A class of linear partition error control codes in γ-metric

Sapna Jain
Department of Mathematics, University of Delhi, Delhi 110 007, India
sapnajain@gmx.com

Abstract

Linear partition error control codes in the γ-metric is a natural generalization of error control codes endowed with the Rosenbloom-Tsfasman(RT) metric [4] to block coding and has applications in different area of combinatorial/discrete mathematics, e.g. in the theory of uniform distribution, experimental designs, cryptography etc. In this paper, we formulate the concept of linear partition codes in the γ-metric and derive results for the random block error detection and random bock error correction capabilities of these codes.

Key words: Linear codes, RT-metric, error-block code

INTRODUCTION

K. Feng and L.Xu and F.J.Hickernesll [2] initiated the concept of linear partition block code endowed with π-metric which is a natural generalization of the Hamming-metric codes. Also, we know that the Rosenbloom-Tsfasman metric (or RT-metric or ρ-metric) is stronger than the Hamming metric [1,5]. Motivated by the idea to have linear partition block code endowed with a metric generalizing the RT-metric, we formulate the concept of linear partition codes equipped with block ρ-metric and name this new metric as the γ-metric. We derive the basic results for linear partition codes in the γ metric including various upper and lower bounds on their parameters and study their random block error detection and block error correction capabilities in Section 3 and Section 4 of this paper.

2. DEFINITIONS AND NOTATIONS

Let q, n be positive integers with $q=p^{m}$, a power of a prime number p. Let \mathbf{F}_{q} be the finite field having q elements. A partition P of the positive integer n is defined as:

$$
\begin{aligned}
P: & n=n_{1}+n_{2} \cdots+n_{s} \quad \text { where } \\
& 1 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{s}, s \geq 1
\end{aligned}
$$

The partition P is denoted as

$$
P: n=\left[n_{1}\right]\left[n_{2}\right] \cdots\left[n_{s}\right] .
$$

In the case, when

$$
P: n=\underbrace{\left[n_{1}\right] \cdots\left[n_{1}\right]}_{r_{1}-\text { copies }} \underbrace{\left[n_{2}\right] \cdots\left[n_{2}\right]}_{r_{2} \text { - copies }} \cdots
$$

$$
\underbrace{\left[n_{t}\right] \cdots\left[n_{t}\right]}_{r_{t}-\text { copies }}
$$

we write

$$
P: n=\left[n_{1}\right]^{r_{1}}\left[n_{2}\right]^{r_{2}} \cdots\left[n_{t}\right]^{r_{t}}
$$

where

$$
n_{1}<n_{2}<\cdots<n_{t}
$$

Further, given a partition $P: n=\left[n_{1}\right]\left[n_{2}\right] \cdots\left[n_{s}\right]$ of a positive integer n, the linear space \mathbf{F}_{q}^{n} over \mathbf{F}_{q} can be viewed as the direct sum

$$
\mathbf{F}_{q}^{n}=\mathbf{F}_{q}^{n_{1}} \oplus \mathbf{F}_{q}^{n_{2}} \oplus \cdots \oplus \mathbf{F}_{q}^{n_{s}},
$$

or equivalently

$$
V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{s}
$$

where $V=\mathbf{F}_{q}^{n}$ and $V_{i}=\mathbf{F}_{q}^{n_{i}}$ for all $i \leq i \leq s$.
Consequently, each vector $v \in \mathbf{F}_{q}^{n}$ can be uniquely written as a $v=\left(v_{1}, v_{2}, \cdots, v_{s}\right)$ where $v_{i} \in V_{i}=\mathbf{F}_{q}{ }^{n_{i}}$ for all $1 \leq i \leq s$. Here v_{i} is called the $i^{\text {th }}$ block of block size n_{i} of the vector v.

