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Abstract: In this article, we introduce a tensorial kernel for vectaiued functions which is compactly supported on a
bounded regior’” in R3. It is proved that the convolutions of the derived kernelthve vector valued functiorf having
continuous first derivatives convergesjtq i.e. the defining property of an approximate identity, isya&d. Further, some
numerical tests are shown.
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INTRODUCTION Let V be an open and bounded subsetRsf we de-
note the set of functiong’ : V' — R with continuous

. ) o derivatives of all orders b (1), the set of functions
The rule of an approximate identity is as follows: A f .V — R with continuous derivatives of all orders

function f which has to be approximated is convolved by ¢> (V) and and for every compact subsstof V
with a kernelK s for somed. If the kernel satisfies cer- C% (V) is the set of all functions i€ (V) with sup-
tain conditions then the convolutions converge in a cer—pé(rt in K. C(V) is a linear space and the topology

tain limit such as) — 0+ to f. Note that approximaté \yhich makes it into a Fréchet space is induced by the
identities for scalar function on balls iR® are studied seminorms

e.g. in [14]. Further works on localizing kernels, like
scaling functions and wavelets, on the 3D ball can e.g. P, (¢) =sup{|0“¢p(x)| : z € K, |a] < m},
be found in [3, 5, 8, 12, 13, 15]. In this paper we show - )
how tensorial kernels on a 3-dimensional bounded region‘b € Cg(V), m &€ No, with the sets
can be coqstructgd. We prove that these kernels es_tabhsh Dp(r) = {¢ € C(V) : Puld) <7},
an approximate identity for all vector valued functions
with continuous first derivative. The convergence estab-as a local base (see [4]). Where, a local base at a ppint
lished in this case is in the sense of a distribution. Parwe means, a collection of base open sets in which every
ticular practical relevance is the case when the considopen set containing contains one of these base sets,
ered bounded region is a ball. An example of an applicawhich containsz. Moreover,C (V) is also a closed
tion of approximating structures on a three-dimensionabubspace of’3° ('), where we define the topology of
bounded region can be found in geophysics. There, the O (V) (v
choice of appropriate tools for describing features of the o (V) =UkcvCg(V)
Earth’s interior, such as the mass density, the speed g pe the finest locally convex topology for which every
propagation of seismic P and S waves and other rheologimear functional defined oi3° (V) is continuous if and
ical qugntltl_es, is still a f!eld_of research. Moreover, theomy if its restriction toC52 (V') is continuous for every
approximation of vectorial fields such as currents on ax - /. This topology is known as the inductive limit of
ball is also relevant in medical imaging. the topologies o532 (V), i.e. the topologies of 52 (V)

5 TEST EUNCTIONS AND DISTRIBUTIONS are “pieced together” to form the topology of the union

Cge (V) (see [16]).

Throughout the sequeR™,n € N represents the.-  1he locally convex spac€f® (V) endowed with the in-
dimensional Euclidean space. The following introduc-ductive limit topology, is called the space of test func-
tion to the theory of distributions is based on [4], [9] tions and is commonly denoted 9(V'), in accordance

and [10], where further details about this subject can baVith Schwartz’ notation in [17]. A distribution oW is a
found. continuous linear functional o (V).
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We shall denote the linear space of all distributionsDefinition 2. The function7, defined by

onV by 2'(V), the topological dual o2(V).
A function F' defined onV is locally integrable orV' if

[ 1P @)z

is finite on every compact subsetof VV and we shall use
L. (V) to denote the space of all locally integrable func-

loc

tions onV. All continuous functions orfR"™, for exam-

ple, are locally integrable, although some of them, such” ¥ €

as polynomials, are not integrable Bft. Clearly,

LY(V) € Lie(V).

If Fell,

2(V) by

(V') then the linear functiond’s defined on

HW=AF@WMA¢E%W 1)

is a distribution. A distributiori" is said to be regular if
there is a locally integrable functighon V' such that

TW=LFWWME¢E%W

o 1

Go(z,y) = prp—

forall z,y € R? with 2 # y is a Green’s function for the
operator—V? in the spaceR? (see [6]).

