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INTRODUCTION 

 
 The mean value theorem is an important theorem in different fields. This theorem is intesting in smooth and 
non-smooth analysis forms [1, 5, 7]. In this decade many researcher work on set-value mapping [6] and non smooth 
form [1, 5-7] also the extend of this theorem in non smooth case by using the concept of subdiffrential, introduced 
by Clark,be obtained.In all of these theorems the related function is defined on a line segment (interval) and the 
results eare obtained under a convex domain. Antczak [7] by using the concept of Clarke's generalized gradient 
established a mean value theorem under invexity of domain for locally Lipschitz mappings [1]. R. Burachik proved 
an extended version of mean value theorem for set-valued functions. In this paper we extend Burachik’s proof under 
invexity of domains. 
 

PRELIMINARIES 
 
 Let X and Y be two nonempty sets and let  be a mapping defined on X which takes values in the family 
of subsets of Y; that is F(x) is a subset of Y with the possibility that F(x) = ∅ for some x∈X is admitted. In this case 
F is characterized by its graph, which is defined by  
 

 
 
The projection of Gph(F) onto its first argument is the domain of F, denoted by D(F); i.e.,  
 

 
 
The projection of Gph(F) onto its second argument is the range of F, denoted by R(F) and hence  

 
 

such that y∈F(x)}. 
 Assume S is a nonempty open set in  be a real-valued mapping. The Clarke's generalized 
directional derivative of ƒ at x∈S in the direction v∈X is defined by  
 

 

 
Also, the Clarke's generalized gradient of ƒ at x, denoted by ∂ƒ(x), is the subset of X* given by  
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It is well known that  
 
(i) . 
(ii) , where t is any scalar. 
(iii) If ƒ attains a local extremum at x, then 0∈∂ƒ(x). 
 
For a nonempty subset K of a Banach space X, the normal cone  is defined by  
 

 

 
the tangent cone  of K is defined by  
 

 
and  is defined as  

 

 
For a convex subset K of X, it is well known that  for all x∈K [6]. 
 
Definition 2.1: The derivative  of F at a point  is the set-valued map whose graph 
is the tangent cone , as introduced in definition 

 
 

 
Definition  2.2: Let  S  be  a  nonempty  subset  of  ,   and    betwo  mappings.  The  set  S 
is said to be 
 
(i) Invex at u∈S with respect to η if  for all x∈S and all λ∈[0,1]. 
(ii) Invex with respect to η if S is invex at each u∈S with respect to the same η.  
 
 Let S be a nonempty invex set with respect to η and x,u∈S. A set Puv is said to be a closed η-path joining the 
points u and v = u+η(x,u) (contained in S) if  
 

 
 

Analogously, an open η-path joining the points u and v = u+η(x,u) (contained in S) we call a set of the form  
 

 
 

A function ƒ is said to be pre-invex with respect to η if, there exists a vector-valued function η such that  
 
                                              (1) 
 

holds. If  function  ƒ  be  differentiable  said  to  be  invex  with  respect  to  η  if there exists a  vector-valued 
function η such that  
                                                             (2) 
 

Definition 2.3: Let be a nonempty invex set with respect to η. A function is said to be Q-pre-invex 
with respect to η and β, if there exist vector-valued functions η and  (where C is open subset of ) 
such that the relation 
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holds also differentiable function ƒ is said to be invex with respect to η and β if there exists a vector-valued 
functions η and β such that the relation  
 
                                                         (3) 
 
Definition 2.4: Let X and Y be Banach spaces. is called 
 
(i) Convex [7] if Gph(F) is convex. 
(ii) η-convex if for all α∈[0,1] and all x1, x2∈D(F) we have  
 

 
 
(iii) Q-η-convex if for all α∈[0,1] and all x1, x2∈D(F) we have  
 

 
 
Note that  is Convex if and only if  
 

 
 
∀α∈[0,1] and x1,x2∈D(F) [7]. Also, a mapping F is η-convex if Gph(F) is η-convex. 
 

MAIN RESULT 
 
Theorem 3.1: Suppose  is η-convex graph,  and x∈D(F). Then  
 

 
 
Proof: By η-convexity of Gph(F) we have  
 

 
where y∈F(x) and t∈[0,1]. Hence,  

 

Then 
 

 
which it implies that  for all y∈F(x). 
 
Theorem 3.2: Suppose C is open subset of Y,  is Q,η-convex graph, ,  and 

, Then  
 

 
 
Proof: By Q,η-convexity of Gph(F) we get  
 

 
 
for all y∈F(x) and all t∈[0,1]. Hence,  
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Then  

 
 
which it implie that  holds for all y∈F(x)  
 
Theorem 3.3 [5]: For any (real valued) locally Lipschitzian function f defined on Puv contained in an open invex set 
S⊆X with respect to η there exist  and  such that  
 

 
 
Theorem 3.4: For any (real valued) locally Lipschitzian function f defined on Puv contained in an open invex set 
S⊆X with respect to η and  (Cis open subset of ) be locally Lipschitzian function. Let  
 

 
 
Then there exist  and  such that  
 

 
 
Proof: Set  and define the function  as µ(t) = ƒ(ut). Since f is locally Lipschitz, µ is 
locally  Lipschitz  too. First  we  consider  two  sets  ∂µ(t)  and  〈∂ƒ(uµ), η(x,u)〉. These two  sets  are  intervals  in  

. For each λ = ±1,  
 

   

 
By setting , we have y→ut and hence  
 

 

 
Therefore, . Now define the function  as  
 

 
 
 Since g is continuous, it attains a local extremum at a point , which it implies that . Thus  

 
 
By setting ,  and so there exists  such that  
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