©IDOSI Publications, 2013

DOI: 10.5829/idosi.wasj.22.am.5.2013

# A class of linear partition error control codes in $\gamma$ -metric

# Sapna Jain

Department of Mathematics, University of Delhi, Delhi 110 007, India

## sapnajain@gmx.com

**Abstract:** Linear partition error control codes in the  $\gamma$ -metric is a natural generalization of error control codes endowed with the Rosenbloom-Tsfasman(RT) metric [4] to block coding and has applications in different area of combinatorial/discrete mathematics, e.g. in the theory of uniform distribution, experimental designs, cryptography etc. In this paper, we formulate the concept of linear partition codes in the  $\gamma$ -metric and derive results for the random block error detection and random bock error correction capabilities of these codes.

Key words: Linear codes, RT-metric, error-block code

#### INTRODUCTION

K. Feng and L.Xu and F.J.Hickernesll [2] initiated the concept of linear partition block code endowed with  $\pi$ -metric which is a natural generalization of the Hamming-metric codes. Also, we know that the Rosenbloom-Tsfasman metric (or RT-metric or  $\rho$ -metric) is stronger than the Hamming metric [1,5]. Motivated by the idea to have linear partition block code endowed with a metric generalizing the RT-metric, we formulate the concept of linear partition codes equipped with block  $\rho$ -metric and name this new metric as the  $\gamma$ -metric. We derive the basic results for linear partition codes in the  $\gamma$ -metric including various upper and lower bounds on their parameters and study their random block error detection and block error correction capabilities in Section 3 and Section 4 of this paper.

## 2. DEFINITIONS AND NOTATIONS

Let q, n be positive integers with  $q = p^m$ , a power of a prime number p. Let  $\mathbf{F}_q$  be the finite field having q elements. A partition P of the positive integer n is defined as:

$$P \quad : \quad n = n_1 + n_2 \cdots + n_s \quad \text{where} \\ \qquad 1 \leq n_1 \leq n_2 \leq \cdots \leq n_s, s \geq 1.$$

The partition P is denoted as

$$P: n = [n_1][n_2] \cdots [n_s].$$

In the case, when

$$P: n = \underbrace{[n_1] \cdots [n_1]}_{r_1 \text{- copies}} \underbrace{[n_2] \cdots [n_2]}_{r_2 \text{- copies}} \cdots$$

$$\underbrace{[n_t]\cdots[n_t]}_{r_t\text{-copies}},$$

we write

$$P: n = [n_1]^{r_1} [n_2]^{r_2} \cdots [n_t]^{r_t}$$

where

$$n_1 < n_2 < \cdots < n_t$$
.

Further, given a partition  $P: n = [n_1][n_2] \cdots [n_s]$  of a positive integer n, the linear space  $\mathbf{F}_q^n$  over  $\mathbf{F}_q$  can be viewed as the direct sum

$$\mathbf{F}_q^n = \mathbf{F}_q^{n_1} \oplus \mathbf{F}_q^{n_2} \oplus \cdots \oplus \mathbf{F}_q^{n_s},$$

or equivalently

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_s,$$

where 
$$V = \mathbf{F}_q^n$$
 and  $V_i = \mathbf{F}_q^{n_i}$  for all  $i \leq i \leq s$ .

Consequently, each vector  $v \in \mathbf{F}_q^n$  can be uniquely written as a  $v = (v_1, v_2, \cdots, v_s)$  where  $v_i \in V_i = \mathbf{F}_q^{n_i}$  for all  $1 \le i \le s$ . Here  $v_i$  is called the  $i^{th}$  block of block size  $n_i$  of the vector v.

**Definition 1.** Let  $v=(v_1,v_2,\cdots,v_s)\in \mathbf{F}_q^n=\mathbf{F}_q^{n_1}\oplus \mathbf{F}_q^{n_2}\oplus\cdots\oplus \mathbf{F}_q^{n_s}$  be an s-block vector of length n over  $\mathbf{F}_q$  corresponding to the partition  $P:n=[n_1][n_2]\cdots[n_s]$  of n. We define the  $\gamma$ -weight of the block vector v as

$$w_{\gamma}^{(P)}(v) = \max_{i=1}^{s} \{i | v_i \neq 0\}.$$

The  $\gamma$ -distance  $d_{\gamma}^{(P)}(u,v)$  between two s-block vectors of length n viz.  $u=(u_1,u_2,\cdots,u_s)$  and

