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Abstract: In this paper, we introduce the concept of anti-metric and anti-weight on the vector spaceFn
q , the

space of alln-tuples over the finite fieldFq and study the properties of anti-codes which are subspaces of Fn
q

equipped with the anti-metric.
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INTRODUCTION

Error control coding basically deals with codes
(linear or non linear) endowed with a metric function.
The error correction and error detection capabilities of
the codes are determined by the minimum distance of
the code. In this paper, we introduce the concept of anti-
weight and anti-metric on the vector spaceF

n
q , the space

of all n-tuples over the finite fieldFq and study the prop-
erties of anti-codes which are subspaces ofF

n
q equipped

with the anti-metric. The concept of anti-weight and
anti-distance will find applications for communication
channels/systems where the noise in the system causes
faults/errors near the end of the codeword i.e. system
gets stuck up at some position and errors occur after that
position. The author is motivated by the problem while
trying to store an 8 digit telephone number and each time
the retrieved telephone number was shifted one place to
the right starting from thetth position(t ≥ 5), dropping
the last digit and introducing a random digit at thetth

position due to fault in the system.

Error model. Suppose we are dealing with ann digit
telephone number and the noise in the channel shifts
the digits one place to the right beginning from some
fixed tth position and dropping the last digit and ran-
domly introducing some digit at thetth position. Such
type of errors are calledcyclic errors of order t. For
example, cyclic error of order 3 applied on the vector
(12043) ∈ F

5

5 gives (12b04) whereb ∈ F5 is a ran-
domly introduced digit at the 3rd position. The concept
of anti-weight and anti-metric will be useful in the cor-

rection and detection of cyclic errors of ordert.

2. ANTI-WEIGHT, ANTI-METRIC AND
ANTI-CODES

In this section, we define anti-weight, anti-distance,
anti-codes in the vector spaceFn

q and then discuss ba-
sic results of anti-codes. We begin with the definition of
anti-weight of a vectorv ∈ F

n
q .

Definition 1. The anti-weightTw(v) of a vectorv =

(v1, v2, · · · , vn) ∈ F
n
q is defined as

Tw(v) =
n

max
i=1

{i|vi = 0}.

Definition 2. The anti-distanceTd : F
n
q × F

n
q →

{0, 1, 2 · · · , n} is defined as

Td(x, y) = Tw(x− y) for all x, y ∈ F
n
q .

The anti-distanceTd satisfies the following properties:

(i) Td(x, y) ≥ 0 ∀ x, y ∈ F
n
q .

(ii) Td(x, y) = T (y, x) ∀ x, y ∈ F
n
q .

(iii) Td(x, y) = maximum = n iff x = y and
Td(x, y) = minimum = 0 iff x1 6= y1 ∀ x =

(x1, · · ·xn) andy = (y1, · · · yn) ∈ F
n
q .

(iv) Td(x, y) ≥ Td(x, z) + T (z, y)− n ∀ x, y, z ∈ F
n
q
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Remark 3. The anti-weightTw is related to the RT-
weightρ [1] by the following relation:

Tw(x) = n− ρ(xR) ∀ x ∈ F
n
q

where xR is the reverse vector ofx i.e. if x =

(x1, · · · , xn) thenxR = (xn, xn−1, · · ·x1) andρ(xR)

is the RT-weight ofxR.

From now onwards, we will use the same symbolT for
bothTw andTd and call it asT -anti-weight- andT -anti-
metric respectively.
Definition 4 (Anti-spheres.)Anti-spheres of radiusr in
F

n
q centered atx ∈ F

n
q are defined as

SA
r (x) = {y ∈ F

n
q |T (x, y) ≥ r}

= {y ∈ F
n
q |r ≤ T (x, y) ≤

≤ n}.

Definition 5 (Anti-codes).A T -anti-code or simply an
anti-codeV is ak-dimensional subspace ofFn

q equipped
with theT -anti-metric.

Definition 6. The maximum anti-weight and maximum
anti-distance of an anti-codeV are defined as

Tmax

w (V ) = max
x∈V

x 6=0

(Tw(x))

and
Tmax

d (V ) = max
x,y∈V

x 6=y

(Td(x, y))

Theorem 7. The maximum anti-weight and maximum
anti-distance of an anti-code V coincide.

Proof. Suppose the maximum anti-weight(V ) = w.

Let u, v ∈ V andu 6= v. Then

T (u, v) = T (u− v) ≤ w

⇒ max
u,v∈V

u6=v

(T (u, v) ≤ w. (1)

Again, maximum anti-wight(V ) = w implies there ex-
ists a nonzero codeword sayx such thatT (x) = w. Also
0 = (0, 0, · · · , 0) ∈ V . Now

T (0, x) = T (x− 0) = T (x) = w

⇒ max
u,v∈V

u6=v

(T (u, v) ≥ w. (2)

(1) and (2) prove the result. �

Theorem 8.Let t ≥

(

n+ 1

2

)

be a positive integer. If

the maximum anti-distance of an [n, k] anti-code V is at

most 2t− n− 1, then the anti-code V corrects all errors
of anti-weight t or more.

Proof. It suffices to show that the anti-spheres of radius
t centered at codewords are all disjoint. If not, then there
existsx, y ∈ V, x 6= y andz ∈ F

n
q such that

z ∈ SA
t (x) ∩ SA

t (y).

