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Abstract: In a weighted graph model, the reduction of flow between saairs pf nodes is more relevant and
more frequent than the total disruption of the flow or the diistection of the entire network. The concept
of cuts are generalized to tackle with this type of probleri$ie classical edge and vertex connectivity
parameters are generalized. Also a generalization of \&¥igrtheorem is presented.
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INTRODUCTION of v is defined asvdg(v) = Z w(vz). When no
zEN (v
Graph theory is applied in various fields like clus- ¢onfusion occurs, we denowdc((ﬁ) by wd(v). The
tering analysis, operations reseedgeh, database theolyeight of a cycle is defined as the sum of the weights
network analysis, information theory, etc. Connectivity of jts edges. An unweighted graph can be regarded as
concepts play a key role in applications related toa weighted graph in which every edgeis assigned
graphs and weighted graphs. Several authors including weightw(e) = 1. Thus, in an unweighted graph,
Bondy and Fan [1-3], Broersma, Zhang and Li [13] q(v) = d(v) for every vertexv, and the weight of a
introduced many connectivity concepts in weightedcycle is simply the length of the cycle. Awptimal cycle
graphs following the works of Dirac [5] and tschel g g cycle which has maximum weight[1].
[6]. Also the authors have introduced the concepts ofin 3 weighted grapl®, we can associate to each pair of
partial cutnodes, partial bridges and partial blocks innodes inG, a real number called strength of connected-
weighted graphs and characterized partial cutnodes angess. |t is evaluated using strengths of different paths
partial bridges recently [8-11]. Akram et al. introduced joining the given pair of nodes. We have a set of new
the concepts of bipolar fuzzy graphs and interval-valuejefinitions which are given below.
fuzzy line graphs [15-19]. Definition 1 [8] Let G be a weighted graph. The
In this article, we generalize some of the connectivitystrength of a pattP (respectively, strength of a cyal®)
concepts in graph theory. The best-fit model for anygs,, edgese;, for 1 < i < n, denoted bys(P) (respec-
kind of network is a weighted graph. Also in many tjyely ,s(0)), is equal tos(P) = mini<i<n{w(e;)}.
real world systems like information networks or electric | 5 graph without weights, all paths are assumed to have
circuits, the reduction of flow between pairs of nodes isstrength one [4]. But in weighted graphs the strengths of
more relevant and may frequently occur than the totahaths may be different for different paths between pairs
disconnection of the entire network [7-8]. Motivated of nodes. Hence we have the definition,
by this, we have introduced strength reducing sets obefinition 2 [8] Let G be a weighted graph.
nodes and edges in weighted graphs [12]. This articlerne strength of connectedness of a pair of nodes
generalizes the vertex and edge connectivity of a graph,, ¢ V(G), denoted byCON N¢(u,v) is defined as
CONNg(u,v) = Maz{s(P) : Pisau — v pathin
G}. If w andwv are in different components @, then
CONNg(u,v) = 0.
A weighted graplG is a graph in which every edge

e is assigned a nonnegative numhefe), called the Example 3 (Figure.1) Consider the following weighted
weightof e. The set of all the neighbors of a vertex 9raph with four vertices.
v in G is denoted byN¢(v) or simply N(v), and its
cardinality bydg(v) or d(v) [4]. The weighted degree
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0* - edge ife is not a weakest edge 6f.

Clearly an edge: is strong if it is eithera-strong or
B-strong. That is edgér, y) is strong if its weight is at
least equal to the strength of connectedness between
5 3 andy in G. If (z,y) is a strong edge, thenandy are
said to be strong neighbors to each other.

Definition 8 [8] A« — v path P in G is called a strong

u — v path if all edges inP are strong. In particular if

d® 8 @ all edges ofP are a-strong, thenP is called ana-strong
¢ path and if all edges aoP are g-strong, thenP is called
Figure.1: Strength of connectedness a f-strong path.

Next the concepts of vertex cut and edge cut are gener-
alized in [12] as follows.
Definition 9 [12] A strength reducing set (srs) of nodes

Here, CONNg(a,b) = 3,CONNg(a,c) = in a weighted graph’ is a set of nodes C V(G)

9, CONN¢ (a’ d) = 9, CONN¢ (b’ C) = such that eitherCONNG_S(u, 11) < CONNg (u, 11)

3,CONNg(b,d) = 3,CONNg(c,d) = 8. for some pair of nodes,v € V(G) — Sor G — S is
trivial. If S contains a single node, thenw is a partial
cutnode.