 $v=(v_1,v_2,\cdots,v_s), u_i,v_i\in \mathbf{F}_q^{n_i}(1\leq i\leq s)$  corresponding to the partition P is defined as

$$\begin{array}{lcl} d_{\gamma}^{(P)}(u,v) & = & w_{\gamma}^{(P)}(u-v) \\ & = & \max_{i=1}^s \{i|u_i \neq v_i\} \end{array}$$

Then  $d_{\gamma}^{(P)}(u,v)$  is a metric on  $\mathbf{F}_q^n = \mathbf{F}_q^{n_1} \oplus \mathbf{F}_q^{n_2} \oplus \cdots \oplus \mathbf{F}_q^{n_s}$ .

**Note.** Once the partition P is specified, we will denote the  $\gamma$ -weight  $w_{\gamma}^{(P)}$  by  $w_{\gamma}(v)$  and  $\gamma$ -distance  $d_{\gamma}^{(P)}$  by  $d_{\gamma}$  respectively.

**Definition 2.** A linear partition  $\gamma$ -code (or  $lp\gamma$ -code) V of length n corresponding to the partition  $P: n = [n_1][n_2]\cdots[n_s], 1 \leq n_1 \leq n_2 \leq \cdots \leq n_s$  is a  $\mathbf{F}_q$ -linear subspace of  $\mathbf{F}_q^n = \mathbf{F}_q^{n_1} \oplus \mathbf{F}_q^{n_2} \oplus \cdots \oplus \mathbf{F}_q^{n_s}$  equipped with the  $\gamma$ -metric and is denoted as  $[n,k,d_\gamma;P]$  code where  $k = \dim_{\mathbf{F}_q}(V)$  and  $d_\gamma = d\gamma(V) = \min\min_{\gamma} \gamma$ -distance of the code V.

#### Remark 3.

- 1. For  $P: n = [1]^n$ , the  $\gamma$ -metric (or  $\gamma$ -weight) reduces to the  $\rho$ -metric (or  $\rho$ -weight) respectively [4].
- 2. For a partition  $P: n = [n_1][n_2] \cdots [n_s]$  of the positive integer n, the  $\gamma$ -distance (or  $\gamma$ -weight) is always greater than or equal to the  $\pi$ -distance (or  $\pi$ -weight) [2] respectively, i.e.

$$\pi$$
-metric  $\leq \gamma$ -metric and  $\pi$ -weight  $\leq \gamma$ -weight

**Example 4.** Let n=q=5. Let P:5=[1][2][2] be a partition of n=5. Then  $F_5^5$  can be viewed as  $F_5^5=F_5^1\oplus F_5^2\oplus F_5^2$  and s=3. Let  $v=(v_1,v_2,v_3)=(1\dot{:}10\dot{:}00)$ . Then  $w\gamma(v)=2$ . Similarly if  $u=(u_1,u_2,u_3)=(1\dot{:}00\dot{:}00)$  and  $x=(x_1,x_2,x_3)=(1\dot{:}10\dot{:}01)$ , then  $w\gamma(u)=1$  and  $w\gamma(x)=3$  respectively. QED

**Definition 5.** The generator and parity check matrix of an [n,k,d;P]  $lp\gamma$ -code over  $\mathbf{F}_q$  where  $P:n=[n_1][n_2]\cdots[n_s],\ 1\leq n_1\leq n_2\leq \cdots \leq n_s$  are given as

$$G = [G_1, G_2, \cdots, G_s]$$

and

$$H = [H_1, H_2, \cdots, H_s],$$

where for all  $1 \leq i \leq s, G_i = (G_1^{(i)}, G_2^{(i)}, \cdots, G_{n_i}^{(i)})$  is the  $i^{th}$  block of G of block size  $n_i$  consisting

of  $n_i$  column vectors of length k each and  $H_i = (H_1^{(i)}, H_2^{(i)}, \cdots, H_{n_i}^{(i)})$  is the  $i^{th}$  block of H of block size  $n_i$  consisting of  $n_i$  column vectors of length (n-k) each.

