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Abstract: Analytical solution is presented for the investigation of uniqueness, heat and mass transfer on 
magnetohydrodynamic (MHD) flow over a movable leaky plumb surface. The temperature of the surface 
and concentration is not constant. The coupled boundary layer equations are non-linear and they are solved 
using Homotopy Analysis Method (HAM). A parametric study of all the governing parameters is carried 
out over the results. The results show that the momentum, heat and mass transfer phenomena depend on 
magnetic parameter, Prandtl number, Schmidt number, buoyancy ratio and suction or blowing parameter. 
Numerical and HAM results for the dimensionless velocity profiles, temperature profiles and the 
concentration profiles are presented for several of important parameters. The velocity profile is reduced as 
the value of the Hartman number and buoyancy ratio increase. Temperature value is decreased when the 
magnitude of suction parameter increases as well as blowing parameter increase. Also the concentration 
magnitude decreases when Schmidt number increases. 
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INTRODUCTION 
 
 Most fluid mechanical problems have non-linear behavior inherently. There are few phenomena in different 
fields of science occurring linearly. A lot of scientific phenomena like heat and mass transfer ones function 
nonlinearly. These nonlinear equations cannot be solved using the ordinary methods and therefore these equations 
should be solved using the other methods. Some of them are solved using numerical techniques and some are solved 
using the analytical and semi analytical methods such as perturbation techniques, ADM, Homotopy Analysis 
Method (HAM) and etc. In this study HAM is applied for finding the approximate solutions of momentum, heat and 
mass transfer in MHD flow with free convection on a movable leaky plumb surface. In the analytical perturbation 
method the small parameter should be exerted in the equation. Therefore, finding the small parameter and exerting it 
into the equation is important in this method. Homotopy analysis method is one of the well-known methods used to 
solve wide range of linear and nonlinear differential equations. Also both ordinary as well as partial can be solved 
by the HAM which was expressed by Liao in [1-4]. The applications of this method in different fields of nonlinear 
equations, in fluid mechanics and heat transfer have been studied by Hayat [5, 6], Domairry [7-10] and etc. 
Hydromagnetic incompressible viscous flow has many important engineering applications such as MHD power 
generator, cooling of reactors and many metallurgical processes involve the cooling of continuous tiles. Sakiadis 
[11] firstly studied the boundary layer flow over a stretched surface moving with a constant velocity. Liao obtained a 
proper series solution of unsteady boundary layer flows over an impulsively stretching plate uniformly valid for all 
non-dimensional times. Cheng and Huang [12] considered the problem of unsteady flows and heat transfer in the 
laminar boundary layer on a linearly accelerating surface with suction or blowing with or without a heat source or 
sink.  Ali [13] presented  the  heat  transfer  characteristics  of  a power law continuous stretched surface without and 
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with suction injection. The free convection effect on MHD coupled heat and mass transfer of a moving vertical 
surface has been studied by Yih [14]. Anjali Devi and Kandasamy [15] studied the steady MHD laminar boundary 
layer flow over a wall of the wedge with suction and injection in the presence of species concentration and by 
considering the mass diffusion. The effects of Dufour and Soret numbers on unsteady MHD free convection and 
mass transfer flow past an infinite vertical porous plate embedded in a porous medium have been considered by 
Alam et al. [16]. Xu and Liao [17] examined the unsteady MHD flows of a non-Newtonian fluid over a non-
impulsively stretching flat sheet and presented an accurate series solution. Abdelkhalek [18] investigated the free 
convection from a moving vertical surface in a MHD flow using perturbation technique. Recently, Hasanpour et al. 
[19] investigated the MHD mixed convective flow in a lid-driven cavity filled with porous medium using numerical 
method. They concluded that the fluid circulations within the cavity are reduced by increasing magnetic field 
strength as well as Darcy number reduction. Ashorynejad et al. [20] investigated the MHD free convective flow 
through a porous medium over a square cavity. The results show that the heat and mass transfer mechanisms and the 
flow characteristics inside the enclosure depended strongly on the strength of the magnetic field and Darcy number. 
The main objective of present study is investigation of the momentum, heat and mass transfer in a MHD flow of a 
movable permeable vertical surface. The system of momentum, heat and mass conservation equations can be 
reduced to some parametrical problem by introducing suitable transformation variable. By use of scaling 
transformations, the set of governing equations and the boundary condition are reduced to Non-linear ordinary 
differential equations with appropriate boundary conditions. Then these transformed governing equations are solved 
using homo topy analysis method. Characteristic results for the velocity, temperature and concentration profiles are 
presented for various governing parameters. 
 