Definition 4 [8] A u — v path in a weighted grapli is  Definition 10 [12] A strength reducing set of edges in a
called a strongest, — v path if s(P) = CONNg(u,v).  weighted graplG is a set of edges’ C E(G) such that
Now we can generalize the concept of a cutnode ¥ ONNg_p(u,v) < CONNg(u,v) for some pair of
follows. _ nodesu, v in the graph obtained by deleting all edges in
Definition 5 [8] Let G be a weighted graph. Anode ¢ — F with at least one of; or v different from the end

is called a partial cutnode (p-cutnode for short) @Gfif nodes of edges if. If ' contains a single edge then
there exists a pair of nodes v in G, different fromw, ¢ is a partial bond.

such thatlC ON N —w (u,v) < CONNg(u,v). Example 11. (Figure.2)Let G(V, E) be a weighted
In example 3, the nodesandd arep-cutnodes. graph with V. = {a,b,c,d,f} and E = {e; =
Analogous to that of p-cutnodes, we can define p-(4 p).e; = (b,c),es = (c,d),es = (d,e),e5 =

bridges. In a non-weighted graph, the removal of (e, f),es = (f,a),er = (a,d)} withw(e;) = w(es) =
bridge will disconnect the graph. But in a weighted w(es) = 1, w(es) = w(es) = w(eg) = 2, w(er) = 0.5.
graphs, the removal of a p-bridge will reduce theg — {b, f} is a strength reducing set of nodes since
strength of connectedness between some pairs of nodeSO N N _g(a,d) = 0.5 < 1 = CONNg(a,d). Also

Depending on these nodes, we can divide the p-bridgeg — { (4, b), (e, f)} is a strength reducing set of edges.
into three classes as given in the following definition. b

Definition 6 [8] Let G be a weighted graph. An f 2 a 1
edgee = (u,v) is called a partial bridge(p-bridge P ® °
for short) if CONNg_.(u,v) < CONNg(u,v). A
p-bridge is said to be a partial bond (p-bond for short)
if CONNg_.(z,y) < CON N¢(z,y) with at least one 0.5
of z or y different from both, andv and is said to be a
partial cutbond (p-cutbond for short) if bothandy are
different fromu andv.

In example 3, all edges exceft,b) are p-bridges. In
particular(b, ¢), (¢,d) and(a, d) are partial bonds. Also
edge(c, ) is a partial cutbond. Figure.2: Strength reducing sets
The concept of a strong edge is introduced in [8] by the

authors as given below.

° ® ®
d 1 c

Definition 7 [8] Let G be a weighted graph. The weighted degree of a weighted graph is dis-
Then an edgee = (z,y) € FE is called a- cussed in [1]. We define a new type of degree in
stong if CONNg_.(z,y) < w(e), p-strong weighted graphs called strong degree as follows.

if CONNg_.(z,y) = w(e) and a o-edge if Definition 12 Let G be a weighted graph. Thetrong

CONNg_.(z,y) > w(e). A s-edgee is called a degreeof a nodev € V(G) is defined as the sum
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of weights of all strong edges incident at It is (v,w),es = (w,z),eqs = (z,u),es5 = (u,w)} with
denoted byd,(v). The minimum strong degree 6f  w(e;) = 1,w(ez) = 2, w(es) = 1,w(es) = 2, w(es) =
is denoted by, (G) and maximum strong degre; (G). 0.5. The reduction of a single edge will not reduce
the strength of connectedness between any other
Also if N¢(v) denotes the set of all strong neighbors pairs of nodes. Hence any strength reducing set of

of v, thend,(v) = Z w((u,v)). edge will contain at least two edges. Among them,
uEN, (v) F = {(u,v), (w, )} is the strength reducing set with a
minimum strong weight &f. Hencex!, (G) = 2.
WEIGHTED CONNECTIVITY Theorem 20In a Welghted tred’, Hw(G) = HQU(G) =

minimum edge weight iy
In this section, we generalize the classical graph vertex
and edge connectivity parametersand x’. They will
coincide with the classical parameters in an unweighte
graph as all weights can be taken as one.
Definition 13 Let X be a strength reducing set of nodes
in a weighted graph. The strong weight®f denoted by

. i B node. Hence weighted node connectivity(T") of T' is
s(X) s defined as(X) = ;{ w(,y), wherep(, y) the minimum weight of strong edges in Since each

is the minimum of the weights of strong edges incidengdge in7" is strong,x.,(T') is the minimum weight of
onz. edges inl.