Definition 1. Let $v=\left(v_{1}, v_{2}, \cdots, v_{s}\right) \in \mathbf{F}_{q}^{n}=\mathbf{F}_{q}^{n_{1}} \oplus$ $\mathbf{F}_{q}^{n_{2}} \oplus \cdots \oplus \mathbf{F}_{q}^{n_{s}}$ be an s-block vector of length n over \mathbf{F}_{q} corresponding to the partition $P: n=\left[n_{1}\right]\left[n_{2}\right] \cdots\left[n_{s}\right]$ of n. We define the γ-weight of the block vector v as

$$
w_{\gamma}^{(P)}(v)=\max _{i=1}^{s}\left\{i \mid v_{i} \neq 0\right\}
$$

The γ-distance $d_{\gamma}^{(P)}(u, v)$ between two s-block vectors of length n viz. $u=\left(u_{1}, u_{2}, \cdots, u_{s}\right)$ and
$v=\left(v_{1}, v_{2}, \cdots, v_{s}\right), u_{i}, v_{i} \in \mathbf{F}_{q}^{n_{i}}(1 \leq i \leq s)$ corresponding to the partition P is defined as

$$
\begin{aligned}
d_{\gamma}^{(P)}(u, v) & =w_{\gamma}^{(P)}(u-v) \\
& =\underset{\substack{s \\
i=1}}{ }\left\{i \mid u_{i} \neq v_{i}\right\}
\end{aligned}
$$

Then $d_{\gamma}^{(P)}(u, v)$ is a metric on $\mathbf{F}_{q}^{n}=\mathbf{F}_{q}^{n_{1}} \oplus \mathbf{F}_{q}^{n_{2}} \oplus \cdots \oplus$ $\mathbf{F}_{q}^{n_{s}}$.
Note. Once the partition P is specified, we will denote the γ-weight $w_{\gamma}^{(P)}$ by $w_{\gamma}(v)$ and γ-distance $d_{\gamma}^{(P)}$ by d_{γ} respectively.

Definition 2. A linear partition γ-code (or $l p \gamma$-code) V of length n corresponding to the partition $P: n=$ $\left[n_{1}\right]\left[n_{2}\right] \cdots\left[n_{s}\right], 1 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{s}$ is a \mathbf{F}_{q}-linear subspace of $\mathbf{F}_{q}^{n}=\mathbf{F}_{q}^{n_{1}} \oplus \mathbf{F}_{q}^{n_{2}} \oplus \cdots \oplus \mathbf{F}_{q}^{n_{s}}$ equipped with the γ-metric and is denoted as $\left[n, k, d_{\gamma} ; P\right]$ code where $k=\operatorname{dim}_{\mathbf{F}_{q}}(V)$ and $d_{\gamma}=d \gamma(V)=$ minimum γ-distance of the code V.

Remark 3.

1. For $P: n=[1]^{n}$, the γ-metric (or γ-weight) reduces to the ρ-metric (or ρ-weight) respectively [4].
2. For a partition $P: n=\left[n_{1}\right]\left[n_{2}\right] \cdots\left[n_{s}\right]$ of the positive integer n, the γ-distance (or γ-weight) is always greater than or equal to the π-distance (or π-weight) [2] respectively, i.e.

$$
\begin{aligned}
& \pi \text {-metric } \leq \gamma \text {-metric } \\
& \text { and } \\
& \pi \text {-weight } \leq \gamma \text {-weight }
\end{aligned}
$$

Example 4. Let $n=q=5$. Let $P: 5=[1][2][2]$ be a partition of $n=5$. Then F_{5}^{5} can be viewed as $F_{5}^{5}=F_{5}^{1} \oplus F_{5}^{2} \oplus F_{5}^{2}$ and $s=3$. Let $v=$ $\left(v_{1}, v_{2}, v_{3}\right)=(1: 10: 00)$. Then $w \gamma(v)=2$. Similarly if $u=\left(u_{1}, u_{2}, u_{3}\right)=(1: 00: 00)$ and $x=\left(x_{1}, x_{2}, x_{3}\right)=$ (1:10:01), then $w \gamma(u)=1$ and $w \gamma(x)=3$ respectively. QED

