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Abstract: Array codes or two-dimensional codes in m-metric are subsets/subspaces of the space Matm×s(Fq), the linear
space of all m × s-matrices with entries from a finite field Fq endowed with the m-metric [15]. In this paper, we obtain a
lower bound over the number of parity checks of a two-dimensional m-code that corrects any two-dimensional array which
has both clustered errors as well as errors in separate positions (or independent errors).
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INTRODUCTION

Burst error correcting m-metric array codes are de-
veloped [7] to protect the clustered errors over a particu-
lar subarray part of the transmitted array message. These
types of errors occur in many practical situations e.g. due
to lightening and thunder in deep space and satellite com-
munication. One important and practical situation is that
in which the array message is disturbed over a particu-
lar subarray part of the transmitted code array together
with occasional disturbances, thus creating simultane-
ously burst as well as independent (or random) errors.
Therefore, in actual communication, while it is important
to consider correction of burst array errors, care must be
taken to correct independent (or independent) array er-
rors of up to a specified weight, no matter where they
occur. In this paper, we consider the problem of burst
array error correction together with the independent (or
random) array error correction with weight constraint in
m-metric array codes and obtain a lower bound (which is
in fact a necessary condition) over the number of parity
checks in m-codes for the correction of the same.

2. DEFINITIONS AND NOTATIONS

Let Fq be a finite field of q elements. Let
Matm×s(Fq) denote the linear space of allm×smatrices
with entries from Fq . Anm-metric array code is a subset
of Matm×s(Fq) and a linear m-metric array code is an
Fq−linear subspace of Matm×s(Fq) . Note that the space
Matm×s(Fq) is identifiable with the space Fmsq . Every
matrix in Matm×s(Fq) can be represented as a 1 × ms
vector by writing the first row of matrix followed by sec-
ond row and so on. Similarly, every vector in Fmsq can

be represented as an m × s matrix in Matm×s(Fq) by
separating the co-ordinates of the vector into m groups
of s-coordinates.

The weight and metric defined by Rosenbloom and
Tsfasman [15] on the space Matm×s(Fq) are as follows :

Let X ∈ Matm×1(Fq) with

X =


x1
x2
· · ·
xm

 ,

then column weight (or weight) of X is given by

wtc(X) =


m− max { i | xk = 0
for any k ≤ i} if X 6= 0

0 if X = 0.

This definition of wtc can be extended to m × s

matrices in the space Matm×s(Fq) as

wtc(A) =

s∑
j=1

wtc(Aj)

where A = [A1, A2, · · · , As] ∈ Matm×s(Fq) and
Aj denotes the jth column of A. Then wtc satisfies
0 ≤ wtc(A) ≤ n(= ms) and determines a met-
ric on Matm×s(Fq) if we set d(A,A′) = wtc(A −
A′) ∀ A,A′ ∈ Matm×s(Fq). We call this metric as
column-metric. Note that for m = 1, it is just the usual
Hamming metric.

There is an alternative equivalent way of defining
the weight of an m × s matrix using the weight of its
rows [4]:
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Let Y ∈ Mat1×s(Fq) with Y = (y1, y2, · · · , ys).
Define row weight (or weight) of Y as

wtρ(Y ) =

 max { i | yi 6= 0} if Y 6= 0

0 if Y = 0.

Extending the definitions of wtρ to the class of m × s

matrices as

wtρ(A) =

m∑
i=1

wtρ(Ri)

where A =


R1

R2

· · ·
Rm

 ∈ Matm×s(Fq) and Ri denotes

the ith row of A. Then wtρ satisfies 0 ≤ wtρ(A) ≤
n(= ms) ∀ A ∈ Matm×s(Fq) and determines a metric
on Matm×s(Fq) known as row-metric.

It turns out that row weight of a vector is equal
to the column weight of transpose of the vector with its
component reversed and hence the two metrics viz. row-
metric and column-metric give rise to equivalent codes
and both the metrics have been known as m-metric or
RT-metric.

In this paper, we take distance and weight in the
sense of row-metric. Throughout this paper, [x] denotes
the greatest integer less than or equal to x.