**Definition 6.** A set of blocks  $\{H_{i_i}, H_{i_2}, \dots, H_{i_r}\} \subseteq \{H_1, H_2, \dots, H_s\}$  of the parity check matrix H is said to be linearly independent if the union of all column vectors in the blocks  $H_{i_i}, H_{i_2}, \dots, H_{i_r}$  is a linearly independent set over  $\mathbf{F}_q$ . Otherwise, we say that the set of blocks  $\{H_{i_i}, H_{i_2}, \dots, H_{i_r}\}$  is linearly dependent. Equivalently, we can say that a set of blocks  $\{H_{i_i}, H_{i_2}, \dots, H_{i_r}\}$  is linearly independent even.

 $H_{i_r}$   $\subseteq \{H_1, H_2, \cdots, H_s\}$  is linearly independent over  $\mathbf{F}_a$  iff

$$\alpha_{i_1}.H_{i_1} + \alpha_{i_2}.H_{i_2} + \dots + \alpha_{i_r}.H_{i_r} = 0$$
  
$$\Rightarrow \alpha_{i_1} = \alpha_{i_2} \dots = \alpha_{i_r} = 0,$$

where for all  $1 \leq j \leq r$ ,  $\alpha_{i_j} = (\alpha_1^{(i_j)}, \alpha_2^{(i_j)}, \cdots, \alpha_{n_{i_j}}^{(i_j)}) \in \mathbf{F}_q^{n_{i_j}}$  and

$$\begin{array}{rcl} \alpha_{i_j}.H_{i_j} & = & \alpha_1^{(i_j)}H_1^{(i_j)} + \alpha_2^{(i_j)}H_2^{(i_j)} \\ & + \dots + \alpha_{n_{i_j}}^{(i_j)}H_{n_{i_j}}^{(i_j)}. \end{array}$$

# 3. SOME PROPERTIES OF $lp\gamma$ -CODES

We begin by stating three results for  $lp\gamma$ -codes without proof as the proof is straightforward.

**Theorem 7.** The minimum  $\gamma$ -weight and minimum  $\gamma$ -distance of an  $lp\gamma$ -code V coincide. QED

# Theorem 8.

- (a) An  $lp\gamma$ -code detects all block errors of  $\gamma$ -weight t or less iff the minimum  $\gamma$ -distance of the code is at least t+1.
- (b) An  $lp\gamma$ -code V corrects all block errors of  $\gamma$ -weight t or less iff the minimum  $\gamma$ -distance of the code V is at least 2t+1. QED

**Theorem 9.** Let V be an [n,k;P]  $lp\gamma$ -code over  $\mathbf{F}_q$  corresponding to the partition  $P: n = [n_1][n_2] \cdots [n_s]$  of n. The minimum  $\gamma$ -distance of the code V is d iff first (d-1) blocks of the parity check matrix H are linearly independent and first d blocks of H are linearly dependent over  $\mathbf{F}_q$ . QED

**Example 10.** Let n = 6, n - k = 5 and q = 3. Let P: n = 6 = [1][1][1][3] be a partition of n = 6. Then s = 4 and  $n_1 = 1, n_2 = 1, n_3 = 1$  and  $n_4 = 3$ . Let  $H = (H_1 : H_2 : H_3 : H_4)$  be the parity check matrix of a

[6,1;P]  $lp\gamma$ -code V as given below

$$H = \begin{bmatrix} 1 & \vdots & 0 & \vdots & 0 & \vdots & 0 & 0 & 0 \\ 0 & \vdots & 1 & \vdots & 0 & \vdots & 0 & 0 & 0 \\ 0 & \vdots & 0 & \vdots & 1 & \vdots & 0 & 0 & 0 \\ 0 & \vdots & 0 & \vdots & 0 & \vdots & 1 & 2 & 0 \\ 0 & \vdots & 0 & \vdots & 0 & \vdots & 0 & 2 & 1 \end{bmatrix}$$

Let

$$\alpha_1.H_1 + \alpha_2.H_2 + \alpha_3.H_3 +$$
  
  $+\alpha_4.H_4 = 0,$  (1)

where  $\alpha_1=(\alpha_1^{(1)})\in F_3^1, \alpha_2=(\alpha_1^{(2)})\in F_3^1, \alpha_3=(\alpha_1^{(3)})\in F_3^1$  and  $\alpha_4=(\alpha_1^{(4)},\alpha_2^{(4)},\alpha_3^{(4)})\in F_3^3$ .