Definition 5. The generator and parity check matrix of an $[n, k, d ; P] l p \gamma$-code over \mathbf{F}_{q} where $P: n=$ $\left[n_{1}\right]\left[n_{2}\right] \cdots\left[n_{s}\right], 1 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{s}$ are given as

$$
G=\left[G_{1}, G_{2}, \cdots, G_{s}\right]
$$

and

$$
H=\left[H_{1}, H_{2}, \cdots, H_{s}\right]
$$

where for all $1 \leq i \leq s, G_{i}=\left(G_{1}^{(i)}, G_{2}^{(i)}, \cdots, G_{n_{i}}^{(i)}\right)$ is the $i^{t h}$ block of G of block size n_{i} consisting
of n_{i} column vectors of length k each and $H_{i}=$ $\left(H_{1}^{(i)}, H_{2}^{(i)}, \cdots, H_{n_{i}}^{(i)}\right)$ is the $i^{\text {th }}$ block of H of block size n_{i} consisting of n_{i} column vectors of length $(n-k)$ each.

Definition 6. A set of blocks $\left\{H_{i_{i}}, H_{i_{2}}, \cdots, H_{i_{r}}\right\} \subseteq$ $\left\{H_{1}, H_{2}, \cdots, H_{s}\right\}$ of the parity check matrix H is said to be linearly independent if the union of all column vectors in the blocks $H_{i_{i}}, H_{i_{2}}, \cdots, H_{i_{r}}$ is a linearly independent set over \mathbf{F}_{q}. Otherwise, we say that the set of blocks $\left\{H_{i_{i}}, H_{i_{2}}, \cdots, H_{i_{r}}\right\}$ is linearly dependent. Equivalently, we can say that a set of blocks $\left\{H_{i_{i}}, H_{i_{2}}, \cdots\right.$,
$\left.H_{i_{r}}\right\} \subseteq\left\{H_{1}, H_{2}, \cdots, H_{s}\right\}$ is linearly independent over \mathbf{F}_{q} iff

$$
\begin{aligned}
& \alpha_{i_{1}} \cdot H_{i_{1}}+\alpha_{i_{2}} \cdot H_{i_{2}}+\cdots+\alpha_{i_{r}} \cdot H_{i_{r}}=0 \\
& \Rightarrow \alpha_{i_{1}}=\alpha_{i_{2}} \cdots=\alpha_{i_{r}}=0
\end{aligned}
$$

where for all $1 \leq j \leq r, \alpha_{i_{j}}=$ $\left(\alpha_{1}^{\left(i_{j}\right)}, \alpha_{2}^{\left(i_{j}\right)}, \cdots, \alpha_{n_{i_{j}}}^{\left(i_{j}\right)}\right) \in \mathbf{F}_{q}^{n_{i_{j}}}$ and

$$
\begin{aligned}
\alpha_{i_{j}} \cdot H_{i_{j}}= & \alpha_{1}^{\left(i_{j}\right)} H_{1}^{\left(i_{j}\right)}+\alpha_{2}^{\left(i_{j}\right)} H_{2}^{\left(i_{j}\right)} \\
& +\cdots+\alpha_{n_{i_{j}}}^{\left(i_{j}\right)} H_{n_{i_{j}}}^{\left(i_{j}\right)} .
\end{aligned}
$$

3. SOME PROPERTIES OF $l p \gamma$-CODES

We begin by stating three results for $l p \gamma$-codes without proof as the proof is straightforward.

Theorem 7. The minimum γ-weight and minimum γ distance of an lp γ-code V coincide. QED

Theorem 8.

(a) An lp γ-code detects all block errors of γ-weight t or less iff the minimum γ-distance of the code is at least $t+1$.
(b) An lp γ-code V corrects all block errors of γ-weight t or less iff the minimum γ-distance of the code V is at least $2 t+1$. QED

Theorem 9. Let V be an $[n, k ; P] l p \gamma$-code over \mathbf{F}_{q} corresponding to the partition $P: n=\left[n_{1}\right]\left[n_{2}\right] \cdots\left[n_{s}\right]$ of n. The minimum γ-distance of the code V is d iff first $(d-1)$ blocks of the parity check matrix H are linearly independent and first d blocks of H are linearly dependent over \mathbf{F}_{q}. QED