MATERIALS AND METHODS 
 
 In this paper the steady, incompressible, two-dimensional MHD Flow with free convection on a movable leaky 
vertical surface is considered. The fluid properties are assumed to be constant except the density in the buoyancy 
terms which is approximated according to the Boussinesq’s approximation. The variations of surface temperature 
and concentration are assumed to be linear. No electric field exists and both viscous and magnetic dissipations are 
neglected. The Hall Effect and the joule heating terms are also neglected when the velocity of the fluid distant from 
the plate is equal to zero. Under the above assumptions the boundary layer form of the governing equations can be 
written as:  
 

                                                                                  
u v
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x y
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∂ ∂
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The boundary conditions for Eqs. (1)-(4) are as follows: 
 
                                                 wy 0,v v ,u Bx,T T ax,c c bx∞ ∞= = − = = + = +  (5) 
 
                                                 y ,u 0,T T , c c∞ ∞→ ∞ = = =  (6) 
 
Also the following non-dimensional functions and variables are introduced: 
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B
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y x x B

∂ϕ ∂ϕ ϕ
= = − η = η =
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 (7) 

 

                                                                
w w

T T c c
( ) ,C( )

T (x) T c (x) c
∞ ∞

∞ ∞

− −
θ η = η =

− −
 (8) 

 
 With a new set of independent and dependent variable defined by Eq. (7), the continuity equation (1) is satisfied 
automatically and from Eqs. (2) and (4) the following ordinary differential equations can be obtained: 
 

                                                                ''' '' ' ' rT
2

G
F FF (M F)F ( C)

Re
+ − + = − θ + Ν  (9) 

 

                                                                             '' ' 'Pr(F F ) 0θ + θ − θ =  (10) 
 

                                                                            '' ' 'C Sc(FC FC) 0+ − =  (11) 
 
Primes denote differentiation with respect to η and the boundary conditions (Eqs. (5) and (6)) becomes:  
 
                                                          ' '

wF(0) F ,F(0) 1,F( ) 0= = ∞ =  (12) 
                                                          (0) 1, ( ) 0θ = θ ∞ =  (13) 
                                                          C(0) 1,C( ) 0= ∞ =  (14) 
 
 In the above equations N is zero for thermal driven flow, infinite for mass driven flow, positive for thermally 

assisting flow, negative for thermally opposing flow abd w
w

v
F

B
=

ξ
 is the suction or injection parameter. For the 

case of suction, vw>0 and hence Fw>0.and for the case of blowing, vw<0 and hence Fw<0.  
 

Application of HAM: Homotopy analysis method is used for the solution of the system equations (9-11) by subject 
to the boundary conditions (12-14). To start with HAM one needs to make the initial guess approximations 
satisfying the boundary data and to choose suitable linear operators. The initial approximations of F(η) and θ(η), 
C(η) and the auxiliary linear operators L[F(η)],L[θ(η)] and L[C(η)] are as follows: 
 

                                                                                0 wF ( ) e F−ηη = η +  (15) 
 

                                                                                    0( ) e−ηθ η =  (16) 
 

                                                                                   0C ( ) e−ηη =  (17) 

and 

                                                                           ''' ''
1L[F( )] F 2F Fη = + +  (18) 

 

                                                                               '' '
2L [ ( )]θ η = θ + θ  (19) 

 

                                                                               '' '
3L [C( )] C Cη = +  (20) 

Which have the following properties: 
                                                                         1 1 2 3L [ c c e c e ] 0−η −η+ + η =  (21) 

 

                                                                                2 1 2L [c c e ] 0−η+ =  (22) 
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                                                                                 3 1 2L [c c e ] 0−η+ =  (23) 

 
Following the Homotopy analysis method, the non-linear operator is defined as: 
 

                                                '' '2 rT
1 2

G
N[F( )] F( ,p)F( ,p) F ( ,p) ( ( ,p) ( ,p)C( ,p)

Re
η = η η − η + θ η + Ν η η  (24) 

 
                                                      '' ' '

2N [ ( ,p)] ( ,p) Pr(F( ,p) ( ,p) F ( ,p) ( ,p))θ η = θ η + η θ η − η θ η  (25) 