3. LOWER BOUND FOR m-CODES
CORRECTING INDEPENDENT AND BUSRY

ARRAY ERRORS

We begin with the definition of bursts in m-metric
array codes [7].

Definition 1. A burst of order pr(or p × r)(1 ≤ p ≤
m, 1 ≤ r ≤ s) in the space Matm×s(Fq) is an m × s
matrix in which all the nonzero entries are confined to
some p × r submatrix which has non-zero first and last
rows as well as non-zero first and last columns.

Note. For m = p = 1, Definition 3.1 reduces to the
definition of burst for classical codes [5].

Definition 2. A burst of order pr or less (1 ≤ p ≤ m, 1 ≤
r ≤ s) in the space Matm×s(Fq) is a burst of order cd(or
c× d) where 1 ≤ c ≤ p ≤ m and 1 ≤ d ≤ r ≤ s.

To obtain the desired bound, we need to find all
m × s arrays of ρ-weight t or less and additional arrays
of ρ-weight wρ or less which are bursts of order p × r
or less. We obtain in the next two lemmas the number of
these arrays separately.

Lemma 3. If Vt denotes allm×s arrays in Matm×s(Fq)
of ρ-weight t or less then

Vt =
∑

k1,k2,··· ,ks

m!
s∏
i=1

ki!

(
m−

s∑
i=1

ki

)
!

×

(
q − 1

q

) s∑
i=1

ki
(q)

s∑
i=1

iki
(1)

where k1, k2, · · · , ks are nonegative integers such that

s∑
i=1

ki ≤ m,

s∑
i=1

iki ≤ t. (2)

Proof. LetA ∈ Matm×s(Fq) be anm×s array over Fq
having ρ-weight t or less. Out ofm rows ofA let ki(≥ 0)

denote the number of rows having ρ-weight i(1 ≤ i ≤
s). Also, the ρ-weight i(1 ≤ i ≤ s) of a row can be
obtained by filling the ith entry in the row by a nonzero
elements of Fq and the preceding (i − 1) entries by any
of the q elements of Fq . Therefore, number of ways in
which we obtain ρ-weight i(1 ≤ i ≤ s) of a row-vector
is (q − 1)qi−1.

Since ki is the number of rows of arrayA ∈ Matm×s(Fq)
having ρ-weight i(1 ≤ i ≤ s), therefore, number of ways
in which rows of array A can be selected is given by

=
m!

s∏
i=1

ki!

(
m−

s∑
i=1

ki

)
!

× ((q − 1)q0)k1 ×

×((q − 1)q1)k2 × · · · × ((q − 1)qs−1)ks

=
m!

s∏
i=1

ki!

(
m−

s∑
i=1

ki

)
!

×

×(q − 1)

s∑
i=1

ki
(q)

s∑
i=2

(i− 1)ki

=
m!

s∏
i=1

ki!

(
m−

s∑
i=1

ki

)
!

×

×
(
q − 1

q

) s∑
i=1

ki
(q)

s∑
i=1

iki
. (3)

Condition (2) follows immediately as the total number
of rows of array A is m and sum of ρ-weights of the m-
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rows of A is atmost t. Now summing (3) for all possible
values of k′is, we get (1).

Lemma 4. If Bp×rm×s(Fq, t+1, wρ) is the total number of
arrays of order m × s in Matm×s(Fq) which are bursts
of order p × r having ρ-weight between t + 1 and wρ,
then

Bp×rm×s(Fq, t+ 1, wρ) =

m×min(wρ − t, s− t)× (q − 1)
if p = r = 1,

m× {min(w − r + 1, s− r + 1)−
−max(t− r + 2, 1) + 1}×
×(q − 1)2qr−2 if p = 1, r ≥ 2,

(m− p+ 1)×

×
min([wρ/2],s)∑

j=1

p−2∑
η=0:

t+1−2j≤nj≤wρ−2j(
p−2
η

)
(q − 1)η+2 if p ≥ 2, r = 1,

(m− p+ 1)

min(w−r+1,s−r+1)∑
j=1

(Lpj − 2Lp−1j + Lp−2j ) if p ≥ 2, r ≥ 2,

(4)

where

Lpj =
∑

kj ,kj+1,··· ,kj+r−1

×

p!
r−1∏
l=0

kj+l!