Example 10. Let $n=6, n-k=5$ and $q=3$. Let $P: n=6=[1][1][1][3]$ be a partition of $n=6$. Then $s=4$ and $n_{1}=1, n_{2}=1, n_{3}=1$ and $n_{4}=3$. Let $H=\left(H_{1} \vdots H_{2} \vdots H_{3} \vdots H_{4}\right)$ be the parity check matrix of a
$[6,1 ; P] l p \gamma$-code V as given below

$$
H=\left[\begin{array}{lllllllll}
1 & \vdots & 0 & \vdots & 0 & \vdots & 0 & 0 & 0 \\
0 & \vdots & 1 & \vdots & 0 & \vdots & 0 & 0 & 0 \\
0 & \vdots & 0 & \vdots & 1 & \vdots & 0 & 0 & 0 \\
0 & \vdots & 0 & \vdots & 0 & \vdots & 1 & 2 & 0 \\
0 & \vdots & 0 & \vdots & 0 & \vdots & 0 & 2 & 1
\end{array}\right]
$$

Let

$$
\begin{align*}
& \alpha_{1} \cdot H_{1}+\alpha_{2} \cdot H_{2}+\alpha_{3} \cdot H_{3}+ \\
& +\alpha_{4} \cdot H_{4}=0 \tag{1}
\end{align*}
$$

where $\alpha_{1}=\left(\alpha_{1}^{(1)}\right) \in F_{3}^{1}, \alpha_{2}=\left(\alpha_{1}^{(2)}\right) \in F_{3}^{1}, \alpha_{3}=$ $\left(\alpha_{1}^{(3)}\right) \in F_{3}^{1}$ and $\alpha_{4}=\left(\alpha_{1}^{(4)}, \alpha_{2}^{(4)}, \alpha_{3}^{(4)}\right) \in F_{3}^{3}$.

Then $\alpha_{1} \cdot H_{1}+\alpha_{2} \cdot H_{2}+\alpha_{3} \cdot H_{3}+\alpha_{4} \cdot H_{4}=0$ implies

$$
\begin{aligned}
& \alpha_{1}^{(1)}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+\alpha_{1}^{(2)}\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right] \\
& +\alpha_{1}^{(3)}\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+\alpha_{1}^{(4)}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right] \\
& +\alpha_{2}^{(4)}\left[\begin{array}{l}
0 \\
0 \\
0 \\
2 \\
2
\end{array}\right]+\alpha_{3}^{(4)}\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] .
\end{aligned}
$$

This gives

$$
\alpha_{1}^{(1)}=0, \alpha_{1}^{(2)}=0, \alpha_{1}^{(3)}=0
$$

and

$$
\alpha_{1}^{(4)}=\alpha_{2}^{(4)}=\alpha_{3}^{(4)}
$$

Therefore, the only solutions of (1) are $\alpha_{1}=\alpha_{2}=\alpha_{3}=$ (0) and $\alpha_{4}=(a, a, a)$ where $a \in F_{3}$.

Thus, the first three blocks of H are linearly independent and the first four blocks of H are linearly dependent. Hence the $[6,1: P] l p \gamma$-code V with H as the parity check matrix has minimum γ-distance equal to 4 .

Theorem 11 [Singleton's Bound]. If V is an $[n, k, d$: $P] l p \gamma$-code over \mathbf{F}_{q} corresponding to the partition P : $n=\left[n_{1}\right]\left[n_{2}\right] \cdots\left[n_{s}\right], 1 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{s}$. Then

$$
\begin{equation*}
n_{1}+n_{2}+\cdots+n_{d-1} \leq n-k \tag{2}
\end{equation*}
$$

Proof. By Theorem 9, the columns of first $(d-1)$ blocks of the parity check matrix H of the code V are linearly independent. Since the number of rows in H is $n-k$, equation (2) follows. QED

Definition 12. An $[n, k, d: P] l p \gamma$-code over \mathbf{F}_{q} with $P: n=\left[n_{1}\right]\left[n_{2}\right] \cdots\left[n_{s}\right]$ is said to be maximum γ distance separable $(M \gamma D S)$ if equality holds in (2) i.e. if $(n-k)$ equals the sum of block sizes of first $(d-1)$ blocks.

