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Abstract: We first define length, distance, radius, eccentricity, pathcover and edge cover of anN -graph.
Then we introduce the concept of self centeredN -graphs and investigate some of their important properties.
We also establish the necessary and sufficient conditions for a completeN -graph to have anN -bridge.
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INTRODUCTION

In 1736, Euler first introduced the notion of graph
theory. In the history of mathematics, the solution given
by Euler of the well known K̈onigsberg bridge prob-
lem is considered to be the first theorem of graph the-
ory. This has now become a subject generally regarded
as a branch of combinatorics. The theory of graph is
an extremely useful tool for solving combinatorial prob-
lems in different areas such as geometry, algebra, num-
ber theory, topology, operations research, optimization
and computer science.
A (crisp) setA in a universeX can be defined in the form
of its characteristic functionµA : X → {0, 1} yielding
the value 1 for elements belonging to the setA and the
value 0 for elements excluded from the setA. The most
of the generalization of the crisp set have been introduced
on the unit interval[0, 1] and they are consistent with the
asymmetry observation. In other words, the generaliza-
tion of the crisp set to fuzzy sets relied on spreading pos-
itive information that fit the crisp point{1} into the inter-
val [0, 1]. Because no negative meaning of information is
suggested, we now feel a need to deal with negative in-
formation. To do so, we also feel a need to supply mathe-
matical tool. To attain such object, Junet al. [1] have in-
troduced a new function which is called negative-valued
function (briefly,N -function) to deal with negative in-
formation that fit the crisp point{−1} into the interval
[−1, 0], and constructedN -structures. It is important to

be able to deal with negative information. It is noted that
positive information represents what is granted to be pos-
sible, while negative information represents what is con-
sidered to be impossible. As an example, let us consider
the spatial relations. Human beings consider “left" and
“right" as opposite directions. But this does not mean
that one of them is the negation of the other. The seman-
tics of “opposite" captures a notion of symmetry rather
than a strict complementation. In particular, there may
be positions which are considered neither to the right nor
to the left of some reference object.

In 1975, Rosenfeld [2] discussed the concept of
fuzzy graphs whose basic idea was introduced by Kauff-
mann [3] in 1973. The fuzzy relations between fuzzy
sets were also considered by Rosenfeld and he developed
the structure of fuzzy graphs, obtaining analogs of sev-
eral graph theoretical concepts. Bhattacharya [4] gave
some remarks on fuzzy graphs. Akram et al. introduced
the concepts of bipolar fuzzy graphs and interval-valued
fuzzy line graphs [5-9]. In this paper, we first define
length, distance, radius, eccentricity, path cover and edge
cover of anN -graph. Then we introduce the concept of
self centeredN -graphs and investigate some of their im-
portant properties. We also establish the necessary and
sufficient conditions for a completeN -graph to have an
N -bridge. We have used standard definitions and termi-
nologies in this paper. For other notations, terminologies
and applications not mentioned in the paper, the readers
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are referred to [10-14].

PRELIMINARIES

A graph is an ordered pairG∗ = (V,E), whereV is the
set of vertices ofG∗ andE is the set of edges ofG∗. Two
verticesx andy in a graphG∗ are said to be adjacent in
G∗ if {x, y} is in an edge ofG∗. (For simplicity an edge
{x, y} will be denoted byxy.) A simple graphis a graph
without loops and multiple edges. Acomplete graphis
a simple graph in which every pair of distinct vertices is
connected by an edge. The complete graph onn vertices
hasn vertices andn(n − 1)/2 edges. We will consider
only graphs with the finite number of vertices and edges.
An isomorphismof graphsG∗

1 andG∗

2 is a bijection be-
tween the vertex sets ofG∗

1 andG∗

2 such that any two
verticesv1 andv2 of G∗

1 are adjacent inG∗

1 if and only if
f(v1) andf(v2) are adjacent inG∗

2. Isomorphic graphs
are denoted byG∗

1 ≃ G∗

2.