Definition 3. For § € (0,1), we may define the reg-
ularised Green’s function with respect toV? for all
R3 by

1
dr (jz — y|? + 6)*

Go(x,y) =

Theorem 4. LetV be a bounded region iR? andV rep-
resent the closure df. Let f be a vector valued function,
which is defined in the domaid such thatf is contin-
uous onV and has continuous first order derivatives in
V. Thenf = —-Vp+ V x A with
0] S
_ 1 ; /
Vaup = élir&r Vep’ in 2'(V)

with
f@=£m%wm¢@@

Otherwise it is singular. Among the topologies that canand

be defined on the vector spa@é(V'), the mostimportant

is the one known as the weak topology. This is the locally

convex topology defined by the family of seminorms

with ¢ € 2(V) andT € 2'(V), and it leads to the fol-
lowing definition of (weak) convergence i’(V'). The
sequencd Ty} in 2'(V') converges td) if and only if,
for every¢ € 2(V), the sequencg(¢) converges td
in C.

This is really a "pointwise" convergence on(1') and,
as usual, we shall write

T, — T in .@/(V)

if the sequencéT;, — T') converges td) in the sense of
the above definition. The space of distributigngV) is
(sequentially) complete.

Theorem 1. If T), € 2'(V) for everyk € N and
lim Ty, = T, thenlim 0*T}, = 0T for every multi-index

a € NI, where the derivatives are understood in the dis-
tributional sense.

3. INTERCHANGE OF LIMIT WITH
DIFFERENTIAL AND INTEGRAL OPERATOR

123

p@=A%%@wf@@

(if)
V,x A= lim V, xA%in2'(V)
—0+
with
Xa) = [ V.Giw.v) x f) dy
1%
and

M@=A%%@wxmwy

for all z € V, whereG} is the regularised Green'’s func-
tion for —V2 on R3 and Gy, is the Green'’s function for
—V2onR3.

Proof. From Corollary 3.4 (i) of [2], we have
p’ = pasd — 0+ in2'(V),

i.e. the sequence of distributiofss defined by

wwzﬁwuwmm
converges to

Tp(¢) :

/ p(z)p(x)dx asd — 0+
1%



World Appl. Sci. J., 22 (Special Issue of Applied Math): 128, 2013

forall ¢ in (V). Therefore, we can sa¥,s — T, as
§ — 0+in 2'(V). Due to Theorem 1 we have

lim VT, =V, lim T, =V,T,
50+ P s—0+ F

in 2'(V'). This implies that

li :rcs: xl e T
oy Vo = Ve 10, 07 = Ver

in 2'(V). This proves parti).
For (i7) once again, we us@i) of Corollary 3.4 of [2],
which gives

A= lim A%in2'(V).
6—0+

It means that the real componerit$, A3 and A of A°
converge to the corresponding real componentsAo
andA; of A. To prove

V. x A= lim V, xA%in2'(V),
6—0+

we have to show that

(Ve x A); = lim (V, x A%); fori=1,2,3in 2'(V).

li
5—0+

Here we show thatV, x A%); — (V, x A)1in 2'(V).

and
(Va x A%), = (Vo x A)y in Z'(V).

Combining all these we get

(Vo x A°) = (Vo x A) in Z'(V).

Theorem 5. ([11], p. 335) LetX be an open subset of
R™ andY be a measure space. Suppose that the function
f: X xY — R satisfies the following conditions:

() f(z,y) is a measurable function gffor eachz € X.

(i) For almost ally € Y, the derivative% exists for

all x € X. '

(iif) There is an integrable functio& : Y — R such that
‘% < G(y)forall z € X.