Definition 14 The weighted node connectivity of a Also each edge inatree is a bridge and hence is a partial
connected weighted graghi is defined as the minimum bPridge. Thus each edge is a strength reducing set. Since
strong weight of strength reducing set of node&intis ~ €ach edge of" is strong, it follows that the weighted
denoted bys,,(G). For a disconnected or trivial graph €dge connectivity of a weighted tree is the minimum

roof. Let T' be a weighted tree. Any internal node of
T is a cutnode and hence is a partial cutnode. Thus any
such node forms a strength reducing set and any strong
edge inT must have at least one such node as an end

G, kw(G) is defined to be. weight of a strong edge ifi’. Since each edge df is
Example 15 Let G(V,E) be a weighted graph Strong, it follows that the weighted edge connectivity of
with V. = {u,v,w,2} and E = {e; = @aweighedtreeisthe minimum weight of edgegin
(u,v),e2 = (v,w),es = (w,x),eq = (x,u)} with [

w(er) = 7,w(ez) = 8,w(es) = 4,w(eq) = 3. Clearly
X1 = {v}, X = {w}, X5 = {v,w}, Xy = {v,2}
are strength reducing sets. @ all edges except, are
strong. Hences(X;) = 7,5(X2) = 4,s(X3) = 11 and
s(X4) = 11. Thus the weighted node connectivity(of
is Ky (G) = 4.

As any¢ -edge can be replaced by a path having more

strength than its weight, any strength reducing set 0bygof. First we shall prove the second inequality. Let
edges will produce another strong strength reducing s€ty pe 3 connected weighted graph . Lebe a node in
with less number of edges while deleting all thedge g ch thad,(v) = 65(G). Let F be the set of strong
from the set. Thus we have, edges incident at. If these are the only edges incident
Definition 16 A strength reducing set of edges is said to atv, thenG — F is disconnected. If not, lefw, u) be
be a strong strength reducing set of edges if it contains,, edge which is not strong, incidentiat Thenuw is a

nod-edges. . ~ node different from the end nodes of edgesfin By
Definition 17 The strong weight of a strength reducing yefinition of a strong edge,

set of edged is defined as/'(F) = Z u(e;) where
el w((u,v)) < CONN¢g(u,v)

Next we present the weighted analogue of a famous
result regarding node connectivity,edge connectivity and
minimum degree of a graph due to Hassler Whitney
Theorem 21. In a connected weighted grap8,
kw(G) < kL (G) < 85(G).

w

e; is a strong edge i
Definition 18 The weighted edge connectivity,,(G)  which implies that there exists a strongest v path say
of a connected weighted grapfi is defined as the P in G which should definitely pass through one of the
minimum strong weight of strength reducing set of strong edges at. Thus the removal of" from G will
edges inG. k!, (G) of a disconnected or trivial weighted reduce the strength of connectedness betweand .

w

graph is defined to be. Thus in both cased; is a strength reducing set of edges.
Example 19 Let G(V, E) be a weighted graph with The strong weight of this srs & (G). Hence it follows
V = {u,v,w,z} and E = {e; = (u,v),ea = thatkl,(G) < d:(Q).
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Next to provex,, (G) < k.,(G), let F be an srs of edges
with strong weightx!, (G). We have the following cases.
Case 1:Every edge inF’ has one node in common, say,
V.
In this case leF' = {e; = (v,v;),1 =1,2,..,n}.

Let X = {v1,va,....,v,}. Then clearlyX is an srs of
nodes. Now,

mingey(c)w((vi,u)) < w((v,v;)).

Therefore,

S minueviaul(ui, ) < w((er, )+ w((vs,v) +

+ w((vn, v)).

Thusk,(G) < k., (G).

Case 2:Not all edges in&’ have a node in common.
Let FF = {e; = (u;,v;),i = 1,2,..,n} for some n. Let
X1 = {ui,ua,...,un} and Xs = {vy,vs,...,v,}. By
assumptionCONNg_p(z,y) < CONNg(z,y) for
some pair of nodes,y € V(G) with at least one of
x ory is different from bothu; andv; for: =1,2, ..., n.
Subcase 1 andy are not members oX; | X»

In this case, tak&X = X; or X = X,. Then clearlyX
is an srs of nodes, since its deletion frafreduces the
strength of connectedness betweegndy and,

kw(G) < strong weight of X < strong weight of
F = 1,(G).

Subcase 2Eitherz oryisin X; |J X»

Without loss of generality suppose thats in X5 | Xo.
Letz € X;. Then takeX = X,. Clearly X is an srs
of nodes for; the deletion ok from G will reduce the
strength of connectedness betweegndy. Thus,
kw(G) < strong weight of X < strong weight of
F = 1,(G).

Thus in all cases;, (G) < &, (G) < 65(G).

— w
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