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INTRODUCTION

The mean value theorem is an important theorem in different fields. This theorem is intesting in smooth and
non-smooth analysis forms [1, 5, 7]. In this decade many researcher work on set-value mapping [6] and non smooth
form [1, 57] also the extend of this theorem in hon smooth case by using the concept of subdiffrential, introduced
by Clark,be obtained.In all of these theorems the related function is defined on a line segment (interval) and the
results eare obtained under a convex domain. Antczak [7] by using the concept of Clarke's generalized gradient
established a mean value theorem under invexity of domain for locally Lipschitz mappings [1]. R. Burachik proved
an extended version of mean value theorem for set-valued functions. In this paper we extend Burachik’s proof under
invexity of domains.

PRELIMINARIES

Let X and Y be two nonempty sets and let F: ¥ 3 ¥ be amapping defined on X which takes valuesin the family

of subsets of Y that is F(x) is a subset of Y with the possibility that F(x) = ZAfor somex X isadmitted. In this case
F is characterized by its graph, which is defined by

Gph(F):— {(x,v) € (X, ¥):¥ € F(x}).
The projection of Gph(F) onto itsfirst argument is the domain of F, denoted by D(F); i.e.,
D(F):— {x EX:F(x)+ 0L
The projection of Gph(F) onto its second argument is the range of F, denoted by R(F) and hence
R(F):— [vE¥:3x € D(F)
such that yT F(x)}.

Assume S is a nonempty open set in X und f:5 —= R be a real-valued mapping. The Clarke's generalized
directional derivativeof | at xI Sinthedirectionvi X is defined by

f’(x;v) = limsup :':-"'”':'.",-'-"

Y=, el

Also, the Clarke's generalized gradient of ! at x, denoted by 1! (x), isthe subset of X~ given by
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df(x) —f=* € X*:{x"u) = f"(x;u) = forallu € X].
Itiswell known that

() (f+y)(x)Caf(x)+dg(x).
@iy @d(tf)(x)— tdf(x), wheretisany scalar.
(iii) 1f ! atainsalocal extremum at x, then O 1! (x).

For anonempty subset K of a Banach space X, the normal cone N.: ¥ — i * isdefined by

N, (x) = {x*ex"(x,y—x)=0 Vyc K} if xc€K,
TR @ otherwise,
the tangent cone T,.: x/ix of K is defined by

To(z) —{v eX:{a’,v) = 0Vx" € Ny(x)]}
and 5,.: xAx isdefined as

5. (x) = [{";-_vf:x.ﬁ >0} i xek,
PR Ry i )
@ otherwise.

For a convex subset K of X, itiswell known that 5, (=) = T, (=) for al X K [6].

Definition 2.1: The derivative DF{x,,v,):X = ¥ of Fat apoint(x,,v,) € Gph(F)isthe set-valued map whose graph
isthetangent coner,_,, .., (x..v.), asintroduced in definition

Gph(DF(x..v.)) = Toppem (X230

Definition 2.2: Let S be a nonempty subset of R™, n:5 x5 — R"and f:5 — & betwo mappings. The set S
issaid to be

(i) Invexatul Swithrespecttoh if u + An(x,w) € 5foradlxi Sandalll [0,1].
(i) Invex with respect toh if Sisinvex at each ul Swith respect to the same h.

Let S be a nonempty invex set with respect to h and x,ul S. A set P, is said to be a closed h-path joining the
pointsu and v = u+h(x,u) (contained in S) if

P i— {v —u+ Ag{xu):A € [0,1])
Analogously, an open h-path joining the points u and v = u+h(x,u) (contained in S) we call aset of theform
Pli—{v—u+tdiyg(xu)de(01)}
A function| issaid to be pre-invex with respect toh if, there exists avector-valued function h such that
fu+ dn(zu)) < Af () — (1— A)f(w)Va,u € 5,VA £ [0,1]. ©)

holds. If function | be differentiable said to be invex with respect to h if there existsa vector-valued
function h such that
flx)— flw) = [9(x,u)]"Vf{u) vxueE s, @)

Definition 2.3: Let 5 = E"be a nonempty invex set with respect to h. A function f: 5 — Ris said to be Q-pre-invex
with respect to h and b, if there exist vector-valued functions h and j: € = ¢ — R (where C is open subset of &)
such that the relation
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flu+ An(=,u)) < flu) + A8 (F(x), flu))Vx,uw e 5, VA e [0,1]

holds also differentiable function | is said to be invex with respect to h and b if there exists a vector-valued
functions h and b such that the relation