This gives

T (x, z) ≥ t and T (y, z) ≥ t

⇒ T (x, z) + T (y, z)− n ≥ 2t− n

⇒ T (x, y) ≥ 2t− n

⇒ max
u,v∈V

u6=v

T (u, v) ≥ 2t− n. (3)

(3) gives a contradiction. �

Remark 9(i).Theorem 8 also states thatIf the maximum
anti-distance of an [n, k] anti-code V is at most Tmax,
then the anti-code V can correct all errors of anti-weight
t or more where

t ≥
Tmax + n+ 1

2
.

(ii)The condition in Theorem 8 or in Remark 9(i) is only
a sufficient condition. It is not a necessary condition as
seen from Example 14 in the next section.

3. STANDARD ANTI-ARRAY AND HAMMING
ANTI-SPHERE PACKING BOUND

The standard anti-array for an[n, k] anti-codeV
is the same as the standard array used in normal cod-
ing with coset leaders being replaced by anti-coset lead-
ers where the anti-coset leaders are vectors of maximum
anti-weights in their respective cosets and farthest neigh-
bor decoding principle will be used for decoding purpose
i.e. we find the code vector whose anti-distance from the
received vector is maximum.

To obtain the Hamming anti-sphere packing bound,
we enumerate the number of all vectors of anti-weightt

or more inFn
q and this number is given by

|SA
t (0)| = Vt,q = 1 +

n−t−1
∑

i=0

(q − 1)qi

= qn−t.

Theorem 10 (The Hamming anti-sphere packing
Bound). To correct all errors of anti-weight t or more,
an [n, k] anti-code V must have at least (n − t) parity
check digits or equivalently at most t information digits.
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Proof. The proof follows from the fact that the number of
correctable errors of anti-weightst or more isqn−t and
the number of available cosets isqn−k and hence

qn−k ≥ qn−t.

�

Definition 11 (t-perfect anti-code.)An [n, k] anti-code
satisfying

qn−k = qn−t

or equivalently
k = t

is called at-perfect anti-code.

Example 12.Let q = 2, n = 4, t = 2, k = 2. Let

V = {(0000), (1100), (0100), (1000)}.

ThenTmax(V ) = 1. The generator and parity check ma-
trices forV are

G =

[

1 0 0 0
0 1 0 0

]

2×4

,

H =

[

0 0 1 0
0 0 0 1

]

2×4

.

Standard anti-array for anti-codeV is given by

0000 1100 0101 1000

0001 1101 0101 1001

0010 1110 0110 1010

0011 1111 0111 1011.

Note that errors vectors of anti-weightt = 2 or more
belong to distinct cosets of the standard anti-array and
hence are correctable and moreover the anti-codeV cor-
rects no other error. This is an example of a 2-perfect
anti-code of length 4.

4. DECODING ALGORITHM

In this section, we describe two decoding algo-
rithms for the correction of all errors of anti-weightt or
more (including all cyclic errors of ordert) using stan-
dard anti-arrays.

ALGORITHM 1.

Step 1.Let v = (a1, a2, · · · , an) ∈ F
n
q be the received

vector.

Step 2.Find syndrome ofv viz. synd(v).

Step 3. Find the anti-coset leadere in the syn-
drome table(or standard anti-array table) such that
synd(v)=synd(e).

Step 4.Subtract the anti-coset leadere from the received
vectorv to get the transmitted vectoru i.e. u = v − e.

ALGORITHM 2.

Step 1.Let v = (a1, a2, · · · , an) ∈ F
n
q be the received

vector.

Step 2.Locate the position ofv in the standard anti-array.
Let it be rowi with anti-coset leadere.

Step 3.Subtracte from the received vectorv to get the
transmitted vectoru i.e. u = v − e.

Example 13.Consider the anti-codeV in Example 12
Supposev = (1110) is the received vector. We compute
synd(v) = (10) = synd(e) wheree = (0010). T (e) = 2
implies that errors begin from the third position. Subtract
e from v to get the transmitted vectoru = (1100).

Example 14.Let q = 2, n = 4, k = 2. LetV be an[4, 2]
binary anti-code given by

V = {(0000), (1100), (0101), (1001)}.

ThenTmax(V ) = 1.

In view of Remark 9(i), the anti-codeV corrects all er-
rors of anti-weight

Tmax + n+ 1

2
=

1 + 4 + 1

2
= 3 or more.

But this code also corrects all errors of anti-weight 2 as
seen from the following standard anti-array.

0000 1100 0101 1001

0001 1101 0101 1000

0010 1110 0111 1011

0011 1111 0110 1010.

Thus the condition in Theorem 8 or in Remark 9(i) is
only a sufficient condition.

The generator and parity check matrix forV are
given by

G =

[

1 0 0 1
0 1 0 1

]

2×4

,

H =

[

0 0 1 0
1 1 0 1

]

2×4

.

Let the transmitted vector beu = (0101) and a cyclic
error of order 2 occurs where the second bit is shifted to
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the third position and3rd bit is shifted to the4th place
and a randomly chosen bit say 1 is introduced at the sec-
ond position. So the received vector isv = (0110). We
locate the position of the received vectorv in the stan-
dard anti-array. It lies in fourth row with anti-coset leader
e = (0011) whereT (e) = 2. Subtracte from v to get
the transmitted vectoru = (0101).
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