A path in a graphG is a sequence of vertices such
that from each of its vertices there is an edge to the
next vertex in the sequence. Thelength of a path
P : v1v2 · · · vn+1 (n > 0) in G is n. A path P :

v1v2 · · · vn+1 in G is called acycle if v1 = vn+1 and
n ≥ 3. An undirected graphG is connectedif there
is a path between each pair of distinct vertices. For a
pair of verticesu, v in a connected graphG, thedistance
d(u, v) betweenu andv is the length of a shortest path
connectingu andv. Theeccentricitye(v) of a vertexv
in a graphG is the distance fromv to a vertex furthest
from v, that is,e(v) = max{d(u, v) | u ∈ V }. The
radiusof a connected graph (or weighted graph)G is de-
fined asrad(G) = min{e(v) | v ∈ V }. Thediameter
of a connected graph (or weighted graph)G is defined as
diam(G) = max{e(v) | v ∈ V }. Theeccentric setS of
a graph is its set of eccentricities. ThecenterC(G) of a
graphG is the set of vertices with minimum eccentricity.
A graph isself-centeredif all its vertices lie in the cen-
ter. Thus, the eccentric set of a self-centered graph con-
tains only one element, that is, all the vertices have the
same eccentricity. Equivalently, a self-centered graph is
a graph whose diameter equals its radius.

Proposition 1. Let G be a self-centered graph withn
vertices,e edges, and diameterd.

(1) If d = 1 , thene = C(n, 2)

(2) If d = 2 andn = 4, thene = 4

(3) If d ≥ 2 andn ≥ 2d 6= 4, then

p
(nd− 2d− l)

(d− 1)
q ≤ e

≤
(n2 − 4nd+ 5n− 4d2 − 6d)

2
.

If G is a self-centered graph withn vertices, e
edges, and diameter 2, thene ≥ 2n− 5.

Denote by F(X, [−1, 0]) the collection of func-
tions from a nonempty setX to [−1, 0]. We say that an
element ofF(X, [−1, 0]) is a negative-valued function
from X to [−1, 0] (briefly, N -function on X). By an
N -structure we mean an ordered pair(X,µ1) of X

and anN -function µ1 on X. By an N -relation on X
we mean anN -function µ2 on X × X satisfying the
following inequality:

(∀x, y ∈ X)(µ2(x, y) ≥ max{µ1(x), µ1(y)}), (1)

whereµ1 ∈ F(X, [−1, 0]).

SELF CENTERED N -GRAPHS

Definition 2. By anN -graphG =< V,E, µ1, µ2 > of
a graphG∗ = (V,E), we mean a pairG = (µ1, µ2)
whereµ1 is anN -function inV andµ2 is anN -function
onE ⊆ V × V such that

µ2ij = µ2({x, y}) ≥ max(µ1(x), µ1(y))

for all {x, y} ∈ E.

Throughout this paper,G∗ is a crisp graph andG is an
N -graph.

Definition 3. A pathP in anN -graphG is a sequence
of distinct verticesv1, v2, ..., vn such that either one of
the following conditions is satisfied:
(1) µ2ij = 0 for somei, j.
(2) µ2ij < 0 for somei, j .

Definition 4. AnN -graphG is connected if any two ver-
tices are joined by a path. Theµ- strength of a path
P : v1v2 · · · vn is defined asmax(µ2(vi, vj)) for all i, j
and is denoted bySµ. If the edge possessesµ-strength
value, then it is the strength of a pathP . In other words,
the strength of a path is defined to be the weight of the
strongest edge of the path. That is the strength of a path
is µ2ij = Sµ.

Example 5. Consider anN -graph G such thatV =

{a, b, c, d}, E = {(a, b), (a, d), (b, d), (b, c), (c, d)}.
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c

G

d

a b

−0.3

−0.4 −0.2

−0.3

−

0
.4

−0.4 −0.5

−0.4 −0.5

By routine computations, it is easy to see that:

• ad is a path of length 1 and the strength is -0.4,

• abd is a path of length 2 and the strength is -0.3,

• abcd is a path of length 3 and the strength is -0.2.

• A strongest path joininga andd is the pathP : bcd.

Definition 6. Let G be a connectedN -graph. The
µ−length of a pathP : v1v2 · · · vn in G, lµ(P ), is de-
fined aslµ(P ) =

∑n−1
i=1

1
µ2(vi,vi+1)

.

Definition 7. Let G be a connectedN -graph. Theµ-
distance,δµ(vi, vj), is the largestµ-length of anyvi−vj
pathP in G, wherevi, vj ∈ V . That is,δµ(vi, vj) =
max(lµ(P )).

Definition 8. LetG be a connectedN -graph. For each
vi ∈ V , theµ-eccentricity ofvi, denoted byeµ(vi) and is
defined aseµ(vi) = max{δµ(vi, vj) : vi ∈ V, vi 6= vj}.

Definition 9. Let G be a connectedN -graph. Theµ-
radius ofG is denoted byrµ(G) and is defined asrµ(G)

= max{eµ(vi) : vi ∈ V }.

Definition 10. Let G be a connectedN -graph. Theµ-
diameter ofG is denoted bydµ(G) and is defined as
dµ(G) =min{eµ(vi) : vi ∈ V }.

Example 11. Consider anN -graphG such thatV =

{a, b, c, d}, E = {(a, b), (a, c), (a, d), (b, c), (c, d)}.

c
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By routine computations, it is easy to see that:

(1) ad is a path of length 1 andlµ = −5, acd is a path
of length 2 andlµ = −10, abcd is a path of length
3 andlµ = −20.

(2)

δµ(a, d) = −5, δµ(a, b) = −5, δµ(a, c) = −5,

δµ(b, c) = −10, δµ(b, d) = −10, δµ(c, d) = −5.

(3) µ-eccentricity of each vertex is

eµ(a) = −5, eµ(b) = −5, eµ(c) = −5, eµ(d) = −5.

(4) Radius ofG is -5, diameter ofG is -5.

Definition 12. A vertexvi ∈ V is called a central vertex
of a connectedN -graphG, if rµ(G) = eµ(vi) and the
set of all central vertices of anN -graph is denoted by
C(G).

Definition 13. A connectedN -graphG is a self centered
graph, if every vertex ofG is a central vertex, that is
rµ(G) = eµ(vi), ∀vi ∈ V .

Example 14. Consider a bipolar graphG such thatV =

{a, b, c}, E = {ab, bc, ca}.

b
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By routine computations, it is easy to see that:

(i) Distance is

δµ(a, b) = −2, δµ(a, c) = −4, δµ(b, c) = −2.

(ii) Eccentricity of each vertex is -4.

(iii) Radius ofG is -4. Hence HenceG is self centered
N -graph.

Definition 15. A path cover of anN -graphG is a setP
of paths such that every vertex ofG is incident to some
path ofP .

Definition 16. An edge cover of anN -graph G is a
setL of edges such that every vertex ofG is incident
to some edge ofL. AnN -graphH = (µ′

1, µ
′

2) is said
to be aN -subgraph of a connectedN -graph G =,
(µ)′1(vi) = µ1(vi), ∀vi ∈ V ′ and (µ)′2(vi, vj) =

µ2(vi, vj), ∀(vi, vj) ∈ E′.

Definition 17. < C(G) >= H is anN -subgraph ofG
induced by the central vertices ofG, is called the center
of G. A maximal connected subgraph of anN -graph
G is a subgraph that is connected and is not contained
in any other connected subgraph ofG. The components
of anN -graphG is its maximal connected subgraphs,
whereG is a disconnectedN -graph.

Definition 18. An N -graph H is said to be anN -
subgraph ofG induced byE′ if A′ ⊆ A and(µ)′1(vi) =
µ1(vi), ∀vi ∈ V ′, (µ)′2(vi, vj) = µ2(vi, vj), ∀vi, vj ∈
V ′.

Definition 19. An N -graphG is said to be a bipartite
if the vertex set V can be partitioned into two non empty
setsV1 andV2 such that
(i) µ2(vi, vj) = 0, if vi, vj ∈ V1 or vi, vj ∈ V2.
(ii) µ2(vi, vj) < 0, if vi ∈ V1 or vj ∈ V2, for somei and
j.

Definition 20. A bipartite N -graph G is said to be
complete ifµ2(vi, vj) = max(µ1(vi), µ1(vj)), for all
vi ∈ V1 andvj ∈ V2. It is denoted byKV1i,V2i

.

Theorem 21. In an N -graph G for which µ2 : V ×
V → [−1, 0] is not constant mapping, an edge(vi, vj)
for whichµ2ij is minimum. Therefore it is a bridge ofG.

Theorem 22. If G is anN -bipartite graph then it has no
strong cycle of odd length.

Proof. LetG be anN -bipartite graph withN -bipartition
V1 andV2. Suppose that it contains a strong cycle of odd
length sayv1, v2, · · · , vn, v1 for some oddn. Without

loss of generality, letv1 ∈ V1. Since (vi, vi+1) is strong
fori = 1, 2, · · · , n− 1 and the nodes are alternatively in
V1 andV2, we havevn andv1 ∈ V1. But this implies that
(vn, v1) is an edge inV1, which contradicts the assump-
tion thatG is anN -bipartite. HenceN -bipartite graph
has no strong cycle of odd length.

Theorem 23. Every completeN -graphG is a self cen-
teredN -graph andrµ(G) = 1

µ1i
, whereµ1i is the great-

est.

Proof. Let G be a completeN -graph. To prove thatG
is self centeredN -graph. That is we have to show that
every vertex is a central vertex. We claim thatG is aµ-
self centeredN -graph andrµ(G) = 1

µ1i
, whereµ1i is

the greatest. Now choose some vertexvi ∈ V such that
µ1i is the greatest vertex membership value ofG .
Case 1: consider all thevi − vj pathPof lengthn in G

∀vj ∈ V .
(i) If n = 1, thenµ2ij = max(µ1i, µ1j) = µ1i. There-
fore, theµ-length ofP = lµ(P ) = 1

µ1i
.

(ii) If n > 1, then one of the edges ofP possesses theµ-
strengthµ1i and henceµ− length ofP will exceed 1

µ1i
.

That is,µ− length ofP = lµ(P ) > 1/µ1i. Hence

δµ(vi, vj) = min(lµ(P )) =
1

µ1i
∀ vj ∈ V. (2)

Case 2: Letvk 6= vi ∈ V . Consider allvk − vj pathsQ
of lengthn in G, ∀vj ∈ V .
(i)If n = 1, thenµ2(vk, vj) = max(µ1k, µ1j) ≤ µ1i,
sinceµ1i is the greatest. Thereforeµ-length of Q =
lµ(Q) = 1

µ2(vk,vj)
≥ 1

µ1i
.

(ii) If n = 2, lµ(Q) = 1
µ2(vk,vk+1)

+ 1
µ2(vk+1,vj)

≥ 2
µ1i

,
sinceµ1i is the greatest.
(iii) If n > 2, thenlµ(Q) ≥ n

µ1i
sinceµ1i is the greatest.

Hence,

δµ(vk, vj) = min(lµ(Q)) ≥ 1/µ1i ∀vk, vj ∈ V. (3)

From Equation (2) and (3), we have,

eµ(vi) = min(δµ(vi, vj)) =
1

µ1i
∀vi ∈ V (4)

HenceG is aµ self centeredN -graph.

Now rµ(G) = min(eµ(vi))

=
1

µ1i
, since by equation(6)

rµ(G) =
1

µ1i
, where µ1(vi) is greatest

From equation(2) and (4), every vertex ofG is a central
vertex. HenceG is a self -centeredN -graph.
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The following example shows that the converse of
the above theorem is not true, in general.

Example 24. Consider anN -graphG such thatV =
{a, b, c, d}, E = {ab, ad, bc, cd}.
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Routine computations show thatG is self centered
N -graph but not complete.

Lemma 25. AnN -graphG is a self centeredN -graph
if and only ifrµ(G) = dµ(G).

Theorem 26. If G is a completeN -graph then for at
least one edge(µ2)

∞(vi, vj) = µ2(vi, vj).

Proof. If G be a completeN -graph. Consider a vertex
vi whose value isµ1i.
Case (i): Letµ1i be the greatest in the vertexvi ∈ V . Let
vi, vj ∈ V , thenµ2ij = µ1i and((µ2ij))

∞ = µ1i. The
strength of all the edges which are incident on the vertex
vi is µ1i. SinceG is a completeN -graph.
Case (ii): Letµ1k be the greatest, wherevi 6= vk. Then
µ2ik) = µ1k. Since it is a completeN -graph, there will
be an edge betweenvi andvk, therefore,(µ2ik)

∞ = µ1k.

Theorem 27. LetG be a completeN -graph withn ver-
tices. ThenG has anN -bridge if and only if there ex-
ist a decreasing sequence{s1, s2, ..., sn−1, sn} such that
sn−2 > sn−1 ≥ sn wheresi = µ1(vi) ∀ i = 1,2,...,n.
Also the arc (vn−1, vn) is anN -bridge ofG.

Proof. Assume thatG is a completeN -graph and that
G has anN -bridge(vi, vj). Then we claim that there ex-
ist a decreasing sequence{s1, s2, ..., sn−1, sn} such that
sn−2 > sn−1 ≥ sn wheresi = µ1(vi) ,∀ i = 1, 2, ..., n.
Without loss of generality we assume thatµ1(vi) ≥
µ1(vj), that is, sn−1 ≥ sn, where, sn−1 =

µ1(vi), sn = µ1(vj), so thatµ2(vi, vj) = µ1(vi). As-
sume to the contrary, that there is at least one vertex
vi 6= vk such thatµ1(vi) ≥ µ1(vk), sn−1 ≥ sk, where
k 6= n, sn−1 = µ1(vi), sk = µ1(vk). Now consider

the cycle C:vivjvkvi in G, thenµ2(vi, vj) =µ2(vi, vk) =
µ1(vi).

µ2(vj , vk) =

{

µ1j if µ1i = µ1j or µ1i > µ1j ≥ µ1k

µ1k if µ1i > µ1k > µ1j

In either case it is seen thatµ1i is the greatest among all
other edges. But by Theorem 3.31, it is a contradiction
to the fact that(vi, vj) is anN -bridge.
Conversely, lets1 > s2 > ... > sn−2 > sn−1 ≥ sn and
si = µ1(vi).
Claim: (vn−1, vn) is anN - bridge ofG.
Now µ2(vn−1, vn) = max(µ1(vn−1), µ1(vn)) =
µ1(vn−1) and clearly by hypothesis, all other edges of
G will have µ- strength strictly greater thanµ1(vn−1).
Hence the edge(vn−1, vn) is anN -bridge by Theorem
3.20.

Theorem 28. LetG be a connectedN -graph with a path
coversP of G. Then the necessary and sufficient condi-
tion for anN -graph to be self centeredN -graph is

δµ(vi, vj) = rµ(G), ∀ (vi, vj) ∈ P. (5)

Proof. We now assume thatG is a self centeredN -graph
and we have to prove that equation (5) holds. Suppose
equation (5) does not hold, then we have,δµ(vi, vj) 6=
rµ(G) for some (vi, vj) ∈ P . By using Lemma 3.24,
the above inequality becomesδµ(vi, vj) 6= rµ(G) for
some (vi, vj) ∈ P . Theneµ(vi) 6= rµ(G) for some
vi ∈ V which impliesG is not self centeredN -graph,
which is a contradiction. Henceδµ(vi, vj) = rµ(G)

∀ (vi, vj) ∈ P .
Conversely, we now assume that equation (7) holds and
we have to prove thatG is a self centeredN -graph. If
equation (7) holds, then we haveeµ(vi) = δµ(vi, vj)

∀ (vi, vj) ∈ P , which implieseµ(vi) = rµ(G) ∀ vi ∈
V . HenceG is self centeredN -graph.

Corollary 29. If G is a connected completeN -graph
with an edge coverL of G. Then the necessary and suf-
ficient condition for anN -graph to be self centeredN -
graph is

δµ(vi, vj) = rµ(G), ∀ (vi, vj) ∈ L2. (6)

Theorem 30. LetH be a connectedµ-self centeredN -
graph. Then there exist a connectedN -graphG such
that < C(G) > is isomorphic toH . Also dµ(G) =

2rµ(G).

Proof. Given thatH be a connectedµ-self centeredN -
graph. Letdµ(H) = m. Then constructG from H as
follows:
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Take two verticesvi, vj ∈ V with µ1(vi) = µ1(vj) =
1
2m and join all the vertices ofH to both vi and vj
with µ2(vi, vk) = µ2(vj , vk) = 1

2m , ∀ vk ∈ V ′. Put
µ1 = (µ)′1, for all vertices inH andµ2 = (µ2)

′ for all
edges inH .
Claim: G is anN -graph. Note thatµ1(vi) ≤ µ1(vk),
µ1(vj) ≤ µ1(vk), ∀vk ∈ V ′, since dµ(H) = m.
Thereforeµ2(vi, vk) ≤ max(µ1i, µ1k) = 1

2m , simi-
larly, µ2(vj , vk) ≤ max(µ1j , µ1k) = 1

2m . HenceG
is an N -graph. Also,eµ(vk) = m ∀vk ∈ V ′ and
eµ(vi) = eµ(vj) = 1

µ2(vl,vk)
= 2m ∀vk ∈ V ′. There-

fore, rµ(G) = m, dµ(G) = 2m. Hence< C(G) > is
isomorphic toH .

Theorem 31. An N -graphG is a self centered if and
only if δµ(vi, vj) ≥ rµ(G), ∀vi, vj ∈ V .

Proof. We assume thatG is self-centeredN -graph. That
is, eµ(vi) = eµ(vj), ∀vi, vj ∈ V , rµ(G) = eµ(vi),
∀vi ∈ V. Now we want to show thatδµ(vi, vj) ≥ rµ(G),
∀vi, vj ∈ V . By the definition of eccentricity, we ob-
tain, δµ(vi, vj) ≥ eµ(vi), ∀vi, vj ∈ V. This is possi-
ble only wheneµ(vi) = eµ(vj), ∀vi, vj ∈ V. SinceG
is self centeredN -graph, the above inequality becomes
δµ−(vi, vj) ≥ rµ−(G).
Conversely, we now assume thatδµ−(vi, vj) ≥ rµ−(G),
∀vi, vj ∈ V . Then we have to prove thatG is self cen-
teredN -graph. Suppose thatG is not self centeredN -
graph. Theneµ−(vi) 6= rµ−(G), for somevi ∈ V . Let
us assume thateµ−(vi) is the least value among all other
eccentricity. That is,

rµ(G) = eµ(vi), (7)

whereeµ(vi) < eµ(vj), for somevi, vj ∈ V and

δµ(vi, vj) = eµ(vj) > eµ(vi), for some vi, vj ∈ V.

(8)
Hence from equations (7) and (8), we have,δµ(vi, vj) <

rµ(G), for somevi, vj ∈ V , which is a contradiction to
the fact thatδµ(vi, vj) ≥ rµ(G), ∀vi, vj ∈ V . HenceG
is a self centered graph.

Theorem 32. LetG be anN -graph. If the graphG is a
complete bipartiteN -graph then the complement ofG is
a self-centeredN -graph.

Proof. A bipartiteN -graphG is said to be complete if

µ2(vi, vj) = max(µ1(vi), µ1(vj)), ∀ vi ∈ V1 and vj ∈ V2

and

µ2(vi, vj) = 0, ∀ vi, vj ∈ V1 or vi, vj ∈ V2 (9)

Now

µ̄2(vi, vj) = max(µ1(vi), µ1(vj))− µ2ij (10)

By using equation(9)

µ̄2(vi, vj) = max(µ1(vi), µ1(vj)), ∀ vi, vj ∈ V1, vi, vj ∈ V2

(11)
Hence from equations (9), (10) and (11), the complement
of G has two components and each component is a com-
pleteN -graph, which are self centeredN -graph. This
completes the proof.

CONCLUSIONS

Graph theory is rapidly moving into the mainstream of
mathematics mainly because of its applications in diverse
fields which include biochemistry (genomics), electrical
engineering (communications networks and coding the-
ory), computer science (algorithms and computations)
and operations research (scheduling). It is known that
fuzzy models give more precision, flexibility and com-
patibility to the system as compare to the classic mod-
els. In this paper, we have introduced the concept of self
centeredN -graphs and have investigated some of their
interesting properties. The concept ofN -graphs can be
applied in various domains such as biochemistry, engi-
neering, computer science and operations research.
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