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Abstract: Linear partition error control codes in themetric is a natural generalization of error control codesaved with
the Rosenbloom-Tsfasman(RT) metric [4] to block coding had applications in different area of combinatorial/déser
mathematics, e.g. in the theory of uniform distributionpesimental designs, cryptography etc. In this paper, waédate
the concept of linear partition codes in thenetric and derive results for the random block error dedecnd random bock
error correction capabilities of these codes.
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INTRODUCTION [ne) -+ - [ne]

.- COpies
K. Feng and L.Xu and F.J.Hickernesll [2] initi-

ated the concept of linear partition block code en-
dowed withr-metric which is a natural generalization P:n=[n]"[ng]™ -
of the Hamming-metric codes. Also, we know that the
Rosenbloom-Tsfasman metric (or RT-metrigemetric) ~ Where
is stronger than the Hamming metric [1,5]. Motivated
by the idea to have linear partition block code endowed
with a metric generalizing the RT-metric, we formulate Further, given a partitio®® : n = [n1][na] - - - [ns] of @
the concept of linear partition codes equipped with blockpositive integem, the linear spac&? over F, can be
p-metric and name this new metric as thenetric. We  viewed as the direct sum
derive the basic results for linear partition codes inthe
metric including various upper and lower bounds on their F;=FpoF o --0Fy,
parameters and study their rando.m.blo'ck error detectiorar equivalently
and block error correction capabilities in Section 3 and

we write

.. [nt]”

ny <ng <---<ng.

Section 4 of this paper. V=VieVed -V,
2. DEFINITIONS AND NOTATIONS wherel — F" andV: — F™ foralli < i < s
q v q = ="

Let ¢,n be positive integers with = p™, a power  Consequently, each vectore F? can be uniquely writ-
of a prime numbep. LetF, be the finite field having  ten as a = (v, v, - -, v,) wherev; € V; = F," for
g elements. A partition” of the positive integen is  all 1 < i < s. Herev; is called thei" block of block size
defined as: n; of the vectomw.

P : n=mny+mny---+ns Where Definition 1. Letv = (vy,vs,--+,vs) € FI = FI' &
I<nm<ny<---<mngs=>1 F,>@©---@Fy* be ans-block vector of lengt overF,
The partitionP is denoted as corresponding to the partitioR : n = [n1][nsa] - - [ng]

of n. We define they-weight of the block vector as
P:n=[n]na - [ng. ) .
= max{ilv; # 0}.
In the case, when wy (V) r?jlx{m 7 0}
P:n = [ni]--[ni][ng]---[ng]--- The ~-distanced!” (u, v) between twos-block vectors
of lengthn viz. v = (uy,us, -, us) and

ri- COpPies r,- copies
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v = ('Ul,’UQ,"',’US),UZ‘,'Ui S FZLL(]- S 7 S S) corre-
sponding to the partitio®’ is defined as

wgp) (u—v)

max{ilu; # v}
P

P
dg ) (u,v)

Thend(vp) (u,v)isametriconFy =F' ©F2 @@
q

Note. Once the partitionP is specified, we will denote
thev-weightwgp) by w (v) andy—distanced(f) by d,
respectively.

Definition 2. A linear partitiony-code (orip~y-code)V
of lengthn corresponding to the partitio® : n =
[n1][ne] -+ [ns], 1 <mqp <ng <--- < nyisaF,linear
subspace ofy = Fj' @ Fj2 & - -- @ Fy« equipped with
the y-metric and is denoted 4ds, k, d.; P| code where
k = dimg (V) andd, = dv(V') = minimum~-distance
of the codéel/.

Remark 3.

1. ForP : n = [1]", they-metric (or~-weight) re-
duces to the-metric (orp-weight) respectively [4].

2. For a partitionP : n = [ny][nz] - - - [ns] of the posi-
tive integem, thev-distance (ory-weight) is always
greater than or equal to thedistance (orr-weight)
[2] respectively, i.e.

m-metric < ~-metric

and

m-weight ~v-weight

Example 4.Letn = ¢ = 5. LetP : 5 = [1]]2][2]
be a partition ofn = 5. Then F? can be viewed
as F? Fl o F? ® F? ands = 3. Letw

(v1,v2,v3) = (1:10:00). Thenwy(v) = 2. Similarly
if u = (u1,uz,uz) = (1:00:00) andz = (21, x2, r3) =

(1:10:01), thenw~y(u) = 1 andw~y(x) = 3 respectively.
QED

Definition 5. The generator and parity check matrix
of an [n, k,d; P] Ipy-code overF, whereP : n

[n1][na] -+ [ns], 1 < np < np < --- < n, are given
as

G:[GlaGQa"'sz]
and

H:[H1;H27"'7HS]7
where for alll < ¢ < 5,G; = (G@,GS),---,G%})

is the i** block of G of block size n; consisting
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of n; coI‘umn vectors of lengtht each andH;
(HD, 71 ... HY))is theit" block of H of block size
n; consisting ofz; column vectors of lengttn—k) each.

