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Applications of the Exp-function Method for the MkdV-Sine-Gordon
and Boussinesq-double Sine-Gordon Equations

A. Esen, O. Tasbozan and S. Kutluay

Department of Mathematics, Faculty of Arts and Science,
Inönü University, 44280, Malatya, Turkey

Abstract: In this paper, the Exp-function method is used to obtain generalized travelling wave solutions with
free parameters of the MKdV-sine-Gordon and Boussinesq-double sine-Gordon equations. It is shown that the
Exp-function method, with the help of any symbolic computation packages, provides an effective mathematical
tool for nonlinear evolution equations arising in mathematical physics.

Key words: Exp-function  method      Travelling     wave     solution      MkdV-sine-Gordon   equation
 Boussinesq-double sine-Gordon equation

INTRODUCTION and

It is important to investigate new and more exact (2)
travelling wave solutions of nonlinear evolution
equations (NLEEs) arising in various fields of physics and recpectively.
engineering. In recent years, with the rapid development
of computer symbolic systems such as Mathematica or Exp-Function Method: Suppose we have a nonlinear
Maple allowing us to perform the complicated and tedious partial differential equation for u(x,t) in the form
algebraic calculations on computer, many direct and
effective methods for constructing exact solutions of (3)
NLEEs have become more and more attractive. Up to now,
many authors have presented various powerful methods where  is a polynomial function with respect to the
to deal with this subject, such as the inverse scattering indicated variables. Using the wave transformation
transform method [1, 2], the Bäcklund transform [3],
Darboux transforms [4–6], homotopy perturbation method (4)
[7- 9], variational iteration method [10-14], the parameter-
expansion method [15-17] and so on. Recently, He and Eq. (3) reduces to an ordinary differential equation in
Wu [18] developed a straightforward method, called Exp- the form
function method, for seeking analytic solutions of
nonlinear partial differential equations. Applications of (5)
the method can be found in [19-26] and by the reference
therein. The last development of the Exp-function method where k and w are constants to be determined later.
is reviewed in Ref. [27]. According to Exp-function method, the wave solution

In this paper, we will apply Exp-function method to can be expressed in the form
the MKdV-sine-Gordon and Boussinesq-double sine-
Gordon equations in the form

(1)
(6)
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where c, d, p and q are positive integers which could be v v   with   the   nonlinear   term   v .  Using  the  ansatz
freely chosen, a  and b  are unknown constants to be (6), for the terms v v  and by v  simple calculation, itn m

determined later. To determine the values of c and p, we follows
balance the linear term of the highest order in Eq. (5) with
the highest order nonlinear term. Similarly to determine the
values of d and q, we balance the linear term of the lowest (12)
order in Eq. (5) with the lowest order nonlinear term. So by
means of the Exp-function method, we obtain the and
generalized travelling wave solutions for NLEEs arising in
mathematical physics. To illustrate the effectiveness and
convenience of the method, we consider the MKdV-sine- (13)
Gordon (1) and Boussinesq-double sine-Gordon equation
(2) in the following section. where c  are coefficients for simplicity. By balancing the

Application of the Exp-Function Methods have 4c + p = 5c which leads to the result c = p.
MKdV-Sine-Gordon Equation:  We  first  consider, Proceeding in the same manner as illustrated above,
MKdV-sine-Gordon equation arising as nonlinear wave we can determine the values of d and q by balancing the
propagation in one-dimensional mono-atomic lattice in lowest order terms of v v  and v . Thus, we have
which the anharmonic potential competes with the
dislocation potential and which can be solved by the
inverse scattering transform [28-30]. Substituting the
wave transformation (4) into Eq. (1), we obtain (14)

(7)

where the prime denotes the derivative with respect to . (15)
Next, we use the transformations

(8) lowest order of Exp-function in Eqs. (14) and (15), we have

so that In view of the obtained results, we can freely choose

d = q = 1, then Eq. (6) becomes
(9)

that also gives

Substituting Eq. (16) into Eq. (11), equating the
(10) coefficients of exp(n ) to zero yields a set of algebraic

Using this transformation into Eq. (7), we obtain of algebraic equations with the aid of Maple, we obtain

(11)

Since  there   is   no   linear   term   in  Eq.  (11), in
order  to  determine  the values of c, d, p and q, we
balance  the   nonlinear   term   of   the   highest  order (18)

3 (iv) 5

3 (iv) 5

1

highest order of Exp-function in Eqs. (12) and (13), we

3 (iv) 5

and

where d  are coefficients for simplicity. By balancing thei

4d + q = 5d which leads to the result d = q.

the values of c and d. For simplicity, we set c = p = 1 and

(16)

equations for a ,a ,a ,b ,b ,k and w. Solving the system–1 0 1 –1 0

(17)
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and Boussinesq-Double Sine-Gordon Equation: We secondly

(19)

Inserting (17) into (16) with Eq. (10), we get the
following generalized solitary solutions of Eq. (1)

(20)

Simplifying Eq.(20) yields

(21)

where b  is a non zero  free  parameter  and .0

If we set b = 2, we obtain solution

(22)

Substituting (18) into (16) with Eq. (10), we get the
same generalized solution as (21) for . If we

set b  = 2, then we obtain solution0

(23)

Inserting (19) into (16) with Eq. (10) and simplifying,
we get

(24)

where b  is a non zero free parameter and . If0

we set b  = 1, we obtain solution0

(25)

To our knowledge, solutions (22), (23) and (25) are
new solutions for the MKdV sine- Gordon equation and
have not been reported yet.

consider Boussinesq-double sine-Gordon equation [31]
given by Eq.(2). Substituting the wave transformation (4)
into Eq. (2), we obtain

(26)

Using the transformation (9) into Eq. (26), we get

(27)

Since there is no linear term in Eq. (27), in order to
determine the values of c, d, p and q, we balance the
nonlinear term of highest order v v  with the nonlinear3 (iv)

term v .6

Using the ansatz (6), for the terms v v  and by v3 (iv) 6

simple calculation, it follows

(28)

and

(29)

where c  are determined coefficients only for simplicity.1

Balancing the highest order of Exp-function in Eqs. (28)
and (29), we have 4c = 2p = 6c which leads to the result
c = p.

Similarly, we can determine the values of d and q by
balancing the lowest order terms of v v  and v . Thus, we3 (iv) 6

have

(30)
and

(31)

where d  are determined coefficients only for simplicity.i

Balancing the lowest order of Exp-function in Eqs. (30)
and (31), we have 4d + 2q = 6d which leads to the result
d = q.
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In view of the obtained results, we can freely choose CONCLUSION
the values of c and d. For simplicity, we will examine case
c = p = 1 and d = q = 1. In this paper, the Exp-function method has been

For c = p = 1 and d = q = 1, Eq. (6) can be expressed successfully used to obtain some new generalized
as travelling wave  solutions  of  the  MKdV-sine-Gordon

The results show that the Exp-function method is an
(32) effective mathematical tool for searching the exact

Substituting Eq. (32) into Eq. (27), equating the mathematical physics.
coefficients of exp(n ) to zero and solving the system of
algebraic equations with the aid of Maple, we obtain ACKNOWLEDGMENT
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(33) TURKEY).
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