Then  $\alpha_1.H_1 + \alpha_2.H_2 + \alpha_3.H_3 + \alpha_4.H_4 = 0$  implies

$$\alpha_{1}^{(1)} \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix} + \alpha_{1}^{(2)} \begin{bmatrix} 0\\1\\0\\0\\0 \end{bmatrix}$$

$$+\alpha_{1}^{(3)} \begin{bmatrix} 0\\0\\1\\0\\0 \end{bmatrix} + \alpha_{1}^{(4)} \begin{bmatrix} 0\\0\\0\\1\\0 \end{bmatrix}$$

$$+\alpha_{2}^{(4)} \begin{bmatrix} 0\\0\\0\\0\\2\\2 \end{bmatrix} + \alpha_{3}^{(4)} \begin{bmatrix} 0\\0\\0\\0\\1 \end{bmatrix}$$

$$= \begin{bmatrix} 0\\0\\0\\0\\0 \end{bmatrix}.$$

This gives

$$\alpha_1^{(1)} = 0, \ \alpha_1^{(2)} = 0, \ \alpha_1^{(3)} = 0$$

and

$$\alpha_1^{(4)} = \alpha_2^{(4)} = \alpha_3^{(4)}.$$

Therefore, the only solutions of (1) are  $\alpha_1 = \alpha_2 = \alpha_3 =$  (0) and  $\alpha_4 = (a, a, a)$  where  $a \in F_3$ .

Thus, the first three blocks of H are linearly independent and the first four blocks of H are linearly dependent. Hence the [6,1:P]  $lp\gamma$ -code V with H as the parity check matrix has minimum  $\gamma$ -distance equal to 4.

**Theorem 11 [Singleton's Bound].** *If* V *is an* [n, k, d : P]  $lp\gamma$ -code over  $\mathbf{F}_q$  corresponding to the partition  $P : n = [n_1][n_2] \cdots [n_s], 1 \le n_1 \le n_2 \le \cdots \le n_s$ . Then

$$n_1 + n_2 + \dots + n_{d-1} \le n - k.$$
 (2)

**Proof.** By Theorem 9, the columns of first (d-1) blocks of the parity check matrix H of the code V are linearly independent. Since the number of rows in H is n-k, equation (2) follows. QED

**Definition 12.** An [n,k,d:P]  $lp\gamma$ -code over  $\mathbf{F}_q$  with  $P:n=[n_1][n_2]\cdots[n_s]$  is said to be maximum  $\gamma$ -distance separable  $(M\gamma DS)$  if equality holds in (2) i.e. if (n-k) equals the sum of block sizes of first (d-1) blocks.

**Example 13.** Let q = 5, n = 2. Let P : 2 = [1][1] be a partition of n = 2. The [2,1;P]  $lp\gamma$ -code V with parity check matrix H = (1.0) over  $\mathbf{F}_5$  is an  $M\gamma DS$  code with maximum  $\gamma$ -distance equal to 2.

We now obtain Hamming sphere packing bound for  $lp\gamma$ -codes. For this, we first prove a lemma.

**Lemma 14.** If  $V_{t,q}^{(n_1,n_2,\cdots,n_s)}$  denote the number of all s-block vectors of length n over  $\mathbf{F}_q$  of  $\gamma$ -weight t or less corresponding to the partition  $P: n = [n_1][n_2]\cdots[n_s], 1 \leq n_1 \leq n_2 \leq \cdots \leq n_s$ , then

$$V_{t,q}^{(n_1, n_2, \dots, n_s)}$$

$$= 1 + \sum_{r=1}^{t} q^{n_1 + n_2 + \dots + n_{r-1}} \times (q^{n_r - 1}).$$
(3)

**Proof.** Let  $u=(u_1,u_2,\cdots,u_s)\in \mathbf{F}_q^n=\mathbf{F}_q^{n_1}\oplus \mathbf{F}_q^{n_2}\oplus\cdots\oplus \mathbf{F}_q^{n_s}$ . To make the  $\gamma$ -weight of u to be equal to  $r(1\leq r\leq t)$ , we have  $q^{n_j}$  choices for the  $j^{th}$  block  $(1\leq j\leq r-1)$  and  $(q^{n_r}-1)$  choices for the  $r^{th}$  block and only one choice viz. zero for the  $l^{th}$  block  $(r+1\leq l\leq s)$ . Therefore, the number of s-block vectors of length n of  $\gamma$ -weight r is given by

$$A_{r,q}^{(n_1,n_2,\cdots,n_s)} = q^{n_1+n_2+\cdots+n_{r-1}}(q^{n_r-1}).$$
 (4)

