shifting these two

sections tend to increase as the rod length increases.
Naturally this process is preconditioned by the reason
that in the problem under research the rod volume
increases as its length increases. In its turn as the volume
increases the quantity of heat in this volume also
increases.

Now at fixed values of the rest parameters let’s study
influence of heat exchange coefficient value h on the
tested rod thermomechanical state. Table – 2 shows
influence of heat exchange coefficient value h on the
values of elongation, compressive force and components

fixed whereas the other one is free, then as heat exchange
coefficient value h increases the rod elongation is
decreasing due to the heat expansion effect. This process
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Table 2:
No. H(W/(cm .°C))  =  +  =  + R2

T x T x T

1 5 0,0795738106 -0,0026524604 -5304,92070863 16665,8999199
2 6 0,0716180268 -0,0023872676 -4774,53512058 14999,6444572
3 7 0,0659353241 -0,0021978441 -4395,68827198 13809,4619869
4 8 0,0616732970 -0,0020557766 -4111,55313552 12916,8251185
5 9 0,0583583871 -0,0019452796 -3890,55914050 12222,5520125
6 10 0,0557064592 -0,001856882 -3713,76394448 11667,1335320

a)

b)
Fig. 4: Temperature distribution and shift field across the

tested rod length depending on heat exchange
coefficient, u(x) ×100.

is preconditioned by the reason that as heat exchange
coefficient value h increases more heat is lost in the rod.
As you can see from Table -2 when increasing heat
exchange coefficient twice as much the tested rod
elongation value decreases by 30% due to the heat
expansion effect. This Table also shows that as heat
exchange coefficient value increases the compressive
force  value  R  also  decreases.  For  instance at
increasing heat exchange coefficient value h twice as
much R value decreases by 30%. Figure 4 a) shows
temperature  distribution  field across the tested rod
length at different temperature values. As you can see
from this Figure in all 6 variants temperature distribution
field is strictly symmetrical and maximum temperature
value corresponds to the rod middle point. At the same
time temperature maximum amplitude corresponds  to  the

first variant, i.e. for the case . As h value

increases, temperature amplitude tends to decrease at the
middle of the rod.

Figure – 4 ) shows temperature distribution field
across the tested rod length depending on heat exchange
coefficient value. As you can see from this Figure the less
h value the more temperature amplitude. Naturally
maximum value corresponds to the middle point of the
rod. But Figure – 4 b) show that change of heat exchange
coefficient has no significant effect on shift distribution
field.

CONCLUSIONS

Here it’s worth to mention that this developed model
based on energy conservation law is universal in term of
resolving the whole class of analogical complicated
problems. Moreover acquired numerical solutions are
characterized with high accuracy.
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