Definition 6. A set of blocks{H;,, H;,, -, H;.} C
{H1, Hs,---, H,} of the parity check matri¥7 is said to

be linearly independent if the union of all column vectors
inthe blocksH;,, H;,, - - -, H;, is alinearly independent
set overF,. Otherwise, we say that the set of blocks
{H;,,H,,, -, H;, }islinearly dependent. Equivalently,
we can say that a set of block#&/;,, H;,, - - -,

129
H; } C {Hy,Hs,---,H} is linearly independent over

F, iff
ail'Hil + 051'2.H1'2 + e + O‘ir-Hir = 0
= Qi = Qi+ = QG =0,
where for all 1 < j < r o —
(i, 087+ al?)) € Fy” and
oo, = ofPHE) ol

4+l gl
3. SOME PROPERTIES OFIpy-CODES

We begin by stating three results figry-codes without
proof as the proof is straightforward.

Theorem 7. The minimumy-weight and minimuny-
distance of aripy-codeV coincide. QED

Theorem 8.

(a) Anlp~vy-code detects all block errors efweightt
or less iff the minimumy-distance of the code is at
leastt + 1.

(b) Anipvy-codeV corrects all block errors ofj-weight
t or less iff the minimum-distance of the cod¥ is
atleast2t + 1. QED

Theorem 9.LetV be ann, k; P] lpy-code ovefF, cor-

responding to the partitiol® : n = [nq][ns] - - - [ng] of

n. The minimumy-distance of the cod® is d iff first

(d — 1) blocks of the parity check matri{ are linearly

independent and first blocks of H are linearly depen-
dentover,. QED

Example 10.Letn = 6, n — k = 5 andqg = 3. Let
P :n =6 = [1][1][1][3] be a partition ofn = 6. Then
s =4andn; = 1,n, = 1,n3 = 1 andnys = 3. Let

H = (H,:H,:Hs:H,) be the parity check matrix of a
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[6,1; P] Ipy-codeV as given below Theorem 11 [Singleton’s Bound].If V' is an[n, k,d :
) . P] Ipy-code overF, corresponding to the partitio® :
1 0 000 0 n=[ny][na] - [ns],1 <ny <ng <--- < ng Then
0 1 0 : 00 0 nit+ns+ - +ng1 <n-—k. (2)
H=10 1011100 0
0 0 0 1 2 0 Proof. By Theorem 9, the columns of firéf — 1) blocks
of the parity check matri/ of the codeV are linearly
L 0 0 0 : 0 2 1| independent. Since the number of rowsHnis n — k,
equation (2) follows. QED
Let
Definition 12. An [n, k,d : P] Ipy-code overF, with
ar1.Hy + ag.Hy + 3. Hs + P : n = [m]ne]---[ns] is said to be maximumy-
tay.Hy =0, (1) distance separablg\/D5) if equality holds in (2) i.e.
if (n — k) equals the sum of block sizes of fifgt — 1)
wherea; = (o\V)e Ff,ap = (a\”)e Fl,as =  blocks.
3 4 4 4 .
(ag ))6 Fy anday = (ag ),aé )’O‘g )e F. Example 13.Letq = 5,n = 2. Let P : 2 = [1][1] be a
Thenay.Hy + as.Hy + a3.Hs + ag. Hy = 0 implies partition ofn = 2. The[2, 1; P] Ipy-codeV with parity
1 0 check matrixd = (1:0) overF; is anM~DS code with
0 1 maximum~y-distance equal to.
o’ | 0 | +ai?| 0 We now obtain Hamming sphere packing bound for
8 8 Ipy-codes. For this, we first prove a lemma.
T 0] T 0] Lemma 14. If WEZ’“"*”"”“ denote the number of
0 0 all s-block vectors of lengtm over F, of v-weight
+al 1] +a® |0 t or less corresponding to the partitio®® : n =
0 1 [n1][na] - [ns],1 <nyp <np < --- < ng, then
- 0 - - 0 - V(nl,nQ,m,nS)
0 0 .4
0 O : ni+ns+---+n,
+aé4) 0 + Oég4) 0 = 1+ Zq 1 2 r—1 %
2 0 r=1
|2 1 x (g™ 7). ©)
0
0 Proof. Letu = (u1,uz,---,us) € Fy = Fjt @ Fj2 @
—1|o0 -+ @ Fye. To make they-weight of u to be equal to
0 r(1 < r < t), we haveg™ choices for thej” block
0 (1 < j < r—1)and(¢" — 1) choices for the-t"

