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Abstract: We first define length, distance, radius, eccentricity, matrer and edge cover of ak-graph.
Then we introduce the concept of self centetédjraphs and investigate some of their important properties
We also establish the necessary and sufficient conditiarssdomplete\V -graph to have an/-bridge.

Key words: Self centeredV-graph, eccentricity, radius, diameter, path cover, edyger central vertex.

INTRODUCTION be able to deal with negative information. It is noted that
positive information represents what is granted to be pos-
. . . . ible, while negative information represents what i n-
theory. In the history of mathematics, the solution g|vens.be € hegative Intormation represents what I co
. . sidered to be impossible. As an example, let us consider
by Euler of the well known Knigsberg bridge prob- . . . o
. . ) the spatial relations. Human beings consider “left" and
lem is considered to be the first theorem of graph thes . | . . . )
ight" as opposite directions. But this does not mean

ory. This has now become a subject generally regarde at one of them is the negation of the other. The seman-

as a branch of combinatorics. The theory of graph is. ) o .
: . . tics of “opposite” captures a notion of symmetry rather
an extremely useful tool for solving combinatorial prob-

lems in different areas such as geometrv. alaebra. nu than a strict complementation. In particular, there may
asg y, algebra, nunp, positions which are considered neither to the right nor
ber theory, topology, operations research, optlmlzauoqo the left of some reference object
and computer science. o
. : . i . In 1975, Rosenfeld [2] discussed the concept of
A ('cr|sp) sed n a'un|vers.eX can be defined |n.the'form fuzzy graphs whose basic idea was introduced by Kauff-
of its characteristic functiof., : X — {0,1} yielding mann [3] in 1973. The fuzzy relations between fuzzy
:/g?u\;aéu%rlgg rrféi?;e:;;sggng?rg iﬁ;r;?reﬁgfn?; sets were also considered by Rosenfeld and he developed
o . . H1e structure of fuzzy graphs, obtaining analogs of sev-
of the gen'e'rahzatlon of the crisp set have peen mtroduceeral graph theoretical concepts. Bhattacharya [4] gave
on the unit intervalo, .1] and they are consistent with the some remarks on fuzzy graphs. Akram et al. introduced
a}symmetry Qbservat|on. In other vyords, the geqerahzaihe concepts of bipolar fuzzy graphs and interval-valued
tion of the crisp set to fuzzy sets relied on spreading pos;

itive information that fit the crisp poiritl } into the inter- fuzzy Im? graphs [5._9]' In th|s. haper, we first define
. . ) . length, distance, radius, eccentricity, path cover ané edg
val [0, 1]. Because no negative meaning of information is

. . “cover of anN'-graph. Then we introduce the concept of
suggested, we now feel a need to deal with negative in- : . o
. self centeredV-graphs and investigate some of their im-
formation. To do so, we also feel aneed to supply mathe, ortant properties. We also establish the necessary and
matical tool. To attain such object, Janal. [1] have in- P brop i y

) S . ufficient conditions for a complet§-graph to have an
troduced a new function which is called negative-value : - .
. . . . _ 77 N-bridge. We have used standard definitions and termi-
function (briefly, N'-function) to deal with negative in-

. ; . . . : nologies in this paper. For other notations, terminologies
formation that fit the crisp poinf—1} into the interval gies In this pap . . g
. and applications not mentioned in the paper, the readers
[—1,0], and constructed/-structures. It is important to

In 1736, Euler first introduced the notion of graph
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are referred to [10-14]. < (n? — 4nd + 5n — 4d? — 6d)
- 2

PRELIMINARIES

A graphis an ordered pai:* = (V, E), whereV is the If G is a_ self-centered graph with vertices, e
set of vertices of* andE is the set of edges @f*. Two ~ ©dges, and diameter 2, ther 2n — 5.

verticesx andy in a graphG* are said to be adjacent in _

G* if {z,y} is in an edge o&*. (For simplicity an edge Denote by F(X,[-1,0]) the collection of func-
{x, y} will be denoted byry.) A simple graphis a graph tions from a nonempty sQf to [—1,.0]. We say that an
without loops and multiple edges. domplete graphs element of 7 (X, [-1, _0]) is a negatllve-valued function
a simple graph in which every pair of distinct vertices is ffom X to [—1,0] (briefly, N-functionon X). By an
connected by an edge. The complete graph eartices ~ /V-Structure we mean an ordered paltX, /1) of X
hasn vertices andh(n — 1)/2 edges. We will consider and an/\-function »; on X. By an N-relation on X
only graphs with the finite number of vertices and edgesV& Mean anV-function u; on X x X satisfying the
An isomorphisiof graphsG andG is a bijection be-  following inequality:

tween the vertex sets @¥; and G4 such that any two

verticesv; andv, of G are adjacent ii75 if and only if (Va,y € X)(p2(z,y) > max{ui(z), 1 (v)}), (1)
f(v1) and f(vy) are adjacent i75. Isomorphic graphs
are denoted byr7 ~ G5. wherey; € F(X,[~1,0]).

A path in a graphG is a sequence of vertices such
that from each of its vertices there is an edge to the
next vertex in the sequence. Thength of a path

P : vvg - vper (n > 0)in Gisn. ApathP :
0102 - -vpe1 in G is called acycleif v = v,.1 and Definition 2. By anN-graphG =< V, E, u1, o > of
n > 3. An undirected graplG is connectedf there @ 9raphG* = (V, E), we mean a paiG; = (1, pi2)
is a path between each pair of distinct vertices. For avhereu: is anN-functioninV’ and s is anA-function
pair of verticesu, v in a connected grapfi, thedistance N £ € V' x V such that

d(u,v) betweenu andv is the length of a shortest path

connectingu andv. Theeccentricitye(v) of a vertexv p2ij = p2({z, y}) > max(pi(z), pa(y))

in a graphG is the distance fromv to a vertex furthest

from v, that is,e(v) = max{d(u,v) | v € V}. The forall {z,y} € E.

radiusof a connected graph (or weighted gra@gh} de-

fined asrad(G) = min{e(v) | v € V}. Thediameter  Throughout this papef7* is a crisp graph and is an
of a connected graph (or weighted gra@h$ defined as N-graph.

diam(G) = max{e(v) | v € V'}. Theeccentric sefS of
a graph is its set of eccentricities. ToenterC'(G) of a

SELF CENTERED N -GRAPHS

) - X e ¢ Definition 3. A pathP in an N-graphG is a sequence
graphG |§ the set of vertlces_wnh m_|n|mu_m_eccentr|C|ty. of distinct verticess,, vs, ..., v, such that either one of
A graph isself-centeredf all its vertices lie in the cen- the following conditions is satisfied:

ter. Thus, the eccentric set of a self-centered graph CONLY 1y, = 0 for somes, j
tains only one element, that is, all the vertices have they) M; < 0for somei,j
same eccentricity. Equivalently, a self-centered graph is Y ’

raph wh iameter Is its radius. : .
agrap ose diameter equals its radius Definition 4. An N -graphG is connected if any two ver-

Proposition 1. Let G be a self-centered graph with  tices are joined by a path. The- strength of a path

vertices ¢ edges, and diamete: P vy - - - vy, is defined asnax(pz (v, v;)) for all i, j
and is denoted by,,. If the edge possesspsstrength
(1) fd=1,thene = C(n,2) value, then it is the strength of a path In other words,
the strength of a path is defined to be the weight of the
(2) Ifd=2andn =4, thene =4 strongest edge of the path. That is the strength of a path
(3) If d > 2 andn > 2d # 4, then 1S p2ij = S
~(nd—2d—1) < Example 5. Consider anV-graph G such thatV =
(d—1) =€ {a,b,¢,d}, E = {(a,b), (a,d), (b,d), (b, c), (c,d)}.
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G

By routine computations, it is easy to see that:

e ad is a path of length 1 and the strength is -0.4,
e abd is a path of length 2 and the strength is -0.3,
e abced is a path of length 3 and the strength is -0.2.

e A strongest path joining andd is the pathP : bcd.

Definition 6. Let G be a connectedV-graph. The
pu—length of a pathP : vivs---v, In G, [,(P), is de-
fined agl, (P) = Y7 ——1

=1 pa(vi,vit1)”

Definition 7. Let G be a connectedV-graph. Thepu-
distanceg,, (v;, v;), is the largesj-length of any; — v,
path P in G, wherev;,v; € V. Thatis,d,(vi,v;) =
max(l,(P)).

Definition 8. Let G be a connected/-graph. For each
v; € V, thep-eccentricity ofv;, denoted by, (v;) and is
defined ag,,(v;) = max{d,(v;,v;) : v; € V,v; # v, }.

Definition 9. Let G be a connectedv-graph. Thepu-
radius ofG is denoted by, (G) and is defined as,, (G)
= max{e,(v;) : v; € V}.

Definition 10. Let G be a connected/-graph. Theu-
diameter ofG is denoted by, (G) and is defined as
d,(G) =min{e,(v;) : v; € V}.

Example 11. Consider an\-graph G such thatV =
{a,b,¢,d}, E = {(a,b), (a,c),(a,d), (b,c),(c,d)}.

25

By routine computations, it is easy to see that:

(1) adis a path of length 1 an¢, = —5, acd is a path
of length 2 and,, = —10, abcd is a path of length
3 andl, = —20.

(2)
du(a,d) = =5, §,(a,b) = =5, d,(a,c) = =5,
du(b,c) = =10, 6,(b,d) = —10, 6,(c,d) = —5.
(3) wp-eccentricity of each vertex is

eu(a) = =5, e, (b) = =5, eu(c) = =5, e, (d) = —b.

(4) Radius ofG is -5, diameter of~ is -5.

Definition 12. A vertexv; € V is called a central vertex
of a connectedV-graph G, if 7,(G) = e, (v;) and the

set of all central vertices of aW-graph is denoted by
C(G).

Definition 13. A connectedV-graphGis a self centered
graph, if every vertex of7 is a central vertex, that is
ru(G) = eu(vi), Vo; € V.

Example 14. Consider a bipolar grapld- such that” =
{a,b,c}, E = {ab,be,ca}.

Self centeredV-graph
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By routine computations, it is easy to see that:
(i) Distanceis

5}1.(0‘) b) = _25 6/1,(a7 C) = _45 5/L(ba C) = -2

(ii) Eccentricity of each vertex is -4.

(iif) Radius ofG is -4. Hence Hencé/ is self centered
N-graph.

Definition 15. A path cover of aoV-graphG is a setP
of paths such that every vertex @fis incident to some
path of P.

Definition 16. An edge cover of anV-graph G is a
set L of edges such that every vertex @fis incident
to some edge of. AnN-graph H = (p, pb) is said
to be aA-subgraph of a connected/-graph G =,
(W1(vi) = m(vi), Yoi € V" and (p)s(vi,v;) =
,ug(?}i,’l)j), V(vi,vj) e Fr.

Definition 17. < C(G) >= H is an/N-subgraph ofG
induced by the central vertices 6f, is called the center
of G. A maximal connected subgraph of Afrgraph

loss of generality, let; € V4. Since ¢;,v;41) iS strong
fori =1,2,--- ,n — 1 and the nodes are alternatively in
V1 andV;, we havey,, andv;, € V;. But this implies that
(vn,v1) is an edge iy, which contradicts the assump-
tion thatG is an N -bipartite. HenceV-bipartite graph
has no strong cycle of odd length. O

Theorem 23. Every complete*\/ graphG is a self cen-
tered\V-graph andr, (G) = Whereuh is the great-
est.

Proof. Let G be a completeV-graph. To prove thafy

is self centeredV-graph. That is we have to show that

every vertex is a central vertex. We claim tldais a -

self centeredV-graph and-,(G) = u% wherepy; is

the greatest. Now choose some vertex V' such that

111; 1S the greatest vertex membership valu&:of

Case 1: consider all thg — v; path Pof lengthn in G

V’Uj e V.

(i) If n = 1, thenug;; = max(p1i, 1) = pa. There-

fore, they-length of P =, (P) = .

(i) If n > 1, then one of the edges ot possesses the
strengthu;; and hence.— length of P will exceedlm.

Thatis,u— length of P =1,(P) > 1/p1;. Hence

G is a subgraph that is connected and is not contained

in any other connected subgraph@f The components
of an M-graph G is its maximal connected subgraphs,

whereG is a disconnected/-graph.

Definition 18. An N -graph H is said to be an\-
subgraph of7 induced byE' if A’ C A and(p); (v;) =
pi(vi), Yoi € V', (1)s(vi, v5) = pa(vi, vj), Yoi,v; €
V.

Definition 19. An A/-graph G is said to be a bipartite

0, (vi,vj) = min(l,(P)) = —V v; €V.

Mll
Case 2: Lety, # v; € V. Consider all, — v; pathsQ
of lengthn in G, Vv; € V.
(|)|f n =1, thenug(vk,vj) = max(,ulk,,ulj) < H1dy
since uq; is the greatest. Therefore-length of @ =
L(Q) = ey =
(i) If n=2,1,(Q) = ——L t ey 2

. . p2(vp,vpr1)  p2(vkt1,v5)
sincepu, is the greatest.

)

if the vertex set V can be partitioned into two non emptyiii) Iif » > 2, thenl,,(Q) > - sincep; is the greatest
’ H = pai g :

setslV; andV; such that

(I) /.LQ('Ui,'Uj) =0, if Vi, Vj € Vi or Vi, Vj € V5.

(il) po(vsi,v5) <0, ifv; € Vy orv; € Vo, for somei and
j.

Definition 20. A bipartite A'-graph G is said to be
complete ifua(vi, v;) = max(p(vi), pi(vy)), for all

v; € Vi andv; € Va. Itis denoted by, v, .

Theorem 21. In an N-graph G for which us : V x
V' — [-1,0] is not constant mapping, an edge, v;)
for which 2,5 is minimum. Therefore it is a bridge 6f.

Theorem 22. If G is an N -bipartite graph then it has no

strong cycle of odd length.

Proof. LetG be anV-bipartite graph with\/-bipartition

Hence,
0u(ve, vj) = min(l,(Q)) > 1/p1; Yog,v; € Vo (3)
From Equation (2) and (3), we have,
en(vi) = min(6,(vi, v5)) = eV (4)

HenceG is ap self centeredV-graph.

Now r,(G) = min(e,(v;))
1
= — since by equation(6)
Hi
ru(G) = , where 1 (v;) is greatest

i

V1 andV,. Suppose that it contains a strong cycle of oddFrom equation(2) and (4), every vertex@fis a central

length sayvy, v, -+ ,v,, v, for some oddn. Without

26

vertex. Hencé is a self -centered/-graph. O
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The following example shows that the converse ofthe cycle Co;v;viv; in G, thenps(vi, vj) =pe(vi, vg) =

the above theorem is not true, in general.

Example 24. Consider an\-graph G such thatV =
{a,b,¢,d}, E = {ab, ad, be, cd}.

a b

d c

Routine computations show thét is self centered
N-graph but not complete.

Lemma 25. An N-graphG is a self centeredv/-graph
if and only ifr,(G) = d,.(G).

Theorem 26. If G is a completeN-graph then for at
least one edgéus )™ (vi, vj) = pa(vs, vj).

Proof. If G be a completeV-graph. Consider a vertex
v; whose value igiy;.

Case (i): Letuy; be the greatest in the vertexc V. Let
Vi, Vj € Vv, thenugij = 14 and((ﬂ%j))oo = W1;- The

pa (v3).

Mz(’Uj, vg) = {Mlj
M1k

if s = pagoor pag > pay > pag
if w1 > g > pay

In either case it is seen that; is the greatest among alll
other edges. But by Theorem 3.31, it is a contradiction
to the fact thatv;, v;) is anA/-bridge.

Conversely, lety > s > ... > sp—2 > sp—1 > s, and

s; = p1(v;).

Claim: (v,,_1,vy,) is an\/- bridge ofG.

Now  pa(vp-1,vn) = max(ui(va—1),p1(vs)) =
u1(vn—1) and clearly by hypothesis, all other edges of
G will have u- strength strictly greater tham (v,—1).
Hence the edgév,_1,v,) is anA\/-bridge by Theorem
3.20. O

Theorem 28. LetG be a connected/-graph with a path
coversP of G. Then the necessary and sufficient condi-
tion for an\-graph to be self centerett’-graph is
Ou(vi,v) =1, (GQ),V (v5,v;) € P. (5)
Proof. We now assume thét is a self centered/-graph
and we have to prove that equation (5) holds. Suppose
equation (5) does not hold, then we hadig(v;, v;) #
r,(G) for some (v;,v;) € P. By using Lemma 3.24,
the above inequality becomég(v;,v;) # r.(G) for
some (v;,v;) € P. Thene,(v;) # r,.(G) for some
v; € V which impliesG is not self centered/-graph,

strength of all the edges which are incident on the vertexynich is a contradiction. Hencd, (vi,v;) = 7,(G)

v; IS p14. SinceG is a completeV-graph.

Case (ii): Letui, be the greatest, whete # v,. Then

H2ik) = pag- Since it is a completd/-graph, there will

be an edge between andvy, therefore( o, )™ = pik.
O

Theorem 27. LetG be a completéV/-graph withn ver-
tices. Then& has anA/-bridge if and only if there ex-
ist a decreasing sequengey, s, ..., Sn—1, Sp, } such that
Sp—2 > Sp—1 > S, Wheres; = uq(v;) Vi=1.2,..,n.
Also the arc ¢,,_1,v,,) is anN -bridge ofG.

Proof. Assume thatG is a complete\-graph and that
G has anV-bridge(;, v;). Then we claim that there ex-
ist a decreasing sequenge, sa, ..., Sn—1, Sp } such that
Sp—2 > Sp—1 > spWheres; = u1(v;) Vi=1,2,....,n.
Without loss of generality we assume that(v;) >
wi(vy), that is, s,—1 > s,, where, s,_;1 =
w1(vi), sp = p1(v;), so thatus(v;, v;) = pi(v;). As-

v (’Uz', Uj) e P.

Conversely, we now assume that equation (7) holds and
we have to prove thaf is a self centered/-graph. If
equation (7) holds, then we haeg(v;) = 6,(vi,v;)

V (vi,v;) € P, which impliese,(v;) = r,(G) V v; €

V. HenceG is self centeredV-graph. O

Corollary 29. If G is a connected complet&’-graph
with an edge covef. of G. Then the necessary and suf-
ficient condition for anV-graph to be self centeret-
graphis

5M(vi,vj) :rM(G),V(vi,vj) € Lo. (6)
Theorem 30. Let H be a connecteg-self centeredV-
graph. Then there exist a connect&fdtgraph G such
that < C(G) > is isomorphic toH. Alsod,(G) =
2r,(G).

sume to the contrary, that there is at least one verteroof. Given thatH be a connected-self centeredV-

v; # v such thatu (v;) > w1 (vk), Sn—1 > Sk, Where
k # n, sp—1 = u1(vi), s = pi(vg). Now consider

27

graph. Letd,(H) = m. Then construct: from H as
follows:
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Take two vertices;, v; € V with p(v;) = pi(v;) =
Qin and join all the vertices of{ to both v; andv;
With po(vs, vk) = pa(vj,ve) = ﬁ, Vo, € V. Put
u1 = (w)y, for all vertices inH andpus = (u2)’ for all
edges inH.

Claim: G is anA-graph. Note thaj; (v;) < p1(vg),
ui(vy) < pa(vg), Yo, € V', sinced,(H) = m.
Thereforeps(vi, vr) < max(p14, p1x) = ﬁ, simi-
larly, po(vj,vr) < max(pij, pix) = 5. HenceG
is an \V-graph. Also, e, (vx) m Yv, € V' and
en(vi) = eu(vj) = m = 2m Vv, € V'. There-
fore,r,(G) = m, d,(G) = 2m. Hence< C(G) > is
isomorphic toH . O

Theorem 31. An A/-graph G is a self centered if and
only if 6,,(vi, vj) > ru(G), Yo, v; € V.

Proof. We assume thaft is self-centeredy/’-graph. That
is, eu(v;) = en(vy), Yvi,v; € V, r (G) = eu(vy),
Vv; € V. Now we want to show thak, (v;, v;) > r,(G),
Yv;,v; € V. By the definition of eccentricity, we ob-
tain, 6, (vi,v;) > eu(vi), Yo, v; € V. This is possi-
ble only whene, (v;) = e,(v;), Yvi,v; € V. SinceG

is self centeredV-graph, the above inequality becomes
Oy (vi,v5) 2 1= (G).

Conversely, we now assume tigt (v, v;) > r,- (G),
Yv;,v; € V. Then we have to prove thét is self cen-
tered \/-graph. Suppose that is not self centered/-
graph. There,- (v;) # r,- (G), for somev; € V. Let
us assume that, - (v;) is the least value among all other
eccentricity. That is,

ru(G) = eu(vi),

wheree,,(v;) < e, (v;), for somev;,v; € V and

(7)

Su(vi,v;) = e,u(vy) > eu(v;), for some v;,v; € V.
(8)
Hence from equations (7) and (8), we hayjg(v;, v;) <
ru(G), for somev;, v; € V, which is a contradiction to
the fact that, (vi, v;) > 7.(G), Vvi,v; € V. HenceG
is a self centered graph. O

Theorem 32. Let G be anN-graph. If the graphG is a
complete bipartiteV'-graph then the complement@fis
a self-centeredV-graph.

Proof. A bipartite A’-graphG is said to be complete if
2 (v, v5) = max(p1(vs), pa(v;)),Vu; € Vi andvj € Vo
and

9)

pa(vi,v5) =0,V v5,v; € Vi orv;,v; € Vo

28

Now

fi2(vi, vj) = max(p1 (vi), p1(v5)) — paij (10)

By using equation(9)

f2(vs, v;) = max(u1 (vs), p1(vy)),Vui,v5 € Vi,v5,v; € Va
(11)
Hence from equations (9), (10) and (11), the complement
of G has two components and each component is a com-
plete A'-graph, which are self centered-graph. This
completes the proof. O

CONCLUSIONS

Graph theory is rapidly moving into the mainstream of
mathematics mainly because of its applications in diverse
fields which include biochemistry (genomics), electrical
engineering (communications networks and coding the-
ory), computer science (algorithms and computations)
and operations research (scheduling). It is known that
fuzzy models give more precision, flexibility and com-
patibility to the system as compare to the classic mod-
els. In this paper, we have introduced the concept of self
centeredV-graphs and have investigated some of their
interesting properties. The concept/gtgraphs can be
applied in various domains such as biochemistry, engi-
neering, computer science and operations research.
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