Example 13. Let $q=5, n=2$. Let $P: 2=[1][1]$ be a partition of $n=2$. The $[2,1 ; P] l p \gamma$-code V with parity check matrix $H=(1: 0)$ over \mathbf{F}_{5} is an $M \gamma D S$ code with maximum γ-distance equal to 2 .

We now obtain Hamming sphere packing bound for $l p \gamma$-codes. For this, we first prove a lemma.

Lemma 14. If $V_{t, q}^{\left(n_{1}, n_{2}, \cdots, n_{s}\right)}$ denote the number of all s-block vectors of length n over \mathbf{F}_{q} of γ-weight t or less corresponding to the partition $P: n=$ $\left[n_{1}\right]\left[n_{2}\right] \cdots\left[n_{s}\right], 1 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{s}$, then

$$
\begin{align*}
& V_{t, q}^{\left(n_{1}, n_{2}, \cdots, n_{s}\right)} \\
= & 1+\sum_{r=1}^{t} q^{n_{1}+n_{2}+\cdots+n_{r-1}} \times \\
& \times\left(q^{n_{r}-1}\right) . \tag{3}
\end{align*}
$$

Proof. Let $u=\left(u_{1}, u_{2}, \cdots, u_{s}\right) \in \mathbf{F}_{q}^{n}=\mathbf{F}_{q}^{n_{1}} \oplus \mathbf{F}_{q}^{n_{2}} \oplus$ $\cdots \oplus \mathbf{F}_{q}^{n_{s}}$. To make the γ-weight of u to be equal to $r(1 \leq r \leq t)$, we have $q^{n_{j}}$ choices for the $j^{t h}$ block $(1 \leq j \leq r-1)$ and $\left(q^{n_{r}}-1\right)$ choices for the $r^{t h}$ block and only one choice viz. zero for the $l^{t h}$ block $(r+1 \leq l \leq s)$. Therefore, the number of s-block vectors of length n of γ-weight r is given by

$$
\begin{align*}
& A_{r, q}^{\left(n_{1}, n_{2}, \cdots, n_{s}\right)} \\
= & q^{n_{1}+n_{2}+\cdots+n_{r-1}}\left(q^{n_{r}-1}\right) . \tag{4}
\end{align*}
$$

The result now follows by taking summation of (4) for $r=1$ to t and adding 1 to the resultant corresponding to the null vector. QED

Theorem 15 (Hamming Sphere Bound). Let V be an $[n, k, d: P]$ lp γ-code over \mathbf{F}_{q} corresponding to the partition $P: n=\left[n_{1}\right]\left[n_{2}\right] \cdots\left[n_{s}\right], 1 \leq n_{1} \leq n_{2} \leq \cdots \leq$
n_{s}. Then

$$
\begin{equation*}
q^{n-k} \geq V_{[d-1] / 2, q}^{\left(n_{1}, n_{2}, \cdots, n_{s}\right)} \tag{5}
\end{equation*}
$$

where $V_{[d-1] / 2, q}^{\left(n_{1}, n_{2}, \cdots, n_{s}\right)}$ is given by (3) and $[x]$ denotes the largest integer less than or equal to x.

Proof. The proof follows from the fact that all the s block vectors of length $n=\oplus_{i=1}^{s} n_{i}$ and γ-weight $[d-1] / 2$ or less must belong to distinct cosets of the standard array and the number of available cosets is q^{n-k}. QED

4. GILBERT AND VARSHAMOV BOUNDS FOR $l p \gamma$-CODES

In this section, we obtain Gilbert bound, Varshmov bound and a bound for random block error correction in $l p \gamma$-codes. We derive Gilbert bound first.

Theorem 16 (Gilbert bound). Let n, k, q be positive integers where $q=p^{m}$ (p prime) and $1 \leq k \leq n$. Let $P: n=\left[n_{1}\right]\left[n_{2}\right] \cdots\left[n_{s}\right], 1 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{s}$ be a partition of n. Let d be a positive integer satisfying $1 \leq d \leq s$. Then there exists an $[n, k ; P] l p \gamma$-code over \mathbf{F}_{q} with minimum γ-distance at least d provided

$$
\begin{equation*}
n-k \geq \log _{q}\left(V_{d-1, q}^{\left(n_{1}, n_{2}, \cdots, n_{s}\right)}\right) \tag{6}
\end{equation*}
$$

where $V_{d-1, q}^{\left(n_{1}, n_{2}, \cdots, n_{s}\right)}$ is given by (3).
Proof. We shall show that if (6) holds then their exists an $(n-k) \times n$ matrix H over \mathbf{F}_{q} such that no linear combination of $(d-1)$ or fewer blocks of H is zero. We define an algorithm for finding the blocks $H_{1}, H_{2}, \cdots, H_{s}$ of H where $H_{i}=\left(H_{1}^{(i)}, H_{2}^{(i)}, \cdots, H_{n_{i}}^{(i)}\right)$ for all $1 \leq i \leq s$. From the set of all q^{n-k} column vectors of length $(n-k)$ over \mathbf{F}_{q}, we choose blocks of columns of the parity check matrix H as follows:
(1) The n_{1} column vectors in the first block H_{1} can be any vectors chosen from the set of q^{n-k} column vectors of length $n-k$ over \mathbf{F}_{q} satisfying

$$
\lambda_{1} \cdot H_{1} \neq 0
$$

where

$$
0 \neq \lambda_{1}=\left(\lambda_{1}^{(1)}, \lambda_{2}^{(1)}, \cdots, \lambda_{n_{1}}^{(1)}\right) \in \mathbf{F}_{q}^{n_{1}}
$$

(2) The second block $H_{2}=\left(H_{1}^{(2)}, H_{2}^{(2)}, \cdots, H_{n_{2}}^{(2)}\right)$ can be any set of n_{2} column vectors of length $(n-k)$ satisfying

$$
\lambda_{1} \cdot H_{1}+\lambda_{2} \cdot H_{2} \neq 0
$$

where for $1 \leq i \leq 2$,

$$
\lambda_{i}=\left(\lambda_{1}^{(i)}, \lambda_{2}^{(i)}, \cdots, \lambda_{n_{i}}^{(i)}\right) \in \mathbf{F}_{q}^{n_{i}}
$$

and

$$
w_{\gamma}\left(\lambda_{1}, \lambda_{2}\right)=\max _{i=1}^{2}\left\{i \mid \lambda_{i} \neq 0\right\} \leq d-1
$$

$\begin{array}{ccc}\vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots\end{array}$
(j) The $j^{\text {th }}$ block $H_{j}=\left(H_{1}^{(j)}, H_{2}^{(j)}, \cdots, H_{n_{j}}^{(j)}\right)$ can be any set of n_{j} column vectors of length $(n-k)$ satisfying

$$
\begin{equation*}
\lambda_{1} \cdot H_{1}+\lambda_{2} \cdot H_{2}+\cdots+\lambda_{j} \cdot H_{j} \neq 0 \tag{7}
\end{equation*}
$$

where for $1 \leq i \leq j$,

$$
\lambda_{i}=\left(\lambda_{1}^{(i)}, \lambda_{2}^{(i)}, \cdots, \lambda_{n_{i}}^{(i)}\right) \in \mathbf{F}_{q}^{n_{i}}
$$

and

$$
\begin{align*}
1 & \leq w_{\gamma}\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{j}\right) \\
& =\max _{i=1}^{j}\left\{i \mid \lambda_{i)} \neq 0\right\} \\
& \leq d-1 . \tag{8}
\end{align*}
$$

$\begin{array}{ccc}\vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots\end{array}$
(s) The $s^{\text {th }}$ block $H_{s}=\left(H_{1}^{(s)}, H_{2}^{(s)}, \cdots, H_{n_{s}}^{(s)}\right)$ can be any set of n_{s} column vectors satisfying

$$
\lambda_{1} \cdot H_{1}+\lambda_{2} \cdot H_{2}+\cdots+\lambda_{s} \cdot H_{s} \neq 0
$$

where

$$
\begin{aligned}
\lambda_{i}= & \left(\lambda_{1}^{(i)}, \lambda_{2}^{(i)}, \cdots, \lambda_{n_{i}}^{(i)}\right) \in \mathbf{F}_{q}^{n_{i}} \\
& \text { for all } 1 \leq i \leq s,
\end{aligned}
$$

and

$$
\begin{aligned}
1 & \leq w_{\gamma}\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{s}\right) \\
& =\max _{i=1}^{s}\left\{i \mid \lambda_{i)} \neq 0\right\} \leq d-1
\end{aligned}
$$

If we carry out this algorithm to completion, then, $H_{1}, H_{2}, \cdots, H_{s}$ are the blocks of size $n_{1}, n_{2}, \cdots, n_{s}$ respectively of an $(n-k) \times n\left(\right.$ where $\left.n=\sum_{i=1}^{s} n_{i}\right)$ block
matrix H such that no linear combination of blocks of H of γ-weight $(d-1)$ or less is zero meaning thereby that this matrix is the parity check matrix of an $l p \gamma$-code with minimum γ-distance at least d. We show that the construction can indeed be completed. Let j be an integer such that $2 \leq j \leq s$ and assume that the blocks $H_{1}, H_{2}, \cdots, H_{j-1}$ have been chosen. Then the block H_{j} can be added to H provided (7) is satisfied. The number of distinct linear combinations in (7) satisfying (8) including the pattern of all zeros is given by

$$
V_{d-1, q}^{\left(n_{1}, \cdots, n_{j}\right)}
$$

where $V_{d-1, q}^{\left(n_{1}, \cdots, n_{j}\right)}$ is given by (3).
As long as the set of all linear combinations occuring in (7) satisfying (8) is less than or equal to the total number of $(n-k)$-tuples, the $j^{\text {th }}$ block H_{j} can be added to H. Therfore, the block H_{j} can be added to H provided that

$$
q^{n-k} \geq V_{d-1, q}^{\left(n_{1}, \cdots, n_{j}\right)}
$$

or

$$
n-k \geq \log _{q}\left(V_{d-1, q}^{\left(n_{1}, \cdots, n_{j}\right)}\right)
$$

Thus the fact that the blocks $H_{1}, H_{2}, \cdots, H_{s}$ can be chosen follows by induction on j and we get (6). QED

Corollary 17. Let $P: n=\left[n_{1}\right]\left[n_{2}\right] \cdots\left[n_{3}\right]$ be the partition of a positive integer n. Let t be a positive integer satisfying $2 t+1 \leq s$. Then, a sufficient condition for the existence of an $[n, k ; P] l p \gamma$-code over \mathbf{F}_{q} that corrects all random block errors of γ-weight t or less is given by

$$
n-k \geq \log _{q}\left(V_{2 t, q}^{\left(n_{1}, \cdots, n_{s}\right)}\right)
$$

Proof. The proof follows from Theorem 16 and the fact that to correct all errors of γ weight t or less, the minimum γ-distance of an $l p \gamma$-code must be at least $2 t+1$. QED

Example 18. Let $n=3, k=1, d=2$ and $q=5$. Let $P: 3=[1][2]$ be a partition of $n=3$. We show that for these values of the parameters, equation (6) is satisfied. We note that here $n_{1}=1, n_{2}=2$. Equation (6) for these parameters becomes

$$
5^{3-1} \geq V_{1,5}^{(1,3)}
$$

or

$$
25 \geq 5 \quad\left(\text { since } V_{1,5}^{(1,3)}=5\right)
$$

which is true.

Therefore, by Theorem 16, there exists a $[3,1 ; P] l p \gamma$ code V over \mathbf{F}_{5} with minimum γ-distance at least 2 .

Consider the following 2×3 block parity check matrix H of a $[3,1 ; P] l p \gamma$-code V over \mathbf{F}_{5} constructed by the algorithm discussed in Theorem 16:

$$
H=\left(\begin{array}{cccc}
1 & \vdots & 0 & 2 \\
0 & \vdots & 1 & 3
\end{array}\right)_{2 \times 3}
$$

We claim that the $l p \gamma$-code which is the null space of the matrix H has minimum γ-distance at least 2.

The generator matrix of the $l p \gamma$-code corresponding to the parity check matrix H is given by

$$
G=\left[\begin{array}{ll}
-2 \vdots-3 & 1]_{1 \times 3}=[3 \vdots 2 \\
1]_{1 \times 3}
\end{array}\right.
$$

The five codewords of the $l p \gamma$-code V with G as generator matrix and H as parity check matrix are given by:

$$
\begin{aligned}
& v_{0}=(0: 00) ; w_{\gamma}\left(v_{0}\right)=0, \\
& v_{1}=(3 \vdots 21) ; w_{\gamma}\left(v_{1}\right)=2, \\
& v_{2}=(1 \vdots 42) ; w_{\gamma}\left(v_{2}\right)=2, \\
& v_{3}=(4 \vdots 13) ; w_{\gamma}\left(v_{3}\right)=2, \\
& v_{4}=(2 \vdots 34) ; w_{\gamma}\left(v_{4}\right)=2
\end{aligned}
$$

Therfore, the minimum γ - weight of the $l p \gamma$-code V is equal to 2. Hence Theorem 16 is verified.

Theorem 19 (Varshamov Bound). Let $B_{q}(n, d ; P) d e$ note the largest number of code vectors in an $[n, k ; P]$ lp γ-code V over \mathbf{F}_{q} with $P: n=\left[n_{1}\right]\left[n_{2}\right] \cdots\left[n_{s}\right]$ having minimum γ-distance at least d. Then

$$
B_{q}(n, d ; P) \geq q^{n-\left\lceil\log _{q}(L)\right\rceil}
$$

where $L=V_{d-1, q}^{\left(n_{1}, \cdots, n_{s}\right)}$ is given by (3) and $\lceil x\rceil$ denotes the smallest integer greater than or equal to x.
Proof. By Theorem 16, there exists an $[n, k ; P] l p \gamma$-code over \mathbf{F}_{q} with minimum γ-distance at least d provided

$$
\begin{aligned}
q^{n-k} & \geq V_{d-1, q}^{\left(n_{1}, \cdots, n_{s}\right)}=L \\
\Rightarrow n-k & \geq \log _{q}(L) \\
\Rightarrow k & \leq n-\log _{q}(L)
\end{aligned}
$$

The largest integer k satisfying the above inequality is $n-\left\lceil\log _{q}(L)\right\rceil$. Thus

$$
B_{q}(n, d ; P) \geq q^{n-\left\lceil\log _{q}(L)\right\rceil}
$$

where $L=V_{d-1, q}^{\left(n_{1}, \cdots, n_{s}\right)}$ is given by (3). QED
Acknowledgment. The author would like to thank her spouse Dr. Arihant Jain for his constant support and encouragement for pursuing this research work.

References

1. Dougherty, S.T. and M.M. Skriganov, 2002. MacWilliams duality and the RosenbloomTsfasman metric, Moscow Mathematical Journal, 2:83-99.
2. Feng, K., L. Xu and F. Hickernell, 2006. Linear Error-Block Codes, Finite Fields and Applications, 12:638-652.
3. MacWilliams, F.J. and N.J.A. Sloane, 1977. The Theory of error Correcting Codes, North Holland Publishing Co.
4. Rosenbloom, M. Yu. and M.A. Tsfasman, 1997. Codes for m-metric, Problems of Information Transmission, 33:45-52.
5. Skriganov, M.M., 2002. Coding Theory and Uniform Distributions, St. Petersburg Math. J., 13:301337.
6. Udomkavanich, P. and S. Jitman, 2010. Bounds and Modifications on Linear Error-block Codes, International Mathematical Forum, 5:35-50.