Then

9 0
5 [ feds = [ GGy

Theorem 6. Let f, p°, A% and G{ be the same as in
Theorem 4. Then

For the other components the proof is similar to this one

We know that

0 0
AV ¢ I ¥
(VT x A )1 = ax2A3 ax3A2

and 5 5
(Vm X A)l - a—xQAB - a—stQ

As we know that

A = Ayin 2'(V)
and

A — Azin 2'(V)
therefore using Theorem 1 we have

0 s 0 o
8—x3A2 — a—xBAQ in 2'(V)
and 5 5

_ Y AS v R ’
s A5 — 02 Az in 2'(V).

From the information given above, we get
(Vo x A%), = (Vo x A)y in2'(V).
Similarly

(Vo x A%), = (Vo x A)y in 2'(V)

/vm (VaGi(a,y) - F(y)) dy = V., /%mag(x, y)-f(y) dy
1% 1%

= vaé(x)

2.

ﬁrx (VaGi(x,y) x f(y)) dy = V%/%mGS(x,y)Xf(y) dy

14
=V, x A°(z)

Proof. 1. To prove the result, we have to show that
(i) VoG3(2,y) - f(y) =: H(x,y) is a measurable func-
tion of y for eachz € V.
(i) For almost ally € V, the expressioV . H (x,y) ex-
ists forallx € V.
(iii) There is an integrable functio@ : V' — R such that

Vo H(z,y)| < G(y),

forallz € V.

Due to Equations (11) and (12) of [2], we conclude that
(i) is satisfied. Further, from Equation (A.1.5) of [1], p.
101, we obtain (ii). To show that (iii) is satisfied, we use
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Equation (A.1.5) of [1], p. 101 as get
J+28R?
Vo (VoG y) - F)]” = (4717)2 x (Vo x (VaGh(2.y) x F(1))),] < ( = 52
2 fW)l ()
<<|x PO PG (@ =) ) (@ - yn) 5 . o
(|x—y|2+5)% (|x—y|2—|—5)% |(Vm X (V:EG0($7"J) Xf(y)))3‘ < ( 27“52
+<<|sc Y+ Bl) (@) f) (w2 - y>> 2 @l @)
(le =yl + 5)% (lz — y[2+6)2 whereR is the radius of the ball containirig. From the
di [ bove, lude that
n <(|x —y> +9) ng(y) L@y fW) (iUsé— ys))j efission above, fe can conet 2 azgR
(lz —yl* +6)> (lz —y[2 +4)> |(Va x (VaG(z,y) x f(y))] < ( ;52 ) V3| f ()
wheref = (Fy, F, F3)'. After simplying, we obtain = G(y).

2
V. (V.G 1) | <8 (Z28E ) )

1 G(y), 2

whereR is the radius of the ball containinlg. Sincef

is an integrable function of thereforeG is also an in-
tegrable function ofy. Hence, (iii) is satisfied. Finally,

using Theorem 5 we gét
2.
V.Gd(z,y) x f(y) is a measurable function gffor all

x € V. From Equations (A.1.8), (A.1.9) and (A.1.10) of

[1], p. 103, we conclude that, x (V, G (z,y) x f(y))

exists for allz € V. Further, from Equation (A.1.8) of

[1], p. 103, we get

|[(Va x (VoGi(,) x W), | <

(2 (2~ y> +6) IFi(v)|
(2 =yl +0)*

Jr3|(($1 —y)Fa(y) — (z2 — yz)ljl( y)) (2 — y2)|
(Jz —y* +4)2
+3|((333 y3)F1(y) — (z1 — y1)€3(y)) (z3 — y3)|>
(|z —yl?+0)2
(3)
After simplifying, we have
1) R?
(V% (Va6 < 1), | < ()
x[f(y)l, (4)

whereR is the radius of the ball containirig. Similarly,

from Equations (A.1.9) and (A.1.10) of [1], p. 103, we

Due to Equation (17) of [2], we can say that

(7)

Since| f| is an integrable function of, thereforeGi is
also an integrable function @f Hence, applying Theo-
rem 5, we finally obtair2. ]

4. TENSORIAL KERNELS

let ¢(V) denote the set of continuous functiofs V' —
R? and using the canonical orthonormal basis=?, 3
of R?, a tensof of rank-2 can be written as

3
f= Z F‘ij&i ®el (8)

ij=1

where® is the dyadic product and;; € R. Clearly,
fe R3@R3.