The result now follows by taking summation of (4) for r=1 to t and adding 1 to the resultant corresponding to the null vector. QED

**Theorem 15 (Hamming Sphere Bound).** Let V be an [n, k, d: P]  $lp\gamma$ -code over  $\mathbf{F}_q$  corresponding to the partition  $P: n = [n_1][n_2] \cdots [n_s], 1 \le n_1 \le n_2 \le \cdots \le n_s$ 

 $n_s$ . Then

$$q^{n-k} \ge V_{[d-1]/2,q}^{(n_1,n_2,\cdots,n_s)},\tag{5}$$

where  $V_{[d-1]/2,q}^{(n_1,n_2,\cdots,n_s)}$  is given by (3) and [x] denotes the largest integer less than or equal to x.

**Proof.** The proof follows from the fact that all the s-block vectors of length  $n=\bigoplus_{i=1}^s n_i$  and  $\gamma$ -weight [d-1]/2 or less must belong to distinct cosets of the standard array and the number of available cosets is  $q^{n-k}$ . QED

# 4. GILBERT AND VARSHAMOV BOUNDS FOR $lp\gamma$ -CODES

In this section, we obtain Gilbert bound, Varshmov bound and a bound for random block error correction in  $lp\gamma$ -codes. We derive Gilbert bound first.

**Theorem 16 (Gilbert bound).** Let n, k, q be positive integers where  $q = p^m(p \text{ prime})$  and  $1 \le k \le n$ . Let  $P: n = [n_1][n_2] \cdots [n_s], 1 \le n_1 \le n_2 \le \cdots \le n_s$  be a partition of n. Let d be a positive integer satisfying  $1 \le d \le s$ . Then there exists an [n, k; P]  $lp\gamma$ -code over  $\mathbf{F}_q$  with minimum  $\gamma$ -distance at least d provided

$$n - k \ge log_q \left( V_{d-1,q}^{(n_1, n_2, \dots, n_s)} \right),$$
 (6)

where  $V_{d-1,q}^{(n_1,n_2,\cdots,n_s)}$  is given by (3).

**Proof.** We shall show that if (6) holds then their exists an  $(n-k)\times n$  matrix H over  $\mathbf{F}_q$  such that no linear combination of (d-1) or fewer blocks of H is zero. We define an algorithm for finding the blocks  $H_1, H_2, \cdots, H_s$  of H where  $H_i = (H_1^{(i)}, H_2^{(i)}, \cdots, H_{n_i}^{(i)})$  for all  $1 \leq i \leq s$ . From the set of all  $q^{n-k}$  column vectors of length (n-k) over  $\mathbf{F}_q$ , we choose blocks of columns of the parity check matrix H as follows:

(1) The  $n_1$  column vectors in the first block  $H_1$  can be any vectors chosen from the set of  $q^{n-k}$  column vectors of length n-k over  $\mathbf{F}_q$  satisfying

$$\lambda_1.H_1 \neq 0$$
,

where

$$0 \neq \lambda_1 = (\lambda_1^{(1)}, \lambda_2^{(1)}, \dots, \lambda_{n_1}^{(1)}) \in \mathbf{F}_a^{n_1}.$$

(2) The second block  $H_2=(H_1^{(2)},H_2^{(2)},\cdots,H_{n_2}^{(2)})$  can be any set of  $n_2$  column vectors of length (n-k) satisfying

$$\lambda_1.H_1 + \lambda_2.H_2 \neq 0,$$

where for  $1 \le i \le 2$ ,

$$\lambda_i = (\lambda_1^{(i)}, \lambda_2^{(i)}, \cdots, \lambda_{n_i}^{(i)}) \in \mathbf{F}_q^{n_i},$$

and

$$w_{\gamma}(\lambda_1, \lambda_2) = \max_{i=1}^{2} \{i | \lambda_i \neq 0\} \le d - 1.$$