 

                                                     '' ' '
3N [ ( ,p)] C ( ,p) Sc(F( , p)C( ,p) F ( ,p)C( ,p))θ η = η + η η − η η  (26) 

 
 Using the above description, with assumption H1 (η) = 1, H2 (η) = 1, H3 (η) = 1 the zero-order deformation 
equation is constructed as: 
 

                                                                1 0 1(1 p)L[F( ,p) F ( )] p N [ F( ,p)]
∧ ∧

− η − η = ηh  (27) 

 

                                                                2 0 2(1 p)L [ ( ,p) ( )] p N [ ( ,p)]
∧ ∧
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                                                                3 0 3(1 p)L [ C ( ,p) C ( )] p N [C( ,p)]
∧ ∧

− η − η = ηh  (29) 

 
Obviously for p = 0 and p = 1 the above equations (27-29) change to: 
 

                                                                         0F( ,0) F ( ),F( ,1) F( )
∧ ∧

η = η η = η  (30) 

 

                                                                         0( ,0) ( ), ( ,1) ( )
∧ ∧
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                                                                       0C( ,0) C ( ),C( ,1) C( )
∧ ∧

η = η η = η  (32) 

 

 As p increases from 0 to 1, F( ,p)
∧

η and ( ,p)
∧
θ η vary from F0(η) and θ0(η) to the exact solutions (F(η) and θ(η)). 

Due to Taylor’s theorem and Eqs. (30)-(32), the F(η) and θ(η) can be written as: 
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Where the convergence of the series in Eqs. (33)-(35) is dependent on h . Assume that h  is selected such that the 
series in Eqs. (33)-(35) are convergent at p = 1, then due to Eqs. (30)-(32) one can write: 
 

                                                                         0 m
m 1

F( ) F ( ) F ( )
∞

=

η = η + η∑  (39) 

 

                                                                         0 m
m 1

( ) ( ) ( )
∞

=

θ η = θ η + θ η∑  (40) 

 

                                                                         0 m
m 1

C( ) C ( ) C ( )
∞

=

η = η + η∑  (41) 

 
 Accor ding to initial condition and the rule of solution expressions, it is straight forward that the initial 
approximation should be in the form: (Eqs.(42)-(44)). 
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 Differentiating the zeroth-order deformation equations m times with respect to p, dividing by m! and finally 
setting p = 0 the following mth-order deformation problems can be defined as: 
 

                                                                     1 m m m mL [ F ( ) F 1( )] h R F( )η − χ − η = η  (45) 
 

                                                                    2 m m m mL [ ( ) 1( )] h R ( )θ η − χ θ − η = θ η  (46) 
 

                                                                   3 m m m mL [C ( ) C 1( )] h R C( )η − χ − η = η  (47) 
 

From above equations the final formulation of each function can be obtained as:  
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Thus the final solution can be written as: 
 
                                                                     0 1 2 3F( ) F ( ) F ( ) F ( ) F ( ) ...η = η + η + η + η +  (51) 

 
                                                                     0 1 2 3( ) ( ) ( ) ( ) ( ) ...θ η = θ η + θ η + θ η + θ η +  (52) 

 
                                                                   0 1 2 3C( ) C ( ) C ( ) C ( ) C ( ) ...η = η + η + η + η +  (53) 

 
Convergence of the HAM solution: It is necessary to prove the convergence of the solution series (Eqs. (48-
50)).The convergence and rate of approximation for the HAM solution of the series are strongly dependent upon the 
auxiliary parameter. Therefore, one can choose the proper values of h  by plotting the h -curves which ensure that 
the solution series (Eqs. (48-50)) converge, as suggested by Liao [2-4]. For this purpose the h -curves are plotted for 
14th-order of approximations in Fig. 2-5. These figures observably shows that the range for the acceptable values of 
h  is 0.3 0.11− ≤ ≤h .Obviously the calculations show (Fig. 2-4) that the series (Eqs. (51)-(53)) converge in the whole 
region of g when 0.15= −h . 
 