Letk : V x V — R} @ R? andf € ¢(V), we define the
convolution of f andk by

kx fi= /vk(.7y)f(y)dy

Frke= [k Gy
where f*(y) is the transpose of the vectgi(y) and

K (z,y) is the transpose of the tenso(z,y). As we
use Lebesgue integrals therefore

Lk(.,y)f(y)dyz/ k(. y) f(y)dy
1% \%4

Theorem 7. Letks : V xV —» R3 ®
function defined by

9)

or
(10)

R? be a tensorial

ZK (r,y)e' @&

i,j=1

(11)
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forall ,y € V andé > 0. For4,j = 1,2, 3, we define tively we get

K?. : V x V — R as below
7 Fi(y) K (2,y) + Fa(y) K3 (2, y) + F5(y)K3$, (2, y)

1 3F: x —yl?
K3(2,y) = 3( R it ) :Z%<u ?i&g_ 1yu| Pﬂdf
dm —yl2+6)? _ 2183 rT—=Y 2 r—y 2
(|J) y| + ) (|J,‘ y| + ) _3F2(y) (xl — yl)(xQ — yg) — (!El — yl)(xQ - y2)
_ (o — 2 +9)F
if i =jandforallx,y € V. Ifi # j we define (1 — y1) (s — ys) — (21 — 1) (@5 — ys)
_SFS(y) 5 ) .
_ 2 2
K (e,y) = 0 (12) (o =9 +2)

After simplifying the equation given above, we get
forall z,y € V.
Ko (z,y) + Fy(y)KS, (z,y) + F5(y) K, (z,y) = —

Let f be a vector valued function which is defined B K (e y) + B)Kz (@,9) + Bl Ka(ry)

in the domainl” such thatf is continuous o/’ and has Fi(y) ((x1 — 1) Fi(y) + (2 — y2) Fa(y))
continuous first order derivatives in. Thenf xks — f (lz — y[2 + 5)3 -3 (Jz — y|? +5)g
asd — 0+in 2'(V). Y Y

gl —ys)F5(y)) (xi —y) 2Ry i
Proof. From Equation (10) we have (jo —y|* + )2 (jo —yl* +0)*
43 (21 —y1)Fo(y) — (22 — y2)1:1 (y)) (z2 — y2)
(k) )= [ £ o (j = yl2 + )
_g®3—mﬁﬂw—@n—mﬁuwﬂm—yw>.
:3ﬂﬁmwma@mfmeKzuw»M3@, (lo— yl2 + 0)F

Now, by comparing the equation given above with Equa-
where F;, i = 1,2,3 are the components of and tions (A.1.5) and (A.1.8) of [1], p. 101-103, we have

(K% (z,y)) is a3 x 3 matrix with component&’?; (z, y). 5 5
5i (7 : h comy 5T Py K, (z,y) + Fa(y) K3, (z,y) + F3(y) KL, (z,
Now just performing the multiplication of matrices, we vy ) 1(@,9) + Faly) 21( y) + B(y) K (@, y)

get — (Va2 (VaGo(z,9) - (1)),
+ (Vx (VmGo(ar,y) W), - (14)
(f *Kks) (x):/v (Fl(y)Kfl(a:,y) + B(y) K (x,y) Fl(y)Kg (z,y) + Fs(y )KQQ( Y) + F3(y) Kds(z,y)
+E3(y) K (2, ), — (Ve (VaGi(2,9) - f®))),
Fy(y) KDy (2,y) + Fa(y) Ko (x,y) + Fs(y) Kgy(z, y), + (Vo x (VaG(2,y) X W), - (15)

Fy(y)K{s(x,y) + Fa(y) K9g(2,y) + Fs(y) Kds(x,y)) dy.
(13) Fi(y )Kf3(33 y) + Fa(y )K23( y) + Fa(y )K§3($7"J)