o block and only one choice viz. zero for tfi& block
This gives (r+1 <1 < s). Therefore, the number of-block

vectors of lengt of v-weightr is given by
agl) =0, a§2) =0, 04%3) =0

A(n17n27”'7n5)
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and
_ ni+na+-Ang_1( ny—1
ol = o® — o = q (") (4)
Therefore, the only solutions of (1) aig = a, = a3 =  The result now follows by taking summation of (4) for
(0) anday = (a, a, a) wherea € F3. r = 1tot and adding 1 to the resultant corresponding to

the null vector. ED
Thus, the first three blocks aff are linearly indepen- Q

dent and the first four blocks dff are linearly depen- Theorem 15 (Hamming Sphere Bound)Let V' be an
dent. Hence th¢6,1 : P] lpy-codeV with H as the [n,k,d: P]lpy-code ovelF, corresponding to the par-
parity check matrix has minimumdistance equal to 4. tition P : n = [ny][ne] -+ [ns],1 <nyp < ng < -+ <
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ns. Then

n—k (n1,m2,,m)
q > V[d,ll]/zg’q ) 5)

(n1,n2,n

whereV[dflw . <) is given by (3) andz] denotes the
largest integer less than or equal 10

Proof. The proof follows from the fact that all the-
block vectors of lengthn = @&5_;n; and y-weight

[d—1]/2 or less must belong to distinct cosets of the stan-

dard array and the number of available cosetg"is*.
QED

4. GILBERT AND VARSHAMOV BOUNDS FOR
Ip-CODES

In this section, we obtain Gilbert bound, Varshmov
bound and a bound for random block error correction in
Ipy-codes. We derive Gilbert bound first.

Theorem 16 (Gilbert bound). Letn, k, ¢ be positive in-
tegers wherg; = p™(p prime) and1 < k < n. Let
Pin = [n]ne] - [ns],1 <mp <mp < -0 <img
be a partition ofn. Letd be a positive integer satisfying
1 < d < s. Then there exists dm, k; P] Ipy-code over
F, with minimuny-distance at least provided

n —k > log, (V;niizz’m’ns)) : (6)

whereVd(Tl:Z’Q"“’”“*) is given by (3).

Proof. We shall show that if (6) holds then their exists an
(n—k) x n matrix H overF, such that no linear combi-
nation of(d — 1) or fewer blocks offf is zero. We define
an algorithm for finding the blockéfy, Hs, - -, H, of

H whereH; = (H" H ... H))forall1 <i < s.
From the set of alf” —* column vectors of lengttn — k)
overF,, we choose blocks of columns of the parity check
matrix H as follows:

(1) Then; column vectors in the first block{; can
be any vectors chosen from the sey6f* column
vectors of lengtm — k overF, satisfying

A Hy #0,
where

0# A =AY, AWy e B
(2) The second blockl, = (H? HP, ... H?)
can be any set of; column vectors of lengttn—k)
satisfying
AHy+ X Hy #0,
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where forl < i < 2,
A= AP e B
and

wy (A1, Ao) = m_%mf({ﬂ)\i A0} <d-—1.

() Thejt" block H; = (HY, HY) ... H{)) can be

any set ofn; column vectors of lengttn — k) sat-
isfying
)\1.H1+)\2.H2+---+/\j.Hj7é0. (7)

where forl < i < j,

and
1 < wV(Al,)\g,---,)\j)
= miax{il\;) # 0}
< d-1. 8)

(s) Thest" block H, = (H\*, BV ... H)) can be

any set ofn, column vectors satisfying

M.Hi+ Ao Hy + -+ N\g.H, # 0.

where
A= AP D) e B
for all1 <i <s,
and
I < wy(A, Ao, o0, A)

mioclil A # 0} <d — 1

If we carry out this algorithm to completion, then,
Hy, Hy, - -

, H, are the blocks of sizeq,no, - - -, ng re-

spectively of an(n — k) x n (wheren = Zm) block

i=1
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matrix H such that no linear combination of blocks of Therefore, by Theorem 16, there exist§3al; P] ipy-
H of v-weight(d — 1) or less is zero meaning thereby codeV overF'; with minimum-~-distance at least 2.
that this matrix is the parity check matrix of &my-code
with minimum ~-distance at leas{. We show that the
construction can indeed be completed. lidie an in-
teger such tha2 < j < s and assume that the blocks
Hy,H>,---,H;_1 have been chosen. Then the bld¢k
can be added té&/ provided (7) is satisfied. The number