 
 
Fig. 1: Physical configuration and coordinate system 
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Fig. 2: h -curves for 15th-order approximations by F′″(0), F″(0)  
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Fig. 3: h -curves for 15th-order approximations by θ′″(0), θ″(0)  
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Fig. 4: h curves for 15th-order approximations by C′″(0), C″(0) 
 

RESULTS AND DISCUSSIONS 
 

 In order to verify the accuracy of our present method, a comparison of wall velocity gradient F″(0) for various 
values of Hartmann number (M) with those reported by Yih [14] and Abdoulkhalek [18]. The result of this 
comparison is given in Table 1.The comparison in all the above cases is found to be in admirable harmony between 
the present results and the previous studies. The results of temperature profile, θ′(0) (the wall temperature gradient), 
velocity profile and F″ (0) (the wall velocity gradient) are presented in Fig. 5-8. The general results of the 
examinations are that the external magnetic field reduces the velocity value and consequently the flow rate and also 
the wall heat transfer. In addition, considerable influences on the flow and thermal fields can be seen with temperate 
magnetic field strengths. This situation happen only for liquid metal flows while in this elements the effects of 
magnetic fields and Joule heating is little. In order to get the physical insight into the current problem HAM are 
carried out for different values of Hartmann number. Figure 5 demonstrates the influence of the Hartmann number 
on the velocity profiles in the boundary layer. Application of magnetic field to an electrically conducting fluid gives 
climb to a resistive type force called the Lorentz force. This force has the tendency to calm down the movement of 
the fluid in the boundary layer. Figure 6 shows the temperature θ (η) profiles across the boundary layers at different 
values of the suction or injection parameter. As mentioned earlier the suction corresponding to Fw〉0, injection to 
Fw〈0 and Fw = 0 to impermeable plate. It is known that the imposition of wall fluid suction reduces both the 
hydrodynamic and thermal boundary layers which specify reduction in the temperature profiles. However, the 
opposite  behavior   is   produced   by   imposition  of  wall  fluid  blowing  or  injection.  These  behaviors  are  clear 
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Table 1: Comparison of non-dimensional wall velocity gradient F”(0) for various values of M 

 M = 0 M = 0.5 M = 1 M = 1.5 M = 2 

Yih [14] -1 -1.2247 -1.4142 -1.5811 -1.7321 

Abdelkhalek [18] -1  -1.2356 -1.4156 -1.5821 -1.7334 

Present work -1 -1.2316 -1.4150 -1.5819 -1.7331 

 

 
 
Fig. 5: Effects of M on tangential velocity profiles Pr = 0.72, Re = 50, N = 0, Sc = 0.2,GrT= 5 and Fw = 0 
 

 
 
Fig. 6: Effects of Fw on temperature profiles, Pr = 0.72, Re = 50, N = 0, Sc = 0.2 and GrT = 5 
 

 
 
Fig. 7: Effects of Sc on concentration profiles Pr = 0.72, Re = 50, N = 0, M=1 and GrT = 5, Fw=0 
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Fig. 8: Effects of N on tangential velocity profiles, Pr = 0.72, Re = 50, M = 1, GrT = 5 and Fw = 0 
 
from Fig. 6. The influence of Schmidt number (Sc) on the concentration is demonstrated in Fig. 7. As Sc number 
increases the mass transfer rates increases. Hence, the concentration decreases with increasing Sc. It is obvious from 
this figure that the concentration takes it’s limiting value C∞, for higher values of the dimensionless distance (η). 
Figure  8  illustrates  the  velocity  profiles  increases  with  increasing  the  buoyancy  ratio. The decrease of F′ 
occurs  because  of  an  accelerating  force  which  acts  in  a  direction parallel to the g axis. The velocity increases 
with the dimensionless distance η from the flat surface and takes its maximum value inside the boundary layer 
before  decreasing  asymptotically  to  its  free  stream  value. Also the velocity increases near the plate with 
increasing bouncy ratio.  
 

CONCLUSIONS 
 
 The main purpose of the present study is investigation of momentum, free convection heat and mass transfer of 
MHD flow over a movable permeable plumb surface using HAM. Results and tables are presented to examine the 
effects of the Hartman number (M), buoyancy ratio (N), Schmidt number (Sc) and blowing or suction parameter 
(Fw) on the velocity and temperature and concentration profiles. 
 
• The velocity F′ is detected to reduce as the value of the Hartman number (M) increase. 
• The velocity F′ increase when buoyancy ratio (N) is increased. 
• When the magnitude of suction parameter (Fw〉0) is increased, as well as blowing parameter (Fw〈0), the 

temperature is decreased. 
• The concentration, decreased when Schmidt number (Sc) is increased. 
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