(
p−

r−1∑
l=0

kj+l

)
!

×

×
(
q − 1

q

)r−1∑
l=0

kj+l

×

×q

r−1∑
l=0

(l + 1)kj+l

, (5)

and kj , kj+1, · · · , kj+r−1 being nonnegative integers
such that

kj > 0, kj+1, kj+2, · · · , kj+r−2 ≥ 0,

kj+r−1 > 0,

kj + kj+1 + kj+2 + · · ·+ kj+r−1 ≤ p,

t+ 1 ≤
r−1∑
l=0

(j + l)kj+l ≤ wρ. (6)

Proof. Consider a burst A =


A1

A2

· · ·
Am

 where Ai =

(ai1 , ai2 , · · · , ais), of order pr(1 ≤ p ≤ m, 1 ≤ r ≤ s)

having ρ-weight lying between t + 1 and wρ. Let B be
the p×r nonzero submatrix ofA such that all the nonzero
entries of A are confined to B with first and last rows as
well as first and last columns nonzero. There are four
cases depending upon the values of p and r.

Case 1. When p = 1, r = 1.

In this case, number of starting positions for the
1 × 1 nonzero submatrix B in m × s matrix A is m ×
min(wρ − t, s − t) and these m × min(wρ − t, s − t)

positions can be filled by (q− 1) nonzero elements from
Fq . Therefore, number of bursts of order 1 × 1 having
ρ-weight lying between t+1 and wρ in Matm×s(Fq, t+
1, wρ) is given by

B1×1
m×s(Fq, t+ 1, wρ)

= m×min(wρ − t, s− t)× (q − 1).

Case 2. When p = 1, r ≥ 2.

In this case, number of starting positions for the
1 × r nonzero submatrix B in m × s matrix A is m ×
{min(w − r + 1, s − r + 1) − max(t − r + 2, 1) + 1}
and entries in the 1 × r submatrix B can be selected in
(q − 1)2qr−2 ways as the first and last components of
the single rowed submatrix B can be chosen in (q − 1)2

ways and intermediate (r−2) components can be chosen
in qr−2 ways. Therefore, number of bursts of order 1× r
having ρ-weight between t+1 andwρ in Matm×s(Fq, t+
1, wρ) is given by

B1×r
m×s(Fq, t+ 1, wρ)

= m× {min(w − r + 1, s− r + 1)−
−max(t− r + 2, 1) + 1} ×
×(q − 1)2qr−2.

Case 3. When p ≥ 2, r = 1.

In this case, the p × 1 nonzero column vector B
can have (i, j) as its feasible starting positions in m × s
matrixAwhere i can vary from 1 to (m−p+1) and j can
vary from 1 to min([wρ/2], s) subject to the condition
that there exists η lying between 0 and p − 2 satisfying
t + 1 − 2j ≤ ηj ≤ wρ − 2j. If no such η exists then
(i, j) cannot be taken as the feasible starting position of
the p × 1 nonzero column vector B. Now with (i, j) as
the feasible starting position of p × 1 nonzero column
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matrix B, entries in B can be filled in

p−2∑
η=0:

t+1−2j≤ηj≤wρ−2j

(q − 1)2
(
p− 2

η

)
(q − 1)η

ways as first and last components of the column matrixB
can be chosen in (q− 1)2 ways and intermediate (p− 2)

components can be chosen in
p−2∑
η=0

(
p− 2
η

)
(q−1)η ways

subject to constraint t + 1 − 2j ≤ ηj ≤ wρ − 2j as 2j
ρ-weight has already been taken from the first and last
components. Therefore, number of bursts of order p× 1

having ρ-weight lying between t + 1 and wρ or less in
Matm×s(Fq, t+ 1, wρ) is given by

Bp×1m×s(Fq, t+ 1, wρ) =

= (m− p+ 1)

min([wρ/2],s)∑
j=1

p−2∑
η=0:

t+1−2j≤nj≤wρ−2j

(q − 1)2
(
p− 2

η

)
×

×(q − 1)η

= (m− p+ 1)

min([wρ/2],s)∑
j=1

p−2∑
η=0:

t+1−2j≤nj≤wρ−2j

(
p− 2

η

)
(q − 1)η+2

Case 4. When p ≥ 2, r ≥ 2.