Consider the followin@ x 3 block parity check matrix
H of a[3,1; P] Ipy-codeV overFj constructed by the
algorithm discussed in Theorem 16:

o . S . C . 1 0 2
of distinct linear combinations in (7) satisfying (8) in- H = _
cluding the pattern of all zeros is given by 0 1 3/,.,
Vﬁi; ") We claim that thép~-code which is the null space of the

matrix H has minimunty- distance at least 2.

(nlv"'rnj) i i
whereVdeq Is given by (3). The generator matrix of th&y-code corresponding to

As long as the set of all linear combinations occuring inthe parity check matri¥{ is given by
(7) satisfying (8) is less than or equal to the total number
of (n — k)-tuples, thej!" block H; can be added té/. G=1-2" -3 1ix3=1[3'2 1]ixs
Therfore, the block{; can be added té/ provided that
The five codewords of thig~-codeV with G as genera-

k> V(flli'q”’”j) tor matrix andH as parity check matrix are given by:
or (na) vo = (0:00);w,(vg) =0,
n —k > log, <Vd_'11’q Y ) )
’ v = (321);w,(v1) =2,
Thus the fact that the block$,, Hs, - - -, H, can be cho- .
sen follows by induction o and we get (6). QED va = (1:42);wy(v2) = 2,
Corollary 17. Let P : n = [n1][ns] - - - [ns] be the par- vg = (413);w,(vs) = 2,
tition of a positive integen. Lett be a positive integer :
satisfying2t + 1 < s. Then, a sufficient condition for the ve = (234);wy (ve) = 2.

existence of afn, k; P| Ipy-code overF, that corrects

: o Therfore, the minimumy- weight of thelpy-codeV is
all random block errors ofy-weightt or less is given by

equal to 2. Hence Theorem 16 is verified.

n—k > log, (‘/é(tnén)) Theorem 19 (Varshamov Bound)Let B,(n, d; P) de-
’ note the largest number of code vectors in[ank; P)
Ipy-codeV overF, with P : n = [nq][n2] - - - [ns] hav-
Proof. The proof follows from Theorem 16 and the fact ing minimumy-distance at least. Then
that to correct all errors of weightt or less, the mini-
mum~-distance of aripy-code must be at leagt + 1. By(n,d; P) > ¢"~tesa D],

QED ()
whereL = V, 7" """ is given by (3) andz| denotes

Example 18.Letn = 3,k = 1,d = 2 andg = 5. Let  the smallest integer greater than or equahto

P : 3 = [1][2] be a partition ofr» = 3. We show that for : .
these values of the parameters, equation (6) is satisfie Rroof. By Theorem 18, there exists an k; P] ipy-code

We note that here, = 1, n, = 2. Equation (6) for these overF, with minimum-~-distance at least provided

parameters becomes S > Vﬁi}[’m) - L
53-1 ‘/1(15,3)7 =n—Fk > loge(L)
/ =k < n-—logy(L).
or
- The largest integek satisfying the above inequality is
25>5 (sinceV1(75’ ) = 5), n — [loge(L)]. Thus

which is true. By(n,d; P) > g Ttega(L)]
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whereL = V(i(fi:;""'*) is given by (3). QED

Acknowledgment. The author would like to thank her
spouse Dr. Arihant Jain for his constant support and en-
couragement for pursuing this research work.

References

1. Dougherty, S.T. and M.M. Skriganov, 2002.
MacWilliams duality and the Rosenbloom-
Tsfasman metric, Moscow Mathematical Journal,
2:83-99.

2. Feng, K., L. Xu and F. Hickernell, 2006. Linear
Error-Block Codes, Finite Fields and Applications,
12:638-652.

3. MacWilliams, F.J. and N.J.A. Sloane, 1977. The
Theory of error Correcting Codes, North Holland
Publishing Co.

4. Rosenbloom, M. Yu. and M.A. Tsfasman, 1997.
Codes for m-metric, Problems of Information
Transmission, 33:45-52.

5. Skriganov, M.M., 2002. Coding Theory and Uni-
form Distributions, St. Petersburg Math. J., 13:301-
337.

6. Udomkavanich, P. and S. Jitman, 2010. Bounds and
Modifications on Linear Error-block Codes, Inter-
national Mathematical Forum, 5:35-50.

35