Let us investigate th t b Using = (Ve (VaG(e0) - 1))
et us investigate the components one by one. Using
Equations (12) and (12) we obtain (V x (V GO(x y) x f(y))) (16)
Putting the values of the components from Equations
Fi(y) Ky (2, y) + Fa(y) K3, (2, y) + Fs(y) K3 (2, ) (14), (15) and (16) into Equation (13) we obtain
1 3F: —yl?
:Z<——ﬂiT—MMPJLﬂ—? (F k) (2) = [ = (92 (VeGl0) - 1)),
™\ (o —yi2 +0)* (jo—yP? +9)* v
+F3(y) - 0+ Fs(y) - 0) . +(Va % (VaGi(2,9) x f(1))),
— (Ve (VaGo(,9) - F(1))),
i ; (z1—y1)(x2—y2)
Now adding and subtractingFs(y) Py and + (Vo x (Vs GS(z,y) x f(y)))Q,
3@@)% in the third and the fourth term on — (Vo (VaGi(x,9) - F()))4
z—y|? 2
the right hand side of the equation given above respec- + (Vo x (VaGi(x,y) x f(y)))4) dy
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The equation given above can be written as 5 Rooted mean square
in reconstructed
(fxks)(z) = / —(Va (Vng(:L‘,y) () 10*‘2 0.0300
1% 10-3 | 0.0100
+V, x (VoG(a,y) x f(y))) dy 10-% [ 0.0056
= —/ Vo (Ve Gi(2,y) - f(y)) dy Table 1: Rooted mean square error in the reconstruction
|4

of the synthetic vectorial functioji for different values
+/ Vi X (VmGS(x,y) x f(y)) dy. of the parametef.
Vv

Due to Theorem 6, the equation given above takes thgrid or a Gaussian grid. We use an equiangular grid and

form the quadrature theorem given in [7] and for the line inte-
s gral we use the composite Simpson’s rule. Our vectorial
(fxks)(z) = =V, /v V. Go(z,y) - f(y)dy synthetic function is given by
+V, x / V.GS(2,y) x f(y)dy fy) = f(rn) = r°nYs2 () sin(nz) cos(ns) ~ (18)
v -

wherer = |y| andn = (n1, 12, 13) = ‘1—3‘ fory € B1(0).
Moreover,Y3 5 is a spherical harmonic of degree 3 and
order 2. Analysing the graphs in Figures 3 to 4 and the
errors in Table 1, we can say that we get a very good

= V.0 (x) + V, x A(z).

Taking the limité — 04 on both hand sides, we get

lim (f %Ks)(z) = — lim V,p’(z) approximation of the vectorial functiofi
00+ 50+ Acknowledgment. The author would like to thank the
+ al—if& Vi x A°(z). honorable referee for their valuable comments and sug-

gestions which help us to finalize the presentation of this
Using Theorem 4 we can write the equation given abovepaper.
as follows

Jim (F%K)(2) = —Vaple) + Ve x A(@)
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igure 1: (a) is the graph of the absolute values of the
yector functionf plotted in they; = 0 plane.

002 004 006 008 01 012 014 016 018

Figure 2: (a) is the graph of the absolute values of the
reconstructed vector functighusing the kernel of The-
orem 7 with the parametér = 0.01. The function is
plotted in they; = 0 plane.
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Figure 3: (a) is the graph of the absolute values of the~igure 4: (@) is the graph of the absolute values of the
reconstructed vector functiohusing the kernel of The- reconstructed vector functighusing the kernel of The-
orem 7 with the parameter = 0.001 and (b) is the orem 7 with the parameter = 0.0001 and (b) is the
graph of the absolute values of the difference of the acgraph of the absolute values of the difference of the ac-
tual vector functionf and the reconstructed vector func- tual vector functionf and the reconstructed vector func-
tion f using the kernel of Theorem 7 with the parametertion using the kernel of Theorem 7 with the parameter
0 = 0.001. In both cases, the function is plotted in the 6 = 0.0001. In both cases, the function is plotted in the

y1 = 0 plane. y1 = 0 plane.
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