In this case, let the p×r nonzero submatrixB starts
at the (i, j)th position in A. Out of p rows of B, let
kj , kj+1, kj+2, · · · , kj+r−1 be the number of rows of B
having ρ-weight j, j+1, · · · , j+r−1 respectively. The
number of ways in which p rows of B can be selected is
given by

Lpj − 2Lp−1j + Lp−2j , (7)

where Lpj is given by (5) and kj , kj+1, kj+2, · · · , kj+r−1
being nonnegative integers satisfying (6). Since in the
starting position (i, j) of the submatrix B, i can vary
from 1 to (m − p + 1) and j can vary from 1 to
min(w − r + 1, s − r + 1), therefore, summing (7)
over i and j, we get number of bursts of order pr (or
p × r)(2 ≤ p ≤ m, 2 ≤ r ≤ s) having ρ-weight lying

between t+ 1 and wρ and is given by

Bp×rm×s(Fq, t+ 1, wρ) =

= (m− p+ 1)×
min(w−r+1,s−r+1)∑

j=1

(Lpj − 2Lp−1j + Lp−2j ),

where Lpj is given by (5) satisfying the constraints (6).

Now, we obtain the desired bound.

Theorem 5. An [m× s, k] linear m-metric code of order
m×s that simultaneously corrects independent errors of
ρ-weight t or less and bursts of order p × r or less with
ρ-weight wρ or less (Wρ ≥ t) should have at least

logq(Vt + Ep×rm×s(Fq, t+ 1, wρ)) (8)

parity checks where

Ep×rm×s(Fq, t+ 1, wρ)

=

p∑
c=1

r∑
d=1

Bc×dm×s(Fq, t+ 1, wρ). (9)

Proof. The total number of correctable error patterns for
an m-code correcting simultaneously independent errors
of ρ-weight t or less and bursts of order p×r or less with
ρ-weight wρ or less is given by

Vt + Ep×rm×s(Fq, t+ 1, wρ),

where Ep×rm×s(Fq, t + 1, wρ) is given by (4) and (9) and
Vt is given by (1).

Also, the number of available cosets is qms−k and since a
linear (m×s, k) code should have at least as many cosets
as the number of correctable error patterns, we have

qms−k ≥ Vt + Ep×rm×s(Fq, t+ 1, wρ)

i.e.

ms− k ≥ logq(Vt + Ep×rm×s(Fq, t+ 1, wρ)).

Particular Case. The weight constraint over the burst
can be removed by taking wρ to be the maximum possi-
ble weight for a burst of order p × r. This requires that
we take wρ = ps. The result in that case reduces to the
one given by the following corollary:

Corollary 6. A linear m-code of order m × s that si-
multaneously corrects independent errors of ρ-weight t
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or less and any burst of order pr or less should have at
least

logq(Vt + Ep×rm×s(Fq, t+ 1, ps)).

parity checks. �

On the other hand, we can derive results for burst
correction only. This requires the dropping of the inde-
pendent error correction constraint. Taking t = 0, the
corresponding result which is obtained, can be given in
the following corollary.

Corollary 7. A linear m-code of order m × s that cor-
rects all bursts of order p× r or less with ρ-weight wρ or
less should have at least

logq(Vt + Ep×rm×s(Fq, 1, wρ))

parity checks. �

This result has been obtained differently by the author in
[7]. A bound for independent error correction can also be
deduced from the result obtained in Theorem 5. This re-
quires the dropping of the burst correction constraint. On
taking wρ = t, we have Ep×rm×s(Fq, t + 1, wρ) = 0. The
result so obtained can be given in the following corollary.

Corollary 8[15]. A linear m-code of order m × s that
corrects independent errors of ρ-weight t or less should
have at least

logq(Vt)

parity checks. �
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