BUF(a) F(w)) =[x w)]" V(W) Vyues ©)
Definition 2.4: Let X and Y be Banach spaces. F: ¥ _z ¥iscalled

(i) Convex[7] if Gph(F) is convex.
(i) h-convexif for dl al [0,1] and al X, %I D(F) we have

F(ag) +a(F(x,) = F(x;)) © Fxy + an(xy,x,))
(i) Q-h-convexif for dl al [0,1] and al x4, %I D(F) we have

F(x;) + aB(F(x,).F(x;)) © F(x; +aunlxy.x5)).
Note that F: & = ¥ isConvex if and only if

aF(x,)+ (1 — a)F(x,) € Flax, + (1 — u)a,)
" al [0,1] and X, %I D(F) [7]. Also, amapping F ish-convexif Gph(F) ish-convex.

MAIN RESULT
Theorem 3.1: Suppose F: ¥AY ish-convex graph, (x..v.,) € Gph(F)and Xl D(F). Then
F(x)—v. < DF(x.,v.)n(x.x.).
Pr oof: By h-convexity of Gph(F) we have
(x. + tn(x,x.).y. + t(y —¥.)) € Gph(F)

whereyl F(x) andtl [0,1]. Hence,

Fix toalxx. -

YW F
Then
(mix.x )y — ) & S (Fi{x. ) © T (F)(x..3.) = Oph (DF(x..%.}).

whichitimpliesthat v — v, € DF (x.,v.)n(x, x,) foral yl F(x).

Theorem 3.2 Suppose C is open subset of Y, F:xA¥ is Qh-convex graph, (x..v.) € Gph(F)x € D(F) and
B:C = C—=¥, Then

B(F(x)v.) S DF(x v )=, =)
Proof: By Q,h-convexity of Gph(F) we get
(z.+ tg(x, 2. ) v, +tB(v.v.) E Gph(F)

foral yl F(x) and al t1 [0,1]. Hence,
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Flx,+ tn(x,x.)—v,
- .

B(v,v.) E
Then
(M2 ) By 3 ))& S (FI(x.. %) © T (F)(x,.3.) = Gph{DF(x..3.]).

whichitimpliethat £(v, v.) € DF(x,,v,)n(x,x,) holdsfor al yT F(x)

Theorem 3.3 [5]: For any (real valued) locally Lipschitzian function f defined on P,, contained in an open invex set
Si X with respect toh there exist= € P2 and =" € df (=) such that

flw) — Flu) — (=" n(x,u))

Theorem 3.4: For any (rea vaued) locally Lipschitzian function f defined on R,, contained in an open invex set
S X with respect toh and #: ¢ = ¢ — R (Cis open subset of &) belocally Lipschitzian function. Let

f(u) — f(v) — B(f(w). f(v))
Then thereexist= £ B, and =~ £ df (=) such that
BUAw) Flu)) —== x® gz, u) =

Proof: Set w,.:—u + tiy(x,u) and define the function w:[0,1] = R as u(t) = | (u). Since f is locally Lipschitz, p is
locally Lipschitz too. First we consider two sets flu(t) and & (uy), h(x,ufi Thesetwo sets are intervals in
R. For each| =1,

max{dp ()i} — u'(t; 1) = imsup % = limsup

= #2510 = o, &l0

Flut{=+& ) n{xu))— F{utsy (zu))

&

By setting v — = + s17(x, u), we have y® u; and hence

ma.x{du[’r]i} = limsup L+ 8dn(en))—1 ) Frluwgnix,w)d)— max{df(w,)nq(x, u)d)

a8 LD 5
Therefore, du(t) = (df (. ). m(x,u)). Now define the function : [0,1] = R as
g(t) = flu) + tBf (). f(w)).

Since g is continuous, it attains alocal extremum at apointt (0,13, whichitimpliesthato € ag(t). Thus
0 € dg(t) = du(t) + B(f(w), F(v))==< dgf(u)in(x.u) = +E(f(u), f(v))

By setting ¢ — u; — u + ty(x.u), ¢ € B, and so there existsx* € 8f(c) = df(u;) such that
BUF(w), Flu)) — (=" m(=x,u)).
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