(j) The  $j^{th}$  block  $H_j = (H_1^{(j)}, H_2^{(j)}, \cdots, H_{n_j}^{(j)})$  can be any set of  $n_j$  column vectors of length (n-k) satisfying

$$\lambda_1.H_1 + \lambda_2.H_2 + \dots + \lambda_i.H_i \neq 0. \tag{7}$$

where for  $1 \leq i \leq j$ ,

$$\lambda_i = (\lambda_1^{(i)}, \lambda_2^{(i)}, \cdots, \lambda_{n_i}^{(i)}) \in \mathbf{F}_q^{n_i},$$

and

$$1 \leq w_{\gamma}(\lambda_{1}, \lambda_{2}, \dots, \lambda_{j})$$

$$= \max_{i=1}^{j} \{i | \lambda_{i} \neq 0\}$$

$$\leq d - 1. \tag{8}$$



(s) The  $s^{th}$  block  $H_s = (H_1^{(s)}, H_2^{(s)}, \dots, H_{n_s}^{(s)})$  can be any set of  $n_s$  column vectors satisfying

$$\lambda_1.H_1 + \lambda_2.H_2 + \dots + \lambda_s.H_s \neq 0.$$

where

$$\lambda_i = (\lambda_1^{(i)}, \lambda_2^{(i)}, \cdots, \lambda_{n_i}^{(i)}) \in \mathbf{F}_q^{n_i}$$
for all  $1 \le i \le s$ ,

and

$$1 \leq w_{\gamma}(\lambda_1, \lambda_2, \cdots, \lambda_s)$$
$$= \max_{i=1}^{s} \{i | \lambda_{i} \neq 0\} \leq d - 1.$$

If we carry out this algorithm to completion, then,  $H_1, H_2, \cdots, H_s$  are the blocks of size  $n_1, n_2, \cdots, n_s$  respectively of an  $(n-k) \times n$  (where  $n = \sum_{i=1}^s n_i$ ) block

matrix H such that no linear combination of blocks of H of  $\gamma$ -weight (d-1) or less is zero meaning thereby that this matrix is the parity check matrix of an  $lp\gamma$ -code with minimum  $\gamma$ -distance at least d. We show that the construction can indeed be completed. Let j be an integer such that  $2 \leq j \leq s$  and assume that the blocks  $H_1, H_2, \cdots, H_{j-1}$  have been chosen. Then the block  $H_j$  can be added to H provided (7) is satisfied. The number of distinct linear combinations in (7) satisfying (8) including the pattern of all zeros is given by

$$V_{d-1,q}^{(n_1,\cdots,n_j)}$$

where  $V_{d-1,q}^{(n_1,\dots,n_j)}$  is given by (3).

As long as the set of all linear combinations occuring in (7) satisfying (8) is less than or equal to the total number of (n-k)-tuples, the  $j^{th}$  block  $H_j$  can be added to H. Therfore, the block  $H_j$  can be added to H provided that

$$q^{n-k} \ge V_{d-1,q}^{(n_1,\dots,n_j)}$$

or

$$n-k \ge log_q\bigg(V_{d-1,q}^{(n_1,\cdots,n_j)}\bigg).$$

Thus the fact that the blocks  $H_1, H_2, \dots, H_s$  can be chosen follows by induction on j and we get (6). QED

**Corollary 17.** Let  $P: n = [n_1][n_2] \cdots [n_3]$  be the partition of a positive integer n. Let t be a positive integer satisfying  $2t + 1 \le s$ . Then, a sufficient condition for the existence of an [n, k; P]  $lp\gamma$ -code over  $\mathbf{F}_q$  that corrects all random block errors of  $\gamma$ -weight t or less is given by

$$n - k \ge \log_q \left( V_{2t,q}^{(n_1, \dots, n_s)} \right).$$

**Proof.** The proof follows from Theorem 16 and the fact that to correct all errors of  $\gamma$  weight t or less, the minimum  $\gamma$ -distance of an  $lp\gamma$ -code must be at least 2t+1. OED

**Example 18.** Let n=3, k=1, d=2 and q=5. Let P:3=[1][2] be a partition of n=3. We show that for these values of the parameters, equation (6) is satisfied. We note that here  $n_1=1, n_2=2$ . Equation (6) for these parameters becomes

$$5^{3-1} \ge V_{1,5}^{(1,3)},$$

or

$$25 \geq 5 \quad (\text{since } V_{1,5}^{(1,3)} = 5),$$

which is true.

Therefore, by Theorem 16, there exists a [3,1;P]  $lp\gamma$ -code V over  $\mathbf{F}_5$  with minimum  $\gamma$ -distance at least 2.

Consider the following  $2 \times 3$  block parity check matrix H of a [3,1;P]  $lp\gamma$ -code V over  $\mathbf{F}_5$  constructed by the algorithm discussed in Theorem 16:

$$H = \left(\begin{array}{ccc} 1 & \vdots & 0 & 2 \\ 0 & \vdots & 1 & 3 \end{array}\right)_{2\times 3}.$$

We claim that the  $lp\gamma$ -code which is the null space of the matrix H has minimum  $\gamma$ - distance at least 2.

The generator matrix of the  $lp\gamma$ -code corresponding to the parity check matrix H is given by

$$G = [-2 \vdots -3 \quad 1]_{1 \times 3} = [3 \vdots 2 \quad 1]_{1 \times 3}$$

The five codewords of the  $lp\gamma$ -code V with G as generator matrix and H as parity check matrix are given by:

$$v_0 = (0.00); w_{\gamma}(v_0) = 0,$$

$$v_1 = (3.21); w_{\gamma}(v_1) = 2,$$

$$v_2 = (1.42); w_{\gamma}(v_2) = 2,$$

$$v_3 = (4.13); w_{\gamma}(v_3) = 2,$$

$$v_4 = (2.34); w_{\gamma}(v_4) = 2.$$

Therfore, the minimum  $\gamma$ - weight of the  $lp\gamma$ -code V is equal to 2. Hence Theorem 16 is verified.

**Theorem 19 (Varshamov Bound).** Let  $B_q(n, d; P)$  denote the largest number of code vectors in an [n, k; P]  $lp\gamma$ -code V over  $\mathbf{F}_q$  with  $P: n = [n_1][n_2] \cdots [n_s]$  having minimum  $\gamma$ -distance at least d. Then

$$B_q(n,d;P) \ge q^{n-\lceil \log_q(L) \rceil},$$

where  $L=V_{d-1,q}^{(n_1,\cdots,n_s)}$  is given by (3) and  $\lceil x \rceil$  denotes the smallest integer greater than or equal to x.

**Proof.** By Theorem 16, there exists an [n,k;P]  $lp\gamma$ -code over  $\mathbf{F}_q$  with minimum  $\gamma$ -distance at least d provided

$$\begin{split} q^{n-k} & \geq & V_{d-1,q}^{(n_1,\cdots,n_s)} = L \\ \Rightarrow n-k & \geq & log_q(L) \\ \Rightarrow k & \leq & n-log_q(L). \end{split}$$

The largest integer k satisfying the above inequality is  $n-\lceil log_q(L) \rceil$ . Thus

$$B_q(n,d;P) \ge q^{n-\lceil \log_q(L) \rceil}$$

where  $L=V_{d-1,q}^{(n_1,\cdots,n_s)}$  is given by (3). QED

**Acknowledgment.** The author would like to thank her spouse Dr. Arihant Jain for his constant support and encouragement for pursuing this research work.

#### References

- 1. Dougherty, S.T. and M.M. Skriganov, 2002. MacWilliams duality and the Rosenbloom-Tsfasman metric, Moscow Mathematical Journal, 2:83-99.
- 2. Feng, K., L. Xu and F. Hickernell, 2006. Linear Error-Block Codes, Finite Fields and Applications, 12:638-652.
- 3. MacWilliams, F.J. and N.J.A. Sloane, 1977. The Theory of error Correcting Codes, North Holland Publishing Co.
- 4. Rosenbloom, M. Yu. and M.A. Tsfasman, 1997. Codes for *m*-metric, Problems of Information Transmission, 33:45-52.
- Skriganov, M.M., 2002. Coding Theory and Uniform Distributions, St. Petersburg Math. J., 13:301-337.
- Udomkavanich, P. and S. Jitman, 2010. Bounds and Modifications on Linear Error-block Codes, International Mathematical Forum, 5:35-50.