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Abstract: In a weighted graph model, the reduction of flow between some pairs of nodes is more relevant and
more frequent than the total disruption of the flow or the disconnection of the entire network. The concept
of cuts are generalized to tackle with this type of problems.The classical edge and vertex connectivity
parameters are generalized. Also a generalization of Whitney’s theorem is presented.
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INTRODUCTION

Graph theory is applied in various fields like clus-
tering analysis, operations reseedgeh, database theory,
network analysis, information theory, etc. Connectivity
concepts play a key role in applications related to
graphs and weighted graphs. Several authors including
Bondy and Fan [1-3], Broersma, Zhang and Li [13]
introduced many connectivity concepts in weighted
graphs following the works of Dirac [5] and Grĺotschel
[6]. Also the authors have introduced the concepts of
partial cutnodes, partial bridges and partial blocks in
weighted graphs and characterized partial cutnodes and
partial bridges recently [8-11]. Akram et al. introduced
the concepts of bipolar fuzzy graphs and interval-valued
fuzzy line graphs [15-19].
In this article, we generalize some of the connectivity
concepts in graph theory. The best-fit model for any
kind of network is a weighted graph. Also in many
real world systems like information networks or electric
circuits, the reduction of flow between pairs of nodes is
more relevant and may frequently occur than the total
disconnection of the entire network [7-8]. Motivated
by this, we have introduced strength reducing sets of
nodes and edges in weighted graphs [12]. This article
generalizes the vertex and edge connectivity of a graph.

PRELIMINARIES

A weighted graphG is a graph in which every edge
e is assigned a nonnegative numberw(e), called the
weight of e. The set of all the neighbors of a vertex
v in G is denoted byNG(v) or simply N(v), and its
cardinality bydG(v) or d(v) [4]. The weighted degree

of v is defined aswdG(v) =
∑

x∈N(v)

w(vx). When no

confusion occurs, we denotewdG(v) by wd(v). The
weight of a cycle is defined as the sum of the weights
of its edges. An unweighted graph can be regarded as
a weighted graph in which every edgee is assigned
a weightw(e) = 1. Thus, in an unweighted graph,
wd(v) = d(v) for every vertexv, and the weight of a
cycle is simply the length of the cycle. Anoptimal cycle
is a cycle which has maximum weight[1].
In a weighted graphG, we can associate to each pair of
nodes inG, a real number called strength of connected-
ness. It is evaluated using strengths of different paths
joining the given pair of nodes. We have a set of new
definitions which are given below.
Definition 1 [8] Let G be a weighted graph. The
strength of a pathP (respectively, strength of a cycleC)
of n edgesei, for 1 ≤ i ≤ n, denoted bys(P ) (respec-
tively ,s(C)), is equal tos(P ) = min1≤i≤n{w(ei)}.
In a graph without weights, all paths are assumed to have
strength one [4]. But in weighted graphs the strengths of
paths may be different for different paths between pairs
of nodes. Hence we have the definition,
Definition 2 [8] Let G be a weighted graph.
The strength of connectedness of a pair of nodes
u, v ∈ V (G), denoted byCONNG(u, v) is defined as
CONNG(u, v) = Max{s(P ) : P is a u − v path in
G}. If u and v are in different components ofG, then
CONNG(u, v) = 0.

Example 3 (Figure.1) Consider the following weighted
graph with four vertices.
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Figure.1: Strength of connectedness
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Here, CONNG(a, b) = 3, CONNG(a, c) =

5, CONNG(a, d) = 5, CONNG(b, c) =

3, CONNG(b, d) = 3, CONNG(c, d) = 8.

Definition 4 [8] A u − v path in a weighted graphG is
called a strongestu− v path ifs(P ) = CONNG(u, v).
Now we can generalize the concept of a cutnode as
follows.
Definition 5 [8] Let G be a weighted graph. A nodew
is called a partial cutnode (p-cutnode for short) ofG if
there exists a pair of nodesu, v in G, different fromw,
such thatCONNG−w(u, v) < CONNG(u, v).
In example 3, the nodesc andd arep-cutnodes.
Analogous to that of p-cutnodes, we can define p-
bridges. In a non-weighted graph, the removal of a
bridge will disconnect the graph. But in a weighted
graphs, the removal of a p-bridge will reduce the
strength of connectedness between some pairs of nodes.
Depending on these nodes, we can divide the p-bridges
into three classes as given in the following definition.
Definition 6 [8] Let G be a weighted graph. An
edge e = (u, v) is called a partial bridge(p-bridge
for short) if CONNG−e(u, v) < CONNG(u, v). A
p-bridge is said to be a partial bond (p-bond for short)
if CONNG−e(x, y) < CONNG(x, y) with at least one
of x or y different from bothu andv and is said to be a
partial cutbond (p-cutbond for short) if bothx andy are
different fromu andv.
In example 3, all edges except(a, b) arep-bridges. In
particular(b, c), (c, d) and(a, d) are partial bonds. Also
edge(c, d) is a partial cutbond.
The concept of a strong edge is introduced in [8] by the
authors as given below.
Definition 7 [8] Let G be a weighted graph.
Then an edgee = (x, y) ∈ E is called α-
strong if CONNG−e(x, y) < w(e), β-strong
if CONNG−e(x, y) = w(e) and a δ-edge if
CONNG−e(x, y) > w(e). A δ-edgee is called a

δ∗ - edge ife is not a weakest edge ofG.
Clearly an edgee is strong if it is eitherα-strong or
β-strong. That is edge(x, y) is strong if its weight is at
least equal to the strength of connectedness betweenx

andy in G. If (x, y) is a strong edge, thenx andy are
said to be strong neighbors to each other.
Definition 8 [8] A u − v pathP in G is called a strong
u − v path if all edges inP are strong. In particular if
all edges ofP areα-strong, thenP is called anα-strong
path and if all edges ofP areβ-strong, thenP is called
a β-strong path.
Next the concepts of vertex cut and edge cut are gener-
alized in [12] as follows.
Definition 9 [12] A strength reducing set (srs) of nodes
in a weighted graphG is a set of nodesS ⊆ V (G)

such that eitherCONNG−S(u, v) < CONNG(u, v)

for some pair of nodesu, v ∈ V (G) − S or G − S is
trivial. If S contains a single nodew, thenw is a partial
cutnode.
Definition 10 [12] A strength reducing set of edges in a
weighted graphG is a set of edgesF ⊆ E(G) such that
CONNG−F (u, v) < CONNG(u, v) for some pair of
nodesu, v in the graph obtained by deleting all edges in
G − F with at least one ofu or v different from the end
nodes of edges inF . If F contains a single edgee, then
e is a partial bond.
Example 11. (Figure.2)Let G(V,E) be a weighted
graph with V = {a, b, c, d, f} and E = {e1 =

(a, b), e2 = (b, c), e3 = (c, d), e4 = (d, e), e5 =

(e, f), e6 = (f, a), e7 = (a, d)} with w(e1) = w(e3) =

w(e5) = 1, w(e2) = w(e4) = w(e6) = 2, w(e7) = 0.5.

S = {b, f} is a strength reducing set of nodes since
CONNG−S(a, d) = 0.5 < 1 = CONNG(a, d). Also
F = {(a, b), (e, f)} is a strength reducing set of edges.
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Figure.2: Strength reducing sets
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The weighted degree of a weighted graph is dis-
cussed in [1]. We define a new type of degree in
weighted graphs called strong degree as follows.
Definition 12 Let G be a weighted graph. Thestrong
degreeof a nodev ∈ V (G) is defined as the sum
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of weights of all strong edges incident atv. It is
denoted byds(v). The minimum strong degree ofG
is denoted byδs(G) and maximum strong degree∆s(G).

Also if Ns(v) denotes the set of all strong neighbors

of v, thends(v) =
∑

u∈Ns(v)

w((u, v)).

WEIGHTED CONNECTIVITY

In this section, we generalize the classical graph vertex
and edge connectivity parametersκ andκ′. They will
coincide with the classical parameters in an unweighted
graph as all weights can be taken as one.
Definition 13 LetX be a strength reducing set of nodes
in a weighted graph. The strong weight ofX , denoted by
s(X) is defined ass(X) =

∑

x∈X

µ(x, y), whereµ(x, y)

is the minimum of the weights of strong edges incident
onx.
Definition 14 The weighted node connectivity of a
connected weighted graphG is defined as the minimum
strong weight of strength reducing set of nodes inG. It is
denoted byκw(G). For a disconnected or trivial graph
G, κw(G) is defined to be0.
Example 15 Let G(V,E) be a weighted graph
with V = {u, v, w, x} and E = {e1 =

(u, v), e2 = (v, w), e3 = (w, x), e4 = (x, u)} with
w(e1) = 7, w(e2) = 8, w(e3) = 4, w(e4) = 3. Clearly
X1 = {v}, X2 = {w}, X3 = {v, w}, X4 = {v, x}
are strength reducing sets. InG all edges excepte4 are
strong. Hences(X1) = 7, s(X2) = 4, s(X3) = 11 and
s(X4) = 11. Thus the weighted node connectivity ofG

is κw(G) = 4.
As anyδ -edge can be replaced by a path having more
strength than its weight, any strength reducing set of
edges will produce another strong strength reducing set
with less number of edges while deleting all theδ-edge
from the set. Thus we have,
Definition 16 A strength reducing set of edges is said to
be a strong strength reducing set of edges if it contains
no δ-edges.
Definition 17 The strong weight of a strength reducing
set of edgesF is defined ass′(F ) =

∑

ei∈E

µ(ei) where

ei is a strong edge inF .
Definition 18 The weighted edge connectivityκ′

w(G)

of a connected weighted graphG is defined as the
minimum strong weight of strength reducing set of
edges inG. κ′

w(G) of a disconnected or trivial weighted
graph is defined to be0.
Example 19 Let G(V,E) be a weighted graph with
V = {u, v, w, x} and E = {e1 = (u, v), e2 =

(v, w), e3 = (w, x), e4 = (x, u), e5 = (u,w)} with
w(e1) = 1, w(e2) = 2, w(e3) = 1, w(e4) = 2, w(e5) =

0.5. The reduction of a single edge will not reduce
the strength of connectedness between any other
pairs of nodes. Hence any strength reducing set of
edge will contain at least two edges. Among them,
F = {(u, v), (w, x)} is the strength reducing set with a
minimum strong weight of2. Henceκ′

w(G) = 2.

Theorem 20In a weighted treeT , κw(G) = κ′
w(G) =

minimum edge weight inT

Proof. Let T be a weighted tree. Any internal node of
T is a cutnode and hence is a partial cutnode. Thus any
such node forms a strength reducing set and any strong
edge inT must have at least one such node as an end
node. Hence weighted node connectivityκw(T ) of T is
the minimum weight of strong edges inT . Since each
edge inT is strong,κw(T ) is the minimum weight of
edges inT .
Also each edge in a tree is a bridge and hence is a partial
bridge. Thus each edge is a strength reducing set. Since
each edge ofT is strong, it follows that the weighted
edge connectivity of a weighted tree is the minimum
weight of a strong edge inT . Since each edge ofT is
strong, it follows that the weighted edge connectivity of
a weighed tree is the minimum weight of edges inT .

Next we present the weighted analogue of a famous
result regarding node connectivity,edge connectivity and
minimum degree of a graph due to Hassler Whitney
Theorem 21. In a connected weighted graphG,
κw(G) ≤ κ′

w(G) ≤ δs(G).

Proof. First we shall prove the second inequality. Let
G be a connected weighted graph . Letv be a node in
G such thatds(v) = δs(G). Let F be the set of strong
edges incident atv. If these are the only edges incident
at v, thenG − F is disconnected. If not, let(v, u) be
an edge which is not strong, incident atv. Thenu is a
node different from the end nodes of edges inF . By
definition of a strong edge,

w((u, v)) < CONNG(u, v)

which implies that there exists a strongestu− v path say
P in G which should definitely pass through one of the
strong edges atv. Thus the removal ofF from G will
reduce the strength of connectedness betweenv andu.
Thus in both cases,F is a strength reducing set of edges.
The strong weight of this srs isδs(G). Hence it follows
thatκ′

w(G) ≤ δs(G).
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Next to proveκw(G) ≤ κ′
w(G), letF be an srs of edges

with strong weightκ′
w(G). We have the following cases.

Case 1:Every edge inF has one node in common, say,
v.
In this case letF = {ei = (v, vi), i = 1, 2, .., n}.
Let X = {v1, v2, ...., vn}. Then clearlyX is an srs of
nodes. Now,
minu∈V (G)w((vi, u)) ≤ w((v, vi)).

Therefore,∑

i

(minu∈V (G)w((vi, u)) ≤ w((v1, v)) +w((v2, v)) +

......+ w((vn, v)).

Thusκw(G) ≤ κ′
w(G).

Case 2:Not all edges inE have a node in common.
Let F = {ei = (ui, vi), i = 1, 2, .., n} for some n. Let
X1 = {u1, u2, ..., un} andX2 = {v1, v2, ..., vn}. By
assumption,CONNG−F (x, y) < CONNG(x, y) for
some pair of nodesx, y ∈ V (G) with at least one of
x or y is different from bothui andvi for i = 1, 2, ...., n.
Subcase 1:x andy are not members ofX1

⋃
X2

In this case, takeX = X1 or X = X2. Then clearlyX
is an srs of nodes, since its deletion fromG reduces the
strength of connectedness betweenx andy and,
κw(G) ≤ strong weight of X ≤ strong weight of
F = κ′

w(G).

Subcase 2:Eitherx or y is inX1

⋃
X2

Without loss of generality suppose thatx is inX1

⋃
X2.

Let x ∈ X1. Then takeX = X2. ClearlyX is an srs
of nodes for; the deletion ofX from G will reduce the
strength of connectedness betweenx andy. Thus,
κw(G) ≤ strong weight of X ≤ strong weight of
F = κ′

w(G).

Thus in all cases,κw(G) ≤ κ′
w(G) ≤ δs(G).

CONCLUSIONS

The basic connectivity concepts in graph theory
are generalized in this article. Connectivity concepts
are important in the modelling of many real world
situations. The classical parameters are dealing with the
disconnection of the graph. In practical applications the
reduction in the flow is more frequent than the discon-
nection. The authors made an attempt to generalize the
connectivity concepts in weighted graphs. Also one of
the major theorem in Graph theory due to Whitney